JPS6012679A - Information memory device - Google Patents

Information memory device

Info

Publication number
JPS6012679A
JPS6012679A JP58120555A JP12055583A JPS6012679A JP S6012679 A JPS6012679 A JP S6012679A JP 58120555 A JP58120555 A JP 58120555A JP 12055583 A JP12055583 A JP 12055583A JP S6012679 A JPS6012679 A JP S6012679A
Authority
JP
Japan
Prior art keywords
memory device
powder
information storage
battery
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58120555A
Other languages
Japanese (ja)
Inventor
Tadashi Tonomura
外「村」 正
Satoshi Sekido
聰 関戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58120555A priority Critical patent/JPS6012679A/en
Publication of JPS6012679A publication Critical patent/JPS6012679A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Sources (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide an auxiliary power source built-in memory device having long life and compact size by incorporating all solid state secondary batteries in a resin package. CONSTITUTION:A solid state unit cell 1 measuring 5X5X0.8mm. and a semiconductor memory device chip 2 are fixed on the both sides of a lead frame 3, and electrodes 5 for connecting unit cells in series are arranged, and they are incorporated in a resin package 6 which also serves as a battery container. A unit cell pellet consists of a positive layer 7 comprising positive mix of the mixture of Cu0.6V2O5 powder and Cu ion conductive electrolyte of RbCu4I1.5Cl3.5 powder and graphite, an electrolyte layer 8 comprising Cu ion conductive solid electrolyte of RbCu4I1.5Cl3.5, and a negative layer 9 comprising negative mix of the mixture of Cu2S powder, Cu powder, and Cu ion conductive solid electrolyte RbCu4I1.5Cl3.5 powder. By packaging together memory device and batteries, volatile memory device which loses memory stored when it is separated from power source can be converted into vertual nonvolatile memory device.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体メモリ素子等の情報記憶素子、特に、
一体化されたノ(ツクアップ用電源を有する情報記憶素
子に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to information storage devices such as semiconductor memory devices, in particular,
The present invention relates to an information storage element having an integrated power supply for pull-up.

従来例の構成とその問題点 小型電池の電子機器における使Jつれ方は、判へ導体メ
モリ素子等の高密度情報記憶素子の発j幸によ ・す、
主電源が切れた場合においてもメモ1)保持を損なわな
いように、補助的な電源として、い臂つゆるメモリバッ
ファ・ノブ用の電源としての1吏Jフれ方が多くなって
きている。
The structure of conventional examples and their problems The use of small batteries in electronic equipment depends on the development of high-density information storage elements such as conductive memory elements.
Note 1) In order to maintain retention even when the main power supply is cut off, it is increasingly being used as an auxiliary power source for the memory buffer knobs in the arm.

補助電源用の電池としては、放電容量と妙・出力電流が
小さくとも、機器あるい(はブ1ノント基板力・らメモ
リ素子を着脱する場合に、メモ1)保持を損なわないよ
うに、電池とメモリ素子と力玉切り肉「されることなく
一体化されていること力;望ましい。
As a battery for auxiliary power supply, even if the discharge capacity and output current are small, it is necessary to use a battery that does not impair retention when attaching or detaching the memory element from the equipment or board (note 1). It is desirable that the memory element and the force be integrated without being combined.

従来は、このような補助電源としては、コイン形状ある
いはボタン形状を有する一次電池25玉主に用いられて
いるが、電池とメモリ素子とは一体イヒされておらず、
電池の発電要素は電池用の容器内に納められ、捷だ、メ
モリ素子である集積回路チップはメモリ素子用の容器内
に収められ、それぞれ独立した電子部品として供給され
ているにすぎない。
Conventionally, as such an auxiliary power source, a coin-shaped or button-shaped primary battery is mainly used, but the battery and memory element are not integrated.
The power generation element of the battery is housed in a battery container, and the integrated circuit chip, which is a memory device, is housed in a memory device container, and each is simply supplied as an independent electronic component.

これは、従来の電池の発電要素の素材として、液体物質
が少なからず用いられていること、また、それらが腐食
性の高い材料であることから、シリコンあるいはその他
の化合物半導体材料より構成される半導体メモリ素子4
賢積回路チップと同一容器内に納めることがはなはだ困
難であったためである。
This is due to the fact that liquid substances are often used as materials for power generation elements in conventional batteries, and because they are highly corrosive materials, semiconductors made of silicon or other compound semiconductor materials Memory element 4
This was because it was extremely difficult to store it in the same container as the intelligent circuit chip.

