JPS60125208A - Regeneration of reverse osmosis membrane apparatus - Google Patents

Regeneration of reverse osmosis membrane apparatus

Info

Publication number
JPS60125208A
JPS60125208A JP58231471A JP23147183A JPS60125208A JP S60125208 A JPS60125208 A JP S60125208A JP 58231471 A JP58231471 A JP 58231471A JP 23147183 A JP23147183 A JP 23147183A JP S60125208 A JPS60125208 A JP S60125208A
Authority
JP
Japan
Prior art keywords
water
reverse osmosis
osmosis membrane
treatment
transmitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58231471A
Other languages
Japanese (ja)
Inventor
Kakichi Ito
伊藤 嘉吉
Tadashi Nakamura
忠 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP58231471A priority Critical patent/JPS60125208A/en
Publication of JPS60125208A publication Critical patent/JPS60125208A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

PURPOSE:To perform the effective regeneration treatment of a reverse osmosis membrane even when a precipitate caused by polysilicate is precipitated, in preforming desalting treatment after the treatment of soft water, by washing the reverse osmosis membrane with washing water having pH higher than that at the time of desalting before the ratio of a transmitted water amount reaches a specific value or less. CONSTITUTION:Raw water A containing silicate and hardness components is passed through a hard water softening apparatus 1 to remove hardness components. Subsequently, an NaOH solution is added to soft water from an NaH tank 3 to adjust the pH thereof to 8 or more and pH controlled water is introduced into a reverse osmosis membrane apparatus 8 under pressure by a high pressure pump 7 while desalted transmitted water B and untransmitted water C enhanced in the concn. of salts are collected. After desalting treatment is continued until the ratio of a transmitted water amount reaches 0.8 or less, said treatment is interrupted to perform regeneration treatment. A pump 10 is driven to supply transmitted water in a transmitted water tank 9 to the reverse osmosis membrane apparatus 8 as washing water while an NaOH solution is added thereto and the pH of washing water is made higher than that at the time of desalting. Waste washing water is discharged through an untransmitted water line. The polysilicate adhered to the surface of the membrane is dissolved and the ratio of a transmitted water amount is restored to the original state.

Description

【発明の詳細な説明】 本発明は珪酸と硬度成分を含有する原水を軟化処理し・
当該処理水のpI−1を8以上に調整して耐アルカリ性
の逆浸透膜を用いた逆浸透膜装置に供給することにより
脱塩処理する方法の改良杯関するものであり・このよう
な脱塩方法を行なっても・なお逆浸透膜の膜面に重合珪
酸に起因する沈殿物が析出することにより透過水tY比
が低下する際に・これを効果的に回生することを目的と
するものである。
[Detailed description of the invention] The present invention softens raw water containing silicic acid and hardness components.
This relates to an improved method of desalination treatment by adjusting the pI-1 of the treated water to 8 or higher and supplying it to a reverse osmosis membrane device using an alkali-resistant reverse osmosis membrane. The purpose of this method is to effectively regenerate when the permeate water tY ratio decreases due to precipitation of polymerized silicic acid on the membrane surface of the reverse osmosis membrane even if this method is used. be.

LSIや超LSIなどを製造する電子工業においては、
その製品の洗浄にコロイド状物質およびイオンの量をp
pbオーダーまで減少させた・い↓ゆる超純水を必要と
する。このような超純水を製造する場合・近年において
逆浸透膜装置が用いられることが多い。すなわち凝集沈
殿濾過などの除濁処理・活性炭濾過などの適当な前処理
をした原水を逆浸透膜装置で脱塩し・次いで当該脱塩水
に残留する塩類・不純物等を純水製造装置・精密濾過装
置・ポリシャーなどで処理するのが一般的である。
In the electronics industry, which manufactures LSIs and super LSIs,
The amount of colloidal substances and ions used in cleaning the product
It requires ultrapure water that has been reduced to the PB order. When producing such ultrapure water, reverse osmosis membrane devices are often used in recent years. In other words, raw water that has been subjected to appropriate pretreatment such as turbidity treatment such as coagulation sedimentation filtration and activated carbon filtration is desalted using a reverse osmosis membrane device, and then salts and impurities remaining in the desalted water are removed using a pure water production device and precision filtration. It is generally processed using a device, polisher, etc.

