JPS60133323A - Infrared-ray analyzer - Google Patents

Infrared-ray analyzer

Info

Publication number
JPS60133323A
JPS60133323A JP24272483A JP24272483A JPS60133323A JP S60133323 A JPS60133323 A JP S60133323A JP 24272483 A JP24272483 A JP 24272483A JP 24272483 A JP24272483 A JP 24272483A JP S60133323 A JPS60133323 A JP S60133323A
Authority
JP
Japan
Prior art keywords
movable plate
pressure
pressures
infrared
measuring means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24272483A
Other languages
Japanese (ja)
Other versions
JPH0410579B2 (en
Inventor
Toshitsugu Ueda
敏嗣 植田
Fusao Kosaka
幸坂 扶佐夫
Daisuke Yamazakai
大輔 山崎
Yoshinobu Sugihara
吉信 杉原
Mitsuo Kotaka
小鷹 光雄
Shozo Shibata
柴田 省三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP24272483A priority Critical patent/JPS60133323A/en
Publication of JPS60133323A publication Critical patent/JPS60133323A/en
Publication of JPH0410579B2 publication Critical patent/JPH0410579B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/37Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using pneumatic detection

Abstract

PURPOSE:To perform highly accurate analysis, by providing a fixing plate having slits, providing a movable plate, which is supported by two points on a straight line passing the center of gravity and can be rotated, detecting the difference in pressures, thereby making it hard to receive the effect of vibration noises and posture change. CONSTITUTION:Infrared rays, which have passed a sample cell 1 and a comparing cell 2, are inputted to light receiving chambers 51 and 52, and pressures P1 and P2 are generated. Said pressures P1 and P2 are supplied to a pressure measuring means 6, and the pressure difference P1-P2 is detected. The measuring means 6 is provided with a fixed plate 70 having slit holes and a movable plate 92, which is arranged so as to face the fixed plate and supported by a supporting port 93 at two points on a straight line passing the center of gravity. In this constitution, the movable plate 92 is slanted by an angle proportional to the pressure difference P1-P2. The displacement of the movable plate 92 is measured as the change in electrostatic capacity. Thus the difference between the pressures P1 and P2 can be detected. Since such a pressure measuring means is hardly affected by vibration noises and attitude change, highly accurate analysis can be performed.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、赤外線波長域での吸収特性を利用して各種ガ
スの濃度等を分析する赤外線分析針に関するものである
。更に詳しくは、本発明は、光源からの赤外線光束を被
測定ガス中に入射させるとともに、被測定ガスを通過し
た赤外線光束を赤外線を吸収して膨張するような部用に
入射させ、この部屋内に生ずる圧力を測定することによ
り被測定ガスの濃度等を知るようにした赤外線分析計に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to an infrared analysis needle that analyzes the concentration of various gases by utilizing absorption characteristics in the infrared wavelength range. More specifically, the present invention allows infrared light flux from a light source to enter the gas to be measured, and also directs the infrared light flux that has passed through the gas to be measured into a part that absorbs infrared rays and expands. This invention relates to an infrared analyzer that can determine the concentration of a gas to be measured by measuring the pressure generated in the gas.

〔従来技術の説明〕[Description of prior art]

第1図は従来のこの種の赤外線分析針の一例を示す構成
断面図でるる。この赤外線分析計は、被測定ガスが連続
して流れる測定セル1と、不活性ガス、例えば)ガスが
封入された比較セル2と、ツバ5と、測定ガス成分が封
入されたコンデンサマイクロフォン形赤外線検出部6と
、赤外線検出部6の検出信号を増幅する増幅部61と、
指示記録部62と、測定セル1側光束の光量を調節する
トリマー35と、比較セル2側光束の光量を調節するト
リマー36とで構成されている。
FIG. 1 is a sectional view showing an example of a conventional infrared analysis needle of this type. This infrared analyzer consists of a measurement cell 1 through which a gas to be measured flows continuously, a comparison cell 2 filled with an inert gas (for example), a collar 5, and a condenser microphone type infrared ray filled with measurement gas components. a detection unit 6; an amplification unit 61 that amplifies the detection signal of the infrared detection unit 6;
It consists of an instruction recording section 62, a trimmer 35 that adjusts the amount of light from the measurement cell 1 side, and a trimmer 36 that adjusts the amount of light from the comparison cell 2 side.