発明の目的 本発明は、半導体メモリ素子等の情報記憶素子を電池と
を一体化し、従来は、機器の電源から切シ離された際、
保鼻されていた情報をすべて消失してしまう、いわゆる
揮発性のメモリ素子を見かけ土工揮発性のメモリ素子に
変えることを目的とする。
Purpose of the Invention The present invention integrates an information storage element such as a semiconductor memory element with a battery, and conventionally, when disconnected from the power supply of the device,
The purpose is to change a so-called volatile memory element, which loses all stored information, into a seemingly volatile memory element.

発明の構成 本発明に従う情報記憶素子は、その樹脂パッケージ内に
、すべて固体物質から構成され、また、くシ返し充電が
可能な2次電池系の発電要素を内蔵する。そのような発
電要素を用いることKより、必要な電池容量を、適時外
部電源から補給することができるため、電池容量を小さ
くすることができ、半導体メモリ素子等の小型化された
素子チップのパッケージ内に容易に納まる。また、固体
物質を用いているため、通常、強力な酸化剤あるいは還
元剤あるいは金属腐食剤として知られている発電要素を
、特別の電池容器を用意して閉じ込めずに、メモリ素子
チップと同一パッケージ内に封入しても、メモリ素子チ
ップに触れて、これを損なうことはない。
Structure of the Invention The information storage element according to the present invention is made entirely of solid materials and includes a rechargeable secondary battery power generating element within its resin package. By using such a power generating element, the necessary battery capacity can be replenished from an external power source at a timely manner, so the battery capacity can be reduced, and packages for miniaturized element chips such as semiconductor memory elements can be realized. easily fits inside. In addition, since solid materials are used, power generation elements, which are normally known as strong oxidizing or reducing agents or metal corrosive agents, can be packaged in the same package as the memory element chip without having to be confined in a special battery container. Even if it is sealed inside, it will not touch the memory element chip and damage it.

実施例の説明 本発明に従う電池の発電要素のうち、正極活物質および
、負極活物質としては、例えば、CunMX2(n:0
.1〜0.8;M:Ti、W、Mo、Nb;X:S、S
o)およびCunM003.Cunv205(n:0.
1〜0.8)およびCu 2 S 、 Cuで表される
無機固体物質の一群より選ぶことができる。また、電解
質材料としては、Cu @イオン導電性固体電解質が用
いられ、CuBr−DTDBr2(N、N’−ジメチル
トリメチルジアミンジプロマイド)系とか、7CuBr
・C6H12N4CH3BT とか、RbCu4 工2
−xC’3+x系とかのCu”イオン導電性固体電解質
を用いることができる。これらの電解質の中でも、特に
、RbCu I C1系は、前述した一群の正極42−
X 3+x および負極活物質材料と長期間に渡って接していても、
化学的な変化を起こし難く、長期間使用の電池用には、
最も好適に用いることができる。
Description of Examples Among the power generation elements of the battery according to the present invention, as the positive electrode active material and the negative electrode active material, for example, CunMX2 (n:0
.. 1-0.8; M: Ti, W, Mo, Nb; X: S, S
o) and CunM003. Cunv205(n:0.
1 to 0.8), and a group of inorganic solid substances represented by Cu 2 S and Cu. In addition, as the electrolyte material, Cu@ion conductive solid electrolyte is used, and CuBr-DTDBr2 (N,N'-dimethyltrimethyldiamine dipromide) system, 7CuBr
・C6H12N4CH3BT or RbCu4 Engineering 2
A Cu" ion conductive solid electrolyte such as the -xC'3+x system can be used. Among these electrolytes, the RbCu I C1 system is particularly suitable for the above-mentioned group of positive electrodes 42-
Even if it is in contact with X 3+x and the negative electrode active material material for a long period of time,
For batteries that are resistant to chemical changes and can be used for long periods of time,
It can be used most suitably.

第1表に、RbCu411.6Ct3.6を電解質とし
て用いた、本発明に有効に用いることができる電池系の
いくつかを、単電池の電池電圧とともに正極−負極活物
質の組み合せとして示す。
Table 1 shows some battery systems that use RbCu411.6Ct3.6 as an electrolyte and can be effectively used in the present invention, as well as the battery voltage of a single cell and the combination of positive electrode and negative electrode active materials.