逆浸透膜装置は逆浸透膜に原水を溶解塩類の浸透圧以上
の加圧下で供給し・塩類の大半を逆浸透膜で阻止して塩
類を減少させた透過水を処理水として得るとともに・塩
類を濃縮した非透過水を排出するものであるが・この処
理中に原水に含まれているコロイド状物質も逆浸透膜で
阻止することができるので・前記超純水の製造には好都
合である。逆浸透膜装置は以上の様な操作で原水を処理
するのであるから、原水の濃縮倍率を大きくすればする
程・一定の供給原水から多量の透過水を樽るととができ
・コスト的に有利となる。
A reverse osmosis membrane device supplies raw water to a reverse osmosis membrane under pressure higher than the osmotic pressure of dissolved salts. Most of the salts are blocked by the reverse osmosis membrane to obtain permeated water with reduced salts as treated water. During this treatment, the colloidal substances contained in the raw water can also be blocked by the reverse osmosis membrane, which is convenient for the production of ultrapure water. . Since reverse osmosis membrane equipment processes raw water through the operations described above, the higher the concentration ratio of raw water, the more permeated water can be barreled from a certain amount of supplied raw water, and the lower the cost. It will be advantageous.

しかしながらカルシウム・マグネシウムなどの硬度成分
・硫酸イオン・珪酸などが多量に含まれている原水を逆
浸透膜装置で処理する場合、原水の濃縮倍率・換言すれ
ば透過水の回収率を大きくすると・比較的溶解度の小さ
い硫酸カルシウム・硬度成分と珪酸が合体した複合体・
重合珪酸などの沈殿物が濃縮系・特に逆浸透膜の膜面に
析出して圧力損失の増大・透過水流量の低下などの問題
を生じる。
However, when treating raw water that contains large amounts of hard components such as calcium and magnesium, sulfate ions, silicic acid, etc. using a reverse osmosis membrane device, increasing the concentration ratio of the raw water, or in other words, the recovery rate of permeated water, can be compared. Calcium sulfate with low solubility, a complex of hardness components and silicic acid.
Precipitates such as polymerized silicic acid are deposited on the membrane surface of the concentration system, especially reverse osmosis membranes, causing problems such as increased pressure loss and decreased permeate flow rate.

したがって従来から硬度成分を多元:に含む原水を逆浸
透膜装置で透過処理する場合・前段にたとえばNa形の
カチオン交換樹脂を用いる硬水軟化装置を設置し・あら
かじめ硬度成分を除去することで硫酸カルシウムと硬度
・シリカ複合体からなる沈殿物が膜面に析出するのを防
止している。
Therefore, conventionally, when raw water containing multiple hardness components is permeated with a reverse osmosis membrane device, a water softening device using, for example, Na-type cation exchange resin is installed at the front stage. This prevents precipitation of hardness and silica complexes from depositing on the membrane surface.

一方珪酸の水に対する溶解度はpHに上って大きく変わ
り゛・たとえば25℃における珪酸の溶解度は第1図に
示した曲線のようになる。すなわちpHが7以下では約
100 mg a s S i02 /Lであるが・p
Hが8.0を越えてアルカリ性になればなる程・その溶
解度は大きくなり・pH・9では約170■as S 
i02 /L # pl−110で約320mgasS
i02/lとなる。
On the other hand, the solubility of silicic acid in water varies greatly as the pH increases; for example, the solubility of silicic acid at 25° C. is as shown in the curve shown in FIG. In other words, when the pH is 7 or less, it is approximately 100 mg a s Si02 /L, but ・p
The more alkaline H exceeds 8.0, the greater the solubility.At pH 9, it is approximately 170■ as S
i02 /L # Approximately 320 mgasS with pl-110
i02/l.