このようカニ光束式赤外線分析計は、光源の電源変動に
よる影響(通常、光源5と4は同一電源によって点灯さ
れている)や分析計の設置場所の雰囲分ガスによる影響
(比較セル2がないと空気中の水分による影響がでる)
を低減し、安定な特性が得られるという特徴を有する。
This kind of crab beam infrared analyzer is affected by fluctuations in the power source of the light source (normally, light sources 5 and 4 are powered by the same power source) and by the atmospheric gas at the location where the analyzer is installed (comparison cell 2 is Otherwise, it will be affected by moisture in the air)
It has the characteristics of reducing the amount of water and providing stable characteristics.

しかしながら、この様な従来装置においては。However, in such conventional devices.

赤外線検出部6としてコンデンサマイクロフォンを用い
ており、このコンデンサマイクロフォンは、圧力を受け
る金属膜と、この金属膜に対向設置された固定電極とで
構成されており、圧力による金属膜の変位を金属膜と固
定電極の間の静電容量変化として検出するものでメつて
、金属膜を全面にいう問題点がある。また、検出感度が
高いが故に、振動雑音や姿勢変化の影響を受けやすいと
いう欠点がある。
A condenser microphone is used as the infrared detection section 6, and this condenser microphone is composed of a metal film that receives pressure and a fixed electrode placed opposite to this metal film.The metal film detects the displacement of the metal film due to pressure. This method detects changes in capacitance between a fixed electrode and a fixed electrode, and there is a problem in that the entire surface is covered with a metal film. Furthermore, since the detection sensitivity is high, there is a drawback that it is easily affected by vibration noise and changes in posture.

このため、振動のある場所や水平でない場所に装置を設
置すると、精度の高い分析が行なえない欠点がめった。
For this reason, if the device was installed in a place with vibrations or in a non-horizontal place, highly accurate analysis could not be performed.

〔本発明の目的〕[Object of the present invention]

本発明は、従来装置におけるこれらの欠点に鑑みてなさ
れたもので、構成が簡単で、振動雑音や姿勢変化の影響
を受けにくい赤外線分析計を実現しようとするものであ
る。
The present invention has been made in view of these drawbacks of conventional devices, and aims to realize an infrared analyzer that has a simple configuration and is less susceptible to vibration noise and changes in posture.

〔本発明の概要〕[Summary of the invention]

本発明は、赤外線波長城での吸収特性を利用して被測定
ガス濃度を分析する装置において、被測定ガス濃度に関
連して生ずる圧力の測定手段として、スリット孔を有し
た固定板と、この固定板と対向配置され測定すべき圧力
が与えられる可動板と、この可動板が回転できるように
千の重心を通る直線上の2点で当該可動板を支持する支
持部と、可動板の変位又はトルクを検出する検出手段と
で構成したものを用いた点に特徴がある。
The present invention provides an apparatus for analyzing the concentration of a gas to be measured using absorption characteristics at an infrared wavelength range, and a fixed plate having a slit hole therein as a means for measuring the pressure generated in relation to the concentration of the gas to be measured. A movable plate that is placed opposite the fixed plate and applies the pressure to be measured, a support that supports the movable plate at two points on a straight line passing through the center of gravity so that the movable plate can rotate, and the displacement of the movable plate. It is characterized in that it uses a detection means for detecting torque.

〔実施例〕〔Example〕

第2図は本発明に係る装置の一例を示す構成断面図であ
る。この図において、1は被測定ガスが導入される測定
セル、2ijN等の基準ガスが封入された比較セル、3
は赤外線光源で、ここからの赤外線は凹面鏡3Oで反射
し、測定セル1と比較セル2に入射する。5は測定上ル
1.比較七ル2を透過した光を一定周期で断続する光チ
田、バで、これは、第1図装置と同様に光源3と各セル
1,2室で、これらの部屋の中には入射する赤外線エネ
ルギを吸収して膨張するガスが封入されている。
FIG. 2 is a sectional view showing an example of a device according to the present invention. In this figure, 1 is a measurement cell into which the gas to be measured is introduced, 2 is a comparison cell filled with a reference gas such as ijN, and 3 is a comparison cell filled with a reference gas such as ijN.
is an infrared light source, and infrared light from this is reflected by the concave mirror 3O and enters the measurement cell 1 and comparison cell 2. 5 is measured as 1. The light transmitted through the comparison cell 2 is intermittent at regular intervals, and as in the device shown in Fig. It is filled with gas that absorbs infrared energy and expands.