以下余白 第1表 以上、第1表に示した電池反応を総括的に示すと次のよ
うに表わされる。
The cell reactions shown in Table 1 are summarized as follows.

正極の電池反応は、 負極の電池反応は 電池の容量は、正・負極活物質の量と、δ値により決ま
る。δの値は、良好な充・放電特性を維持するには約0
.1以下であることが好ましい。
The battery reaction of the positive electrode is the battery reaction of the negative electrode.The capacity of the battery is determined by the amount of positive and negative electrode active materials and the δ value. The value of δ should be approximately 0 to maintain good charge/discharge characteristics.
.. It is preferably 1 or less.

以上のような発電要素を用いた情報記憶素子の具体例を
、図面を参照して説明する。
A specific example of an information storage element using the power generation element as described above will be described with reference to the drawings.

第1図は、本発明の実施例の1つである、パッケージの
1部を電池容器とした半導体メモリ素子の断面を示した
図である。
FIG. 1 is a cross-sectional view of a semiconductor memory element in which a part of the package is a battery container, which is one of the embodiments of the present invention.

1は、固体物質で発電要素が構成される厚さ0.8爬、
53BX51Bの単電池である02は、半導体メモリ素
子チップ、3は、半導体メモリ素子チップを一方の面に
、他方の面に単電池群を配置するだめのリードフレーム
である。4は、絶縁被膜層、5は、単電池を直列に接続
するだめの電極である。6は、電池容器を兼ねる樹脂パ
ッケージである。
1 has a thickness of 0.8 cm, in which the power generation element is made of solid material;
02, which is a 53BX51B unit cell, is a semiconductor memory element chip, and 3 is a lead frame for arranging the semiconductor memory element chip on one side and a group of unit cells on the other side. 4 is an insulating coating layer, and 5 is an electrode for connecting the cells in series. 6 is a resin package that also serves as a battery container.

第2図は、第1図の単電池1の断面の構造を詳しく示す
図でるシ、7は、正極層、8は、固体電解質層、9は負
極層である。例えば、正極活物質であるC u o、e
 V 20 sの粉末と、Cu(I3イオン導電性固体
電解質RbCu4I 、 、5C’t3.6粉末と、導
電剤である黒鉛粉末とを重量比で1:に〇、05の割合
で混合した正極合剤粉末0.08 grと、Cu69イ
オン導電性固体電解質Rb Cu 4I 1.5CZ 
3.s粉末0.05gr と、Cu2S粉末とCu粉末
とCuΦイオン導電性固体電解質RbCu411.5C
13,5粉末とを重量比で1: 4.75 : 1.2
5の割合で混合した負極合剤粉末0.15grとを、層
状に約2トン/crAの圧力でプレス成形して得た、厚
さo、sNb、大きさ5賜×58角の単電池ペレットを
用いる。
FIG. 2 is a diagram showing in detail the cross-sectional structure of the cell 1 shown in FIG. 1, where 7 is a positive electrode layer, 8 is a solid electrolyte layer, and 9 is a negative electrode layer. For example, C u o, e which is a positive electrode active material
A positive electrode composition was prepared by mixing V20s powder, Cu(I3 ion conductive solid electrolyte RbCu4I, 5C't3.6 powder, and graphite powder as a conductive agent at a weight ratio of 1:0.05. agent powder 0.08 gr and Cu69 ion conductive solid electrolyte Rb Cu 4I 1.5CZ
3. s powder 0.05g, Cu2S powder, Cu powder, CuΦ ion conductive solid electrolyte RbCu411.5C
13.5 powder in a weight ratio of 1: 4.75: 1.2
Cell pellets with thickness o, sNb, size 5 mm x 58 square, obtained by press-molding 0.15 gr of negative electrode mixture powder mixed at a ratio of 5. Use.