そこで珪酸と硬度成分を含有する°原水を逆浸透膜装置
で処理する場合・当該原水をまず・たとえばNa形のカ
チオン交換樹脂を用いる硬水軟化装置に通水して原水中
のカルシウム・マグネシウムなどの硬度成分を除く軟化
処理を行ない・次いで当該処理水に力性ノーズなどのア
ルカリを添加してpi−1を8以上にし・これを耐アル
カリ性の逆浸透膜を用いた逆浸透膜装置に供給して脱塩
する方法を本願出願人は先に提案した。
Therefore, when raw water containing silicic acid and hardness components is treated with a reverse osmosis membrane device, the raw water is first passed through a water softening device that uses, for example, Na-type cation exchange resin to remove calcium, magnesium, etc. from the raw water. A softening treatment is performed to remove hard components.Next, an alkali such as force nose is added to the treated water to make pi-1 8 or more.This is then fed to a reverse osmosis membrane device using an alkali-resistant reverse osmosis membrane. The applicant has previously proposed a method for desalting.

この方法は逆浸透膜装置の供給水中の硬度成分をあらか
じめ除去することにより硫酸カルシウムなどの硬度成分
に起因する沈臀物が非透過水側に析出するのを防止し・
さらに供給水のpI−1を上昇させることにより珪酸の
溶解度を太きくシ、たとえ濃縮倍率を大きくしても珪酸
に起因する沈殿物を非透過水側に析出するのを防止しよ
うとするものである。
This method prevents sediments caused by hardness components such as calcium sulfate from depositing on the non-permeated water side by removing hardness components in the water supplied to the reverse osmosis membrane device in advance.
Furthermore, by increasing the pI-1 of the feed water, the solubility of silicic acid is increased, and even if the concentration ratio is increased, the precipitation caused by silicic acid is prevented from being deposited on the non-permeated water side. be.

ただし供給水の叶Iを上昇させるとしても、透過水への
塩類リークの関係から供給水のpHをそれ程高くするこ
とは好ましくない0 何故ならば珪酸の溶解度はpI−1が高くなればなる程
大きくなり・したがって珪酸の析出防止という面のみか
ら考えれば供給水のpl−1をできるだけ高くした方が
よいが・一方pHを高くすればする程供給水中のカチオ
ン濃度が上昇するため透過水へ塩類が多量にリークする
However, even if the pH of the feed water is increased, it is not preferable to raise the pH of the feed water that much due to salt leakage into the permeated water.The reason is that the solubility of silicic acid increases as the pI-1 increases. Therefore, from the perspective of preventing the precipitation of silicic acid, it is better to make the pl-1 of the feed water as high as possible.On the other hand, the higher the pH, the higher the cation concentration in the feed water, so salts are transferred to the permeate water. leaks in large quantities.

逆浸透膜装置の後段には通常・イオン交換樹脂を用いる
純水製造装置が設置されるので・透過水の塩類濃度もで
きるだけ低下させることも必要であり・したがって供給
水のpHを10以上にすることは得策ではなく・上述の
方法においては供給水のpi−1を8ないし10に調整
するのが普通である。
Since a pure water production device using ion exchange resin is usually installed after the reverse osmosis membrane device, it is also necessary to reduce the salt concentration of the permeated water as much as possible. Therefore, the pH of the feed water should be 10 or higher. This is not a good idea; in the above-mentioned method, it is common to adjust the pi-1 of the feed water to 8 to 10.

本発明者等は供給水のpHを8ないし10として上述の
方法によって脱塩を試みたところ・上述のごとく硬度成
分あるいは珪酸に起因する沈殿物の析出防止対策を施し
ているにもかかわらず・透過水量比が徐々に低下し・脱
塩処理を続行すると遂には透過水量比が0.8以下まで
低下するという現象を知見した。
The present inventors attempted desalination using the above-mentioned method by setting the pH of the supplied water to 8 to 10. Despite taking measures to prevent the precipitation of precipitates caused by hardness components or silicic acid as described above, It was discovered that the permeated water ratio gradually decreased and as the desalination treatment continued, the permeated water ratio finally decreased to 0.8 or less.

またこの原因を種々検討した結果・逆浸透膜の境膜濃縮
に起因する重合珪酸の析出にあると判明した。
As a result of various investigations into the cause of this problem, it was found that it was due to the precipitation of polymerized silicic acid caused by the membrane concentration of the reverse osmosis membrane.