6は受光室51.52に生ずる圧力の差を検出する圧力
測定手段で、管路53.54を介して、圧力P□、p2
段6の一例を示す構成断面図、第4図は一部を断面で示
す要部斜視図、第5図は要部の組立構成図である。これ
らの図において、60は容器、61.62はこの容器内
を2部分に仕切る隔壁である。隔壁61、62で仕切ら
れた各部屋6a、 6b内には、圧力導入孔63.64
から受光室51.52内に生じた測定すべき圧力P工、
p2が導入されている。
6 is a pressure measuring means for detecting the difference in pressure generated in the light receiving chambers 51 and 52, and the pressures P□ and p2 are measured through pipes 53 and 54.
FIG. 4 is a cross-sectional view showing an example of the step 6, FIG. 4 is a perspective view of a main part showing a part in cross-section, and FIG. 5 is an assembled view of the main part. In these figures, 60 is a container, and 61 and 62 are partition walls that partition the inside of this container into two parts. Pressure introduction holes 63 and 64 are provided in each of the rooms 6a and 6b partitioned by partition walls 61 and 62.
The pressure P to be measured generated in the light receiving chamber 51 and 52 from
p2 has been introduced.

7社圧力検知部で、隔壁61.62に固定された固定板
70と、スペーサ8を介して固定板10と対向配置され
た可動部9とで構成されている。
This is a pressure detection unit manufactured by Company 7, and is composed of a fixed plate 70 fixed to partition walls 61 and 62, and a movable part 9 disposed opposite to the fixed plate 10 with a spacer 8 interposed therebetween.

固定板70には、部屋6bの圧力を導びく複数個のスリ
、ト(ここでは5個のスリット)71が設けられている
。また可動部9は、フレーム91、このフレーム91に
支持部93を介して支持されるとともに、固定板70に
対して対向するように設置された可動板92とから成り
、可動板92には複数個のスリット(ここでは5個のス
リット)94が固定板7Oの複数個のスリ、ドア1とは
対向しない位置に設けられている。ここで、可動板92
を支持する支持部93ハ、ばねとしても機能するもので
あり、この可動板が回転できるように、可動板92の重
心P(第5図参照)を通る直線を上の2点でこの可動板
92を支持している。
The fixed plate 70 is provided with a plurality of slits (here, five slits) 71 for guiding the pressure in the chamber 6b. The movable part 9 includes a frame 91 and a movable plate 92 supported by the frame 91 via a support part 93 and installed to face the fixed plate 70. A plurality of slits (here, five slits) 94 are provided in positions not facing the plurality of slits and the door 1 on the fixed plate 7O. Here, the movable plate 92
The support part 93c that supports the movable plate also functions as a spring, and in order to allow the movable plate to rotate, a straight line passing through the center of gravity P of the movable plate 92 (see Fig. 5) is connected to the upper two points of the movable plate. 92 is supported.

なお、この例では、可動板92には、2つの支持部93
を結ぶ直線t(回転軸に相当)K対して、左側にのみ設
けである。
Note that in this example, the movable plate 92 has two supporting parts 93.
It is provided only on the left side with respect to the straight line t (corresponding to the rotation axis) K connecting the two.

75は固定板7Oに設けた電極板、76は電極板75に
対向して、可動板92に設けた電極板で、これらは可動
板92の変位検出手段を構成している。
75 is an electrode plate provided on the fixed plate 7O, and 76 is an electrode plate provided on the movable plate 92 opposite to the electrode plate 75, and these constitute displacement detection means for the movable plate 92.