このような単電池ペレットをカーボン粉末とエポキシ樹
脂よりなる導電性接着剤で、2つづつ直列に接合して組
電池とする。第3図1に示したように、厚さ10〜20
μのポリイミド樹脂被膜よりなる絶縁被膜4が塗布焼き
付けされているIJ−ドフレーム3の一方の面上に、3
組の組電池10が導電性接着剤よりなる電極5により、
接着配置される。第3図2は、このようなリードフレー
ム3のもう一方の面の正面図を示しており、2は、半導
体メモリ素子チンプであり、メモリ容量が4キロバイト
のC−MOS スタティックRAMメモリ素子である。
Two such unit cell pellets are joined in series using a conductive adhesive made of carbon powder and epoxy resin to form a battery pack. As shown in Figure 3 1, the thickness is 10~20
On one side of the IJ-deframe 3, an insulating coating 4 made of a polyimide resin coating of μ is coated and baked.
The assembled battery 10 of the set has electrodes 5 made of conductive adhesive,
Glue is placed. FIG. 3 2 shows a front view of the other side of such a lead frame 3, and 2 is a semiconductor memory device chimp, which is a C-MOS static RAM memory device with a memory capacity of 4 kilobytes. .

メモリ保持時の電源電圧は約3V。The power supply voltage when holding memory is approximately 3V.

消費電力は0.01 m #−である。第3図に示した
ように単電池群および半導体メモリ素子チップがリード
フレームの所定の位置に配置され、ワイヤーボンディン
グによシ結線された後、全体が、トランスファー・モー
ルド成型により樹脂パッケージされる。トランスファー
・モールド用の樹脂材料としては、シリカを台布したエ
ポキシ系の樹脂が通常用いられる。また、この樹脂を加
熱溶融するのには180ないし185℃の加熱が必要で
あり、電池発電要素材料として、Cu n MX 2 
(X :S )を用いる場合は、若干のイオウの発生を
伴うので、室温で加圧するだけでトランスファー・モー
ルドか可能なアセ−タール樹脂を用いることが好ましい
Power consumption is 0.01 m #-. As shown in FIG. 3, the unit cell group and the semiconductor memory element chip are arranged at predetermined positions on the lead frame and connected by wire bonding, and then the whole is resin packaged by transfer molding. Epoxy resin coated with silica is usually used as a resin material for transfer molding. In addition, heating at 180 to 185°C is required to heat and melt this resin, and Cu n MX 2 is used as a battery power generation element material.
When (X:S) is used, a slight amount of sulfur is generated, so it is preferable to use an acetal resin that can be transferred and molded simply by applying pressure at room temperature.

第4図は、このようにして半導体メモリ素子と一体にパ
ッケージされた単電池群の室温約20 ”Cでの充・放
電時の電池電圧を示している。充・放電電流値は、3.
3μAである。充電時間、放電時間共に、300時間で
ある。放電時間が、300時間程度では、電池電圧は、
半導体メモリ素子のメモリ保持に必要な3.0v以下に
なることはない。
FIG. 4 shows the battery voltage during charging and discharging at a room temperature of about 20"C for a group of single cells packaged together with a semiconductor memory element in this way. The charging and discharging current values are as follows: 3.
It is 3 μA. Both charging time and discharging time were 300 hours. When the discharge time is about 300 hours, the battery voltage is
The voltage will never drop below 3.0V, which is necessary for memory retention in the semiconductor memory element.

第5図は、充・放電電流値が3.3μAで、充電および
放電時間が300時間の、充・放電サイクルをくり返し
た際の単電池群の各々のサイクルでの放電末期の電池電
圧と、充・放電サイクル数との関係を示している。充・
放電サイクルが300回を越えても、電池電圧は、3.
0v以上を示しており、・延放電時間にして、9000
0時間(約10年)゛以上にわたシ、本電池は使用でき
る。実際、補助電源による半導体メモリ素子の記憶保持
は、夜間あるいは休日等に機器の主電源が切られた際に
必要とされるだけであるから、本発明に従う電池を備え
た半導体メモリ素子は、見かけ上電気的に情報の書き込
み、読み出しが可能な、半永久的な不揮発性メモリ素子
とすることができる。
Figure 5 shows the battery voltage at the end of discharge in each cycle of a group of single cells when charging and discharging cycles are repeated with a charging and discharging current value of 3.3 μA and a charging and discharging time of 300 hours; It shows the relationship with the number of charge/discharge cycles. Mitsuru・
Even after 300 discharge cycles, the battery voltage remains at 3.
It shows 0V or more, and the extended discharge time is 9000
This battery can be used for more than 0 hours (approximately 10 years). In fact, the memory retention of the semiconductor memory device using the auxiliary power source is only required when the main power of the device is turned off at night or on holidays, so the semiconductor memory device equipped with the battery according to the present invention is Moreover, it can be made into a semi-permanent nonvolatile memory element in which information can be electrically written and read.