すなわち逆浸透膜の膜面においては著しい境膜濃縮が生
ずるから・たとえ供給水の珪酸含有量と非透過水の濃縮
倍率から非透過水の珪酸量を算出し・当該算出°珪酸濃
度においても珪酸が析出しないようなpHに調整したと
しても・逆浸透膜の境膜においては極部的な濃縮が生じ
・そのために重合珪酸が析出するからと推察される。
In other words, significant membrane concentration occurs on the membrane surface of the reverse osmosis membrane. Even if the amount of silicic acid in the non-permeated water is calculated from the silicic acid content of the feed water and the concentration ratio of the non-permeated water, the silicic acid concentration in the calculated silicic acid concentration is Even if the pH is adjusted to such a level that it does not precipitate, local concentration occurs in the membrane of the reverse osmosis membrane, which is presumed to cause polymerized silicic acid to precipitate.

いずれの原因にしても透過水量比が帆8以下になると工
業装置としては甚だ好ましくない。
Regardless of the cause, if the permeated water amount ratio is less than 8, it is extremely undesirable for industrial equipment.

したがって透過水量比を回復すべく検討を行った結果・
脱塩処理時のpH−1より高いpLIの洗浄水で逆浸透
膜を洗浄すると効果的に透過水量比が回復することを知
見した。
Therefore, as a result of studying to restore the permeate water ratio,
It has been found that washing the reverse osmosis membrane with washing water with a pLI higher than pH-1 during desalination treatment effectively restores the permeate water ratio.

一般に逆浸透膜に付着した珪酸に起因する沈殿物は硬度
成分と合体することにより・硬い沈殿物を形成し・アル
カリで洗浄した程度では除去することが困難であるが・
原水中の硬度成分をあらかじめ除去し・かつ供給水のp
l(を8〜10に調整しているので・このような状況下
で逆浸透膜に析出する重合珪酸は比較約款かく・したが
ってアルカリ洗浄により簡庫に除去ができるものと思わ
れる。
Generally, precipitates caused by silicic acid adhering to reverse osmosis membranes combine with hardness components to form hard precipitates, which are difficult to remove by washing with alkali.
The hardness components in the raw water are removed in advance and the p of the feed water is
Since 1 is adjusted to 8 to 10, the polymerized silicic acid deposited on the reverse osmosis membrane under such circumstances can be easily removed by alkaline cleaning.

本発明は以上のような知見に基づくもので・珪酸と硬度
成分を含有する原水を軟化処理し・当該処理水のpI−
1を8以上に調整して耐アルカリ性の逆浸透膜を用いた
逆浸透膜装置で脱塩する方法において・脱塩処理時の透
過水量比が0.8以下に至る以前に脱塩処理4時のpl
(より、高いpHの洗浄水で逆浸透膜を洗浄することを
特徴とする逆浸透膜装置の回生方法に関するものである
The present invention is based on the above knowledge. Raw water containing silicic acid and hardness components is softened. The pI of the treated water is
In a method of desalination using a reverse osmosis membrane device using an alkali-resistant reverse osmosis membrane by adjusting 1 to 8 or more, the desalination process is carried out at 4 o'clock before the permeated water amount ratio during desalination treatment reaches 0.8 or less. pl
(It is more concerned with a regeneration method for a reverse osmosis membrane device, which is characterized by cleaning the reverse osmosis membrane with cleaning water of high pH.

以下に本発明を図面を参照して詳細に説明する。The present invention will be explained in detail below with reference to the drawings.

第2図上本発明の実施態様の一例であるフローの説明図
であり・lはNa形強酸性カチオン交換樹脂を充填した
硬水軟化装置・2は力性ソーダ注入ポンプ・3は力性ソ
ーダ槽・4はラインミキサー・5はpH検出部・6は、
+1調節計・7は高圧ポンプ・8“は耐アルカリ性の逆
浸透膜を用いた逆浸透膜装置・9は透過水槽・10は洗
浄水ポンプである。
FIG. 2 is an explanatory diagram of a flow that is an example of an embodiment of the present invention; 1 is a water softening device filled with Na-type strong acid cation exchange resin; 2 is a hydraulic soda injection pump; 3 is a hydraulic soda tank・4 is the line mixer ・5 is the pH detection unit ・6 is the
+1 controller; 7 is a high-pressure pump; 8" is a reverse osmosis membrane device using an alkali-resistant reverse osmosis membrane; 9 is a permeation water tank; and 10 is a wash water pump.