この様に構成した圧力測定手段6の動作を次に説明する
。受光室51.52内に生じた圧力p□、P2が等しく
、従って部屋6aと6b内の圧力が等しい状態では、可
動板92は固定板70との間でスペーサ8の厚さと等し
い僅かな間隔dを保って保持されている。
The operation of the pressure measuring means 6 constructed in this way will be explained next. When the pressures p□ and P2 generated in the light receiving chambers 51 and 52 are equal, and therefore the pressures in the chambers 6a and 6b are equal, the movable plate 92 is spaced from the fixed plate 70 by a small distance equal to the thickness of the spacer 8. d is maintained.

力導入孔64かもそれぞれ部屋6a、 6bに導入され
た場合、部屋6bの圧力p2は固定板7oに設けた複数
個のスリット孔71を矢印に示すように通り、可動板9
2のスリット孔のない片側裏面に加わる。また。
When the force introduction holes 64 are introduced into the chambers 6a and 6b, respectively, the pressure p2 in the chamber 6b passes through the plurality of slit holes 71 provided in the fixed plate 7o as shown by the arrows, and the pressure p2 in the chamber 6b passes through the plurality of slit holes 71 provided in the fixed plate 7o as shown by the arrows, and the force is transferred to the movable plate 9.
It is added to the back side of one side without the slit hole of No.2. Also.

部屋6aの圧力p□は、可動板92の表面全体に亘って
加わるとともに、可動板92のメリット孔94を通って
可動板92のスリ、ト孔94が設けられている片側裏面
にも加わる。第6図は、この状態における可動板92に
加わる圧力の状態を示している。
The pressure p□ in the chamber 6a is applied to the entire surface of the movable plate 92, and is also applied to the rear surface of one side of the movable plate 92 through the merit hole 94 where the groove hole 94 is provided. FIG. 6 shows the pressure applied to the movable plate 92 in this state.

このため、可動板92において、スリ、ト孔94が設け
られている片側はスリ、ト孔94を介して表側と、裏側
との圧力はpとなりトルクは生じない。
Therefore, in the movable plate 92, the pressure between the front side and the back side through the slots and holes 94 becomes p, and no torque is generated on one side where the slots and holes 94 are provided.

これに対して、スリ、ト孔94が設けられてい表い他方
の片側は、表側と裏側とでは圧力P1とP2がそれぞれ
与えられるため、p□とp2の差に比例したトルクが支
持部93に加わる。支持部93は、ばねとしても機能し
ており、このトルクによって捩れ、可動板92がp□と
p2の差に対応した角度だけ傾斜する。
On the other hand, on the other side where the slotted hole 94 is provided, pressures P1 and P2 are applied to the front side and the back side, respectively, so that a torque proportional to the difference between p□ and p2 is applied to the support part 93. join. The support portion 93 also functions as a spring, and is twisted by this torque, causing the movable plate 92 to incline by an angle corresponding to the difference between p□ and p2.

なお、ここで、可動板92にはスリ、ト孔94が設けら
れており、また可動板92とフレーム91との間は分離
されているので、部屋6aと6b内の流体(気体)がこ
れらを通して漏れるが、スリット孔71やスリット孔9
4の大きさ、可動板92とフレーム91との間の空隙幅
d□、固定板70と可動板92との間隔dを小さくする
ことにより、各部分での流体抵抗が大きくなシ、可動板
92を圧力差に対応させて傾斜させることができる。
Note that the movable plate 92 is provided with slots and holes 94, and since the movable plate 92 and the frame 91 are separated, the fluid (gas) in the chambers 6a and 6b is Although it leaks through the slit holes 71 and 9
4, the gap width d□ between the movable plate 92 and the frame 91, and the distance d between the fixed plate 70 and the movable plate 92, the fluid resistance at each part is increased. 92 can be sloped to correspond to the pressure difference.

可動板92の変位(傾斜角変化)は、電極板75と76
間の静電容量の変化となるもので、この静電容量変化を
測定するととKより、Pとpの圧力差を 2 知ることができる。
The displacement (inclination angle change) of the movable plate 92 is caused by the electrode plates 75 and 76.
This is a change in the capacitance between P and P, and by measuring this capacitance change, the pressure difference between P and P can be determined from K.