次に、本発明の情報記憶素子を実用に供するためには、
発電要素の充・放電サイクル数の他に、充電後、電池を
開路状態で放置した際の電池放電容量の劣化の程度、す
なわち、自己放電の大きさが問題となる。これは、固体
電解質電池では、発電要素のうち、Cu0イオン導電性
固体電解質層の電子伝導性に大きく左右される。本実施
例に用いた電解質は、RbCu4工、−xCt3+工で
表される一連のCuイオン導電性固体電解質の1つであ
るが、RbCu4■2−xCt3+x(x−0,26〜
0.5)は、この中でも電子伝導度が特に小さく、これ
を用いた電池の放置中の自己放電は極めて小さい。
Next, in order to put the information storage element of the present invention into practical use,
In addition to the number of charge/discharge cycles of the power generation element, the degree of deterioration of the battery discharge capacity when the battery is left open-circuited after charging, that is, the magnitude of self-discharge, is a problem. In a solid electrolyte battery, this is largely influenced by the electronic conductivity of the Cu0 ion conductive solid electrolyte layer among the power generation elements. The electrolyte used in this example is one of a series of Cu ion conductive solid electrolytes represented by RbCu4, -xCt3+.
0.5) has particularly low electronic conductivity among these, and the self-discharge of a battery using this during storage is extremely small.

表2は、本実施例の発電要素のうち、Cu”イオン導電
性固体電解質として、X値の異なるRbCu4I、 −
xCi3+、を用、いた単電池群を、室温約20℃で3
.3μAの電流値で、充電300時間、放電300時間
の1サイクル600時間の充・放電を1回行った後、同
じ電流値で、300時間充電を行ない、その後、約20
 ’Cで60日間放置した際の開路電圧の値と、放電後
に、3.3μAで放電した際の、電池電圧が3.OVK
なるまでの放電容量を示したものである。
Table 2 shows that among the power generation elements of this example, RbCu4I, −
Using xCi3+, a group of single cells was heated at room temperature of about 20°C.
.. After charging and discharging once for 600 hours at a current value of 3 μA, charging for 300 hours and discharging for 300 hours, charging and discharging for 300 hours at the same current value, and then charging for approximately 20 hours.
The open circuit voltage value when left at 'C for 60 days and the battery voltage when discharged at 3.3 μA after discharge. OVK
This shows the discharge capacity until .

表 2 RbCu4I、 −xC13+、(X=0.25〜0.
6)の電解質が、電池放置に際して極めて優れているこ
とがわかる。
Table 2 RbCu4I, -xC13+, (X=0.25-0.
It can be seen that the electrolyte 6) is extremely superior when the battery is left unused.

なお、本実施例では、正極活物質・負極活物質の組み合
せとして、正極活物質:Cu o、e V2O5。
In this example, the combination of positive electrode active material and negative electrode active material is positive electrode active material: Cu o, e V2O5.

負極活物質:Cu 2 S + Cu の組み合せを用
いたが、第1表で示した正極活物質、負極活物質の組み
合せ例のどれを用いても、電池電圧が約3.6vから約
6.ovになるように単電池群を構成することで、本実
施例と同様の効果を得られることは言うまでもない。
Although a combination of negative electrode active material: Cu 2 S + Cu was used, no matter which combination of positive electrode active material and negative electrode active material shown in Table 1 is used, the battery voltage will vary from about 3.6V to about 6.6V. It goes without saying that the same effects as in this embodiment can be obtained by configuring the unit cell group so that the voltage is ov.