本発明においてはまず原水へを硬水軟化装置1に通水し
・原水中の硬度成分を除去する、。
In the present invention, first, raw water is passed through a water softening device 1 to remove hardness components from the raw water.

次いで軟水に力性ソーダ槽3から注入ポンプ2を用いて
力性ソーダ水溶液を加え・軟水のpl−1を8以上・好
ましくは9前後にする。なおこの注入の際ラインミキサ
ー4の後に付設したpH検出部でpHを検出し・あらか
じめ決定したpHO値となるように注入ポンプ2からの
力性−ソーダ溶液の注入111:を計装的に1泪調節計
6によって調節する。このような操作によって原水Aの
硬度成分を除去し・かつpHをアルカリ性とした軟水を
高圧ポンプ7によって逆浸透膜装置8に圧入し・脱塩さ
れた透過水Bおよび塩類が濃縮された非透過水Cを採取
す゛る。なお図示していないが・軟水を逆浸透膜装置8
に圧入する前に精密フィルターなどで懸濁物を除去した
方が望ましい。
Next, an aqueous sodium hydroxide solution is added to the soft water from the hydric soda tank 3 using the injection pump 2, and the PL-1 of the soft water is adjusted to 8 or more, preferably around 9. In addition, during this injection, the pH is detected by a pH detection unit attached after the line mixer 4, and the force-injection of soda solution 111 from the injection pump 2 is instrumented to 1 so that a predetermined pH value is obtained. Adjustment is made using the tears controller 6. Through these operations, the hardness components of the raw water A have been removed and the pH has been made alkaline, and the soft water is forced into the reverse osmosis membrane device 8 using the high-pressure pump 7. Collect water C. Although not shown, the soft water is passed through a reverse osmosis membrane device 8.
It is preferable to remove suspended solids using a precision filter before pressurizing.

このような脱塩処理を続行すると、透過水量比が徐々に
低下するが、透過水量比が0.8以下に至る前に次のよ
うな回生処理を行なう。
If such desalting treatment is continued, the permeated water amount ratio gradually decreases, but before the permeated water amount ratio reaches 0.8 or less, the following regeneration treatment is performed.

すなわち高圧ポンプ7の駆動を停止して脱塩処理を中断
し・洗浄水ポンプ10を駆動して洗浄水として透過水槽
9内の透過水を逆浸透膜装置に供給するとともに・当該
洗浄水に力性ソーダ槽3から注入ポンプ2を用いて力性
ソーダ水溶液を加え・洗浄水のpHを前述した脱塩処理
時のpHより高いρII・好ましくは10以上とする。
That is, the drive of the high-pressure pump 7 is stopped to interrupt the desalination process, the washing water pump 10 is driven to supply the permeated water in the permeated water tank 9 to the reverse osmosis membrane device as washing water, and the washing water is supplied with force. Aqueous sodium hydroxide solution is added from the sodium chloride tank 3 using the injection pump 2, and the pH of the washing water is adjusted to ρII, preferably 10 or more, which is higher than the pH during the desalination treatment described above.