この様に構成された圧力測定手段は、可動板92がその
重心を通る直線上の2点で支持され、圧力に基づく可動
板のトルク(あるいは可動板の傾斜)を検出することか
ら1重力および外部振動による加速度(並進運動成分)
は、可動板92を回転させる力(トルク)とならず、受
光室51.52に生ずる圧力p□、P2の差を振動雑音
や姿勢変化(重力)の影響を受けず測定することができ
る。従って、本発明に係る装置は、振動のある場所や水
平でない場所でも、精度の高い分析ができる。
The pressure measuring means configured in this way is such that the movable plate 92 is supported at two points on a straight line passing through its center of gravity and detects the torque (or inclination of the movable plate) of the movable plate based on the pressure. Acceleration due to external vibration (translational motion component)
does not produce a force (torque) that rotates the movable plate 92, and the difference between the pressures p□ and P2 generated in the light receiving chambers 51 and 52 can be measured without being affected by vibration noise or attitude change (gravity). Therefore, the apparatus according to the present invention can perform highly accurate analysis even in places with vibrations or in non-horizontal places.

第7図及び第8図は、圧力測定手段6において、圧力検
知部7の他の例を示す要部平面図及び断面図である。
FIGS. 7 and 8 are a plan view and a sectional view of main parts showing other examples of the pressure sensing section 7 in the pressure measuring means 6. FIG.

第7図に示す実施例は、可動板92において、回転軸t
、に対して左片方側92a、に、t7は全面に亘っテヒ
ッチp1で複数個(ここでは9個)のスリ、ト孔94a
を形成するとともに、右片方側92t)の上下!M縁部
に、スリット孔!’、4aと同じ数で、同じ形状のスリ
ット孔94bを形成させたものである。
In the embodiment shown in FIG. 7, in the movable plate 92, the rotation axis t
, on the left side 92a, t7 covers the entire surface with a plurality of (nine in this case) slots and holes 94a with the hitch p1.
92t) on the right side as well as above and below! A slit hole on the M edge! ', the same number of slit holes 94b as 4a and the same shape are formed.

スを容易にとることができ、回転軸tをこの可動板92
の対称位置にもってくることができる。
The axis of rotation t can be easily taken from this movable plate 92.
can be brought to a symmetrical position.

第8図の実施例は、可動板92にスリ、ト孔を形成する
代に、固定板70において、回転軸に対して左片方側に
凹部74を形成させ、この部分の可動板と固定板との間
隔がd2(d2〉d)となるようKしたものである。
In the embodiment shown in FIG. 8, instead of forming slots and holes in the movable plate 92, a recess 74 is formed in the fixed plate 70 on one side to the left with respect to the rotating shaft, and the movable plate and the fixed plate K is set so that the distance between the two ends is d2 (d2>d).

この実施例において、固定板7Oの凹部74付近の圧力
は、この付近の間隔d2が、他の部分の間隔dK比べて
大きくなっているのでp□又はplに近い圧力となり、
可動板92KP1とP2の差圧に応じたトルクを発生さ
せることができる。
In this embodiment, the pressure near the recess 74 of the fixing plate 7O is close to p□ or pl because the distance d2 in this area is larger than the distance dK in other parts.
It is possible to generate torque according to the differential pressure between the movable plates 92KP1 and P2.

なお、上記の各実施例ではいずれも可動板92の変位又
はトルクを電極間の静電容量変化として検出するように
したものであるが、他の手段、例えば光信号を利用した
り、ノズルフラッパ&何を利用したり、めるいは、支持
部93の歪又は応力等を検出したりしてもよい。
In each of the above embodiments, the displacement or torque of the movable plate 92 is detected as a change in capacitance between the electrodes, but other means, such as using an optical signal or using a nozzle flapper and Any method may be used to detect strain or stress in the support portion 93.

第9図は本発明に係る装置の更に別の実施例を、;−ト
鉛−呼七餅電代411嘘にス、?σ)木knノνすつi
つ191几1すν1fおいて、基準ガスを封入した比較
セルを有しない構成としたものである。
FIG. 9 shows yet another embodiment of the device according to the present invention. σ) woodknノνsutsui
In this case, the comparison cell filled with the reference gas is not included.