発明の効果 本発明の情報記憶素子は、全固体質の二次電池系の発電
要素を樹脂パッケージ、内に一体収納したものであり、
長期の使用に耐え、しかも小型の、補助電源内蔵型記憶
素子を実現できる0
Effects of the Invention The information storage element of the present invention is one in which an all-solid-state secondary battery-based power generation element is integrally housed in a resin package.
0 that can realize a memory element with built-in auxiliary power supply that is compact and durable for long-term use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例における半導体メモリ素子
の構成を示す断面図、第2図は第1図における単電池の
断面の構造を示す断面図、第3図(1)及び第3図(2
〕は各々第1図に示した情報記憶素子の平面図及び裏面
図、第4図は、充・放電時の電池電圧の変化を示すグラ
フ、第5図は、電池放電末期電圧と、充・放電サイクル
数との関係を示すグラフである。 1・・・・・・単電池、2・・・・・・半導体メモリ素
子テップ、6・・・・・・樹脂パッケージ〇 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第3図 (f) 0
FIG. 1 is a cross-sectional view showing the structure of a semiconductor memory element according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing the structure of the unit cell in FIG. 1, and FIG. Figure (2
] are a plan view and a back view of the information storage element shown in FIG. 1, FIG. 4 is a graph showing changes in battery voltage during charging and discharging, and FIG. 5 is a graph showing battery voltage at the end of discharge and charging and discharging. It is a graph showing the relationship with the number of discharge cycles. 1...Single cell, 2...Semiconductor memory device chip, 6...Resin package〇Name of agent: Patent attorney Toshio Nakao and 1 other person 1st
Figure 3 (f) 0

Claims (3)

【特許請求の範囲】[Claims] (1)情報記憶素子チップを収納した樹脂パッケージ内
に、すべて固体物質で構成される二次電池系の発電要素
を、前記情報記憶素子チップの補助電源を構成するとと
もに、外部からの充電が可能なよう収納し一体化した情
報記憶素子〇
(1) A secondary battery-based power generation element made entirely of solid materials is placed inside the resin package housing the information storage element chip, which constitutes an auxiliary power source for the information storage element chip and can be charged externally. Information storage element that is housed and integrated like this
(2)発電要素のうち、正極および負極が、Cu nM
X2 (n :0.1〜0.8 ; M :T i 、
W、Mo 、 Nb ;)(:S、Se)およびCun
M003.Cunv206(n:o、1〜0.8)で表
わされる無機化合物および。 Cu2S、Cu、の一群より選ばれる1種類あるいは2
種類以上の固体物質を主体に構成されることを特徴とす
る特許請求第1項記載の情報記憶素子。
(2) Among the power generation elements, the positive electrode and the negative electrode are Cu nM
X2 (n: 0.1-0.8; M: Ti,
W, Mo, Nb;) (:S, Se) and Cun
M003. An inorganic compound represented by Cunv206 (n:o, 1-0.8) and. One or two types selected from the group Cu2S, Cu
The information storage element according to claim 1, characterized in that the information storage element is mainly composed of more than one type of solid substance.
(3)発電要素のうち、電解質が、RbCu4工、−x
Ct3+x(x :0.25〜0.5)で表されるCu
■イオン導電性固体電解質であることを特徴とする特許
請求用r咽F 1項および第2項記
(3) Among the power generation elements, the electrolyte is RbCu4, -x
Cu expressed as Ct3+x (x: 0.25-0.5)
■Patent claim F characterized by being an ion conductive solid electrolyte Items 1 and 2
JP58120555A 1983-07-01 1983-07-01 Information memory device Pending JPS6012679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58120555A JPS6012679A (en) 1983-07-01 1983-07-01 Information memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58120555A JPS6012679A (en) 1983-07-01 1983-07-01 Information memory device

Publications (1)

Publication Number Publication Date
JPS6012679A true JPS6012679A (en) 1985-01-23

Family

ID=14789199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58120555A Pending JPS6012679A (en) 1983-07-01 1983-07-01 Information memory device

Country Status (1)