赤外線光源3は、パルス回路30によって断続して駆動
されており、赤外線透過窓31.32を介して二方向に
断続赤外線光束を発生する。受光室5.1[。
The infrared light source 3 is driven intermittently by a pulse circuit 30 and generates an intermittent infrared beam in two directions through infrared transmission windows 31,32. Light receiving chamber 5.1 [.

測定セル1内の被測定ガス中を透過した赤外線光束を受
光し、受光室52は、赤外線透過窓32を通過した赤外
線光束を直接受光する。各受光室51.52内には入射
する赤外線を吸収し膨張する測定ガス成分が封入されて
おり、各受光室51.52内には入射する赤外線エネル
ギーに対応した圧力pp が1′ 2 生ずる。この圧力は、管路53.54を介して第5図に
示すような構成の圧力測定手段6に印加され、ここで各
受光室51.52内の圧力差が検出される。
The light receiving chamber 52 receives the infrared light flux that has passed through the gas to be measured in the measurement cell 1 , and directly receives the infrared light flux that has passed through the infrared transmission window 32 . A measurement gas component that absorbs incident infrared rays and expands is sealed in each light receiving chamber 51, 52, and a pressure pp of 1' 2 corresponding to the incident infrared energy is generated in each light receiving chamber 51, 52. This pressure is applied via conduits 53, 54 to pressure measuring means 6 constructed as shown in FIG. 5, where the pressure difference within each light receiving chamber 51, 52 is detected.

圧力測定手段6の出力信号は、増幅器61で増幅後、指
示計62で指示される。
The output signal of the pressure measuring means 6 is amplified by an amplifier 61 and then indicated by an indicator 62.

この様な構成の装置における基本動作は、従来のものと
同一である。この実施例装置によれば、光路途中に経年
的に特性が変化するような比較セルを有し彦いので、零
ドリフトのない安定した特性が得られる。
The basic operation of the device having such a configuration is the same as that of the conventional device. According to the device of this embodiment, since a comparison cell whose characteristics change over time is provided in the optical path, stable characteristics without zero drift can be obtained.

にしたものであるが、圧力測定手段6の各部屋6a。However, each chamber 6a of the pressure measuring means 6.

6bに赤外線光束を入射させてもよい。An infrared beam may be incident on 6b.

〔本発明の効果〕[Effects of the present invention]

以上説明したように、本発明によれば構成が簡単で、振
動雑音や姿勢変化の影響を受けにくい赤外線分析計が実
現できる。
As described above, according to the present invention, it is possible to realize an infrared analyzer that has a simple configuration and is less susceptible to vibration noise and posture changes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置の一例を示す構成断面図、第2図は本
発明に係る装置の一例を示す構成断面図、第3図は第2
図装置に用いられている圧力測定手段の一例を示す構成
断面図、第4図はその一部を断面で示す要部斜視図、第
5図はその要部の組立構成図、第6図は圧力測定手段に
おける可動板に加わる圧力の状態を示す説明図、第7図
及び第8図は圧力検知部の他の例を示す要部の平面図及
び断面図、第9図は本発明に係る装置の更に別の実施例
を示す構成断面図である。 1・・・測定セル、2・・・比較セル、3・・・赤外線
党派51、52・・・受光室、6・・・圧力測定手段、
 eo・・・容器、70・・・固定板、8・・・スペー
サ、9・・・可動部、91・・・フレーム、92・・・
可動板−93・・・支持部、 75.76・・・電極板
。 爪7図 JB図 爪9図
FIG. 1 is a sectional view showing an example of a conventional device, FIG. 2 is a sectional view showing an example of a device according to the present invention, and FIG. 3 is a sectional view showing an example of a device according to the present invention.
Figure 4 is a cross-sectional view showing an example of the pressure measuring means used in the device, Figure 4 is a perspective view of the main part showing a part of it in cross section, Figure 5 is an assembled configuration diagram of the main part, and Figure 6 is An explanatory diagram showing the state of the pressure applied to the movable plate in the pressure measuring means, FIGS. 7 and 8 are a plan view and a cross-sectional view of the main part showing another example of the pressure detection section, and FIG. 9 is according to the present invention. FIG. 7 is a cross-sectional view showing a configuration of yet another embodiment of the device. DESCRIPTION OF SYMBOLS 1...Measurement cell, 2...Comparison cell, 3...Infrared rays 51, 52...Light receiving chamber, 6...Pressure measuring means,
eo... Container, 70... Fixed plate, 8... Spacer, 9... Movable part, 91... Frame, 92...
Movable plate-93...Support part, 75.76...Electrode plate. Claw 7 figure JB figure Claw figure 9