Country Link
JP (1) JPS6012679A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2629639A1 (en) * 1988-04-01 1989-10-06 Balkanski Minko Self-powered integrated component of the junction type and method for its manufacture
EP0350235A2 (en) * 1988-07-04 1990-01-10 Sony Corporation A thin electronic card having an integrated circuit chip and battery and a method of producing same
EP0573595A1 (en) * 1991-03-01 1993-12-15 Motorola, Inc. Integral solid state embedded power supply
WO1997042677A1 (en) * 1996-05-07 1997-11-13 Philippe Lemaire Method for making a smart battery generator cell
WO2001073866A3 (en) * 2000-03-24 2002-06-06 Cymbet Corp Method and apparatus for integrated-battery devices
US9853325B2 (en) 2011-06-29 2017-12-26 Space Charge, LLC Rugged, gel-free, lithium-free, high energy density solid-state electrochemical energy storage devices
US10601074B2 (en) 2011-06-29 2020-03-24 Space Charge, LLC Rugged, gel-free, lithium-free, high energy density solid-state electrochemical energy storage devices
US10658705B2 (en) 2018-03-07 2020-05-19 Space Charge, LLC Thin-film solid-state energy storage devices
US11527774B2 (en) 2011-06-29 2022-12-13 Space Charge, LLC Electrochemical energy storage devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57109183A (en) * 1980-12-26 1982-07-07 Hitachi Ltd Non-volatile memory
JPS585118B2 (en) * 1974-02-16 1983-01-29 荏原インフイルコ株式会社 Yuukiseihaisuino

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS585118B2 (en) * 1974-02-16 1983-01-29 荏原インフイルコ株式会社 Yuukiseihaisuino
JPS57109183A (en) * 1980-12-26 1982-07-07 Hitachi Ltd Non-volatile memory

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2629639A1 (en) * 1988-04-01 1989-10-06 Balkanski Minko Self-powered integrated component of the junction type and method for its manufacture
EP0350235A2 (en) * 1988-07-04 1990-01-10 Sony Corporation A thin electronic card having an integrated circuit chip and battery and a method of producing same
US5055968A (en) * 1988-07-04 1991-10-08 Sony Corporation Thin electronic device having an integrated circuit chip and a power battery and a method for producing same
EP0573595A1 (en) * 1991-03-01 1993-12-15 Motorola, Inc. Integral solid state embedded power supply
EP0573595A4 (en) * 1991-03-01 1995-11-29 Motorola Inc Integral solid state embedded power supply
FR2748605A1 (en) * 1996-05-07 1997-11-14 Gerard Lemaire METHOD FOR MANUFACTURING AN ELEMENTARY BATTERY GENERATOR OR INTELLIGENT BATTERY
WO1997042677A1 (en) * 1996-05-07 1997-11-13 Philippe Lemaire Method for making a smart battery generator cell
WO2001073866A3 (en) * 2000-03-24 2002-06-06 Cymbet Corp Method and apparatus for integrated-battery devices
US9853325B2 (en) 2011-06-29 2017-12-26 Space Charge, LLC Rugged, gel-free, lithium-free, high energy density solid-state electrochemical energy storage devices
US10199682B2 (en) 2011-06-29 2019-02-05 Space Charge, LLC Rugged, gel-free, lithium-free, high energy density solid-state electrochemical energy storage devices
US10601074B2 (en) 2011-06-29 2020-03-24 Space Charge, LLC Rugged, gel-free, lithium-free, high energy density solid-state electrochemical energy storage devices
US11527774B2 (en) 2011-06-29 2022-12-13 Space Charge, LLC Electrochemical energy storage devices
US10658705B2 (en) 2018-03-07 2020-05-19 Space Charge, LLC Thin-film solid-state energy storage devices

Similar Documents

Publication Publication Date Title
EP0055451B1 (en) Semiconductor memory device
US4452867A (en) Storage battery containing voltage reducing means
Bates et al. Rechargeable thin-film lithium microbatteries
Wagner Failure modes of valve-regulated lead/acid batteries in different applications
JPS6012679A (en) Information memory device
US3935026A (en) Energy cell for watch
JPS63239773A (en) Solid electrolyte cell
US3350225A (en) Rechargeable sealed secondary battery
US20050082942A1 (en) Combined power source
JPH0522349B2 (en)
JPS5990360A (en) Solid secondary battery
JPS6012677A (en) Solid electrolyte secondary battery
Sekido Solid state micro power sources
JPH0519262B2 (en)
JPS59225417A (en) Semiconductor memory
Kuechle Batteries--for Biotelemetry and Other Applications
JPH02273036A (en) Hybrid battery
JPS63138661A (en) Laminated cell
JPH0522350B2 (en)
JPH01186572A (en) Sealed type lead-acid battery
JPS6017867A (en) Solid electrolyte secondary battery
JPS5990359A (en) Solid secondary battery
JPS6012665A (en) Reversible copper electrode
JPS6012678A (en) Solid electrolyte secondary battery
Chodosh et al. ZINC–AIR BATTERY SYSTEMS