Claims (1)

【特許請求の範囲】[Claims] (1)赤外線波長領域での吸収特性を利用して被測定ガ
ス濃度を分析する装置において、前記被測定ガス濃度に
関連して生ずる圧力の測定手段として、 スリット孔を有した固定板と、この固定板に対向配置さ
れ、測定すべき圧力が与えられる可動板と、この可動板
が回転できるようKその重心を通る直線上の2点で前記
可動板を支持する支持部と、前記可動板の変位又はトル
クを検出する検出手段とで構成されるものを用いたこと
を特徴とする赤外線分析針。
(1) In an apparatus that analyzes the concentration of a gas to be measured using absorption characteristics in the infrared wavelength region, a fixed plate with slit holes and a a movable plate placed opposite to the fixed plate and to which the pressure to be measured is applied; a supporting portion supporting the movable plate at two points on a straight line passing through its center of gravity so that the movable plate can rotate; An infrared analysis needle comprising a detection means for detecting displacement or torque.
JP24272483A 1983-12-22 1983-12-22 Infrared-ray analyzer Granted JPS60133323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24272483A JPS60133323A (en) 1983-12-22 1983-12-22 Infrared-ray analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24272483A JPS60133323A (en) 1983-12-22 1983-12-22 Infrared-ray analyzer

Publications (2)

Publication Number Publication Date
JPS60133323A true JPS60133323A (en) 1985-07-16
JPH0410579B2 JPH0410579B2 (en) 1992-02-25

Family

ID=17093300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24272483A Granted JPS60133323A (en) 1983-12-22 1983-12-22 Infrared-ray analyzer

Country Status (1)

Country Link
JP (1) JPS60133323A (en)

Also Published As

Publication number Publication date
JPH0410579B2 (en) 1992-02-25

Similar Documents

Publication Publication Date Title
US4628740A (en) Pressure sensor
CN1950693B (en) Method and system for detecting one or more gases or gas mixtures and/or for measuring the concentration of one or more gases or gas mixtures
JP2008517252A (en) Heat selective multivariate optical computing
JP2559851B2 (en) Calibration device for non-dispersive infrared photometer
US2555327A (en) Gas analyzing apparatus
CN112924388A (en) Orthogonal dual channel acoustic resonance module and device comprising same
JPH0676966B2 (en) Infrared fluid analyzer
CN114813574A (en) Differential photoacoustic spectrum gas concentration detection device based on dual-channel T-shaped photoacoustic cell
JPS5892843A (en) Nondispersion type infrared analyzer for measurement of two components
JPS60133323A (en) Infrared-ray analyzer
US10996201B2 (en) Photoacoustic measurement systems and methods using the photoacoustic effect to measure emission intensities, gas concentrations, and distances
JPS61250544A (en) Infrared gas analyzer
US3920993A (en) Piggyback optical bench
CN112254799B (en) Anti-vibration differential interference sound sensitivity detection device
JPH0529061B2 (en)
JPH05172738A (en) Acoustic cell
US4156812A (en) Pneumatic radiation detector
JPH055483Y2 (en)
JP3909396B2 (en) Infrared gas analyzer
JP2597714Y2 (en) Infrared gas analyzer
JPH08271426A (en) Infrared gas analyzer
JP2855841B2 (en) Infrared analyzer
JP2002202260A (en) Capacitor microphone detector for infrared gas analyzer
RU2207546C2 (en) Photothermoacoustic gas analyzer
JP2000283919A (en) Infrared gas analyzer