なおこの注入の一際においてもラインミキサー4の後に
付設したpl+検出部でpHを検出し・あらかじめ決定
した1泪の値となるように注入ポンプ2からの力性ソー
ダ水溶液の注入量を計装的FCpH調節計6によって調
節することは云うまでもない。洗浄廃水は非透過水ライ
ンを介して外部にブローするが・このような洗浄を1時
間も行なえば逆浸透膜の膜面に付着した重合珪酸は効果
的に溶解し・透過水量比はもとの状態に復帰する。なお
当該洗浄は常温でもさしつかえないが・洗浄水の温度を
30℃〜40°Cに加温するとより効果的である。
Furthermore, during this injection, the pH is detected by the PL + detection unit attached after the line mixer 4, and the amount of the aqueous sodium hydroxide solution injected from the injection pump 2 is instrumented so that it reaches a predetermined value of 1. Needless to say, the pH value is adjusted using the standard FC pH controller 6. Washing waste water is blown to the outside via the non-permeable water line. If this type of washing is performed for one hour, the polymerized silicic acid adhering to the membrane surface of the reverse osmosis membrane will be effectively dissolved, and the permeate water amount ratio will be the same as before. The state will be restored. Although the washing may be carried out at room temperature, it is more effective to heat the washing water to 30°C to 40°C.

また本実施態様においては洗浄水として透過水を用い2
回生処理を行なう除に脱塩処理を中断したが・洗浄水と
して軟水を用い・脱塩処理を続行しながら回生処理を行
なうこともできる。
In addition, in this embodiment, permeated water is used as the washing water.
Although the desalination process is interrupted while performing the regeneration process, it is also possible to perform the regeneration process while continuing the desalination process by using soft water as the wash water.

すなわち透過水量比が低下した際に・注入ポンプ2から
の力性ンーグ水溶液の注入量を増加し・軟水のpHを脱
塩処理時のpHより高いpHとしてそのまま脱塩処理を
続行し・脱塩処理を行ないながら逆浸透膜の膜面に付着
した重合珪酸を溶解するものである。ただしこのように
脱塩処理を続行しながら回生処理を行なうと、この間の
透過水の塩類濃度が上昇するのでこの点を考慮する必要
がある。
In other words, when the permeate water ratio decreases, - Increase the amount of injected water solution from the injection pump 2 - Continue desalination by setting the pH of the soft water to a higher pH than the pH at the time of desalination - Desalination This method dissolves polymerized silicic acid adhering to the membrane surface of the reverse osmosis membrane while performing the treatment. However, if regeneration treatment is performed while continuing desalination treatment in this way, the salt concentration of the permeated water will increase during this time, so this point needs to be taken into consideration.

以上のような洗浄が終了し透過水量比の値かもとの値に
復帰しだら・前述の脱塩処理を続行する。
When the above-mentioned cleaning is completed and the value of the permeated water amount ratio returns to the original value, the desalination process described above is continued.

なお本発明における透過水量比とは・脱塩処理時間tの
経過に伴う透過水量Qtを・脱塩処理初期の透過水量Q
oで割った数置を示し・たとえば透過水量比が0.8と
いうことば脱塩処理初期の透過水量に対して・同条件下
で透過水量が80%まで低下することを示す。
In addition, the permeated water amount ratio in the present invention is - The permeated water amount Qt as the desalination treatment time t passes - The permeated water amount Q at the initial stage of the desalination treatment
Indicates the number divided by o. For example, a permeated water ratio of 0.8 indicates that the permeated water amount decreases to 80% under the same conditions compared to the permeated water amount at the initial stage of desalination treatment.

また本発明に用いる耐アルカリ性の逆浸透膜とは従来か
ら用いられている酢酸セルローズ膜とは異なり・ポリエ
ーテルアミド複合膜・ポリビニルアルコール複合膜・芳
香族ポリアミド膜・ポリベンツイミダゾロノ膜などの近
年になって開発された耐−アルカリ性の逆浸透膜を指す
In addition, the alkali-resistant reverse osmosis membrane used in the present invention is different from the conventionally used cellulose acetate membrane, and includes recent membranes such as polyetheramide composite membranes, polyvinyl alcohol composite membranes, aromatic polyamide membranes, and polybenzimidazolo membranes. refers to an alkali-resistant reverse osmosis membrane developed in

以上説明したように本発明は原水に珪酸と硬度成分が多
量に含有していても・硬度成分をあらかじめ除去するこ
とにより硬度成分に起因する沈殿物が非透過水仙に析出
するのを防止し・さらに供給水のpHを上昇させること
により珪酸の溶解度を大きくするので・たとえ濃縮倍率
を上げても珪酸に起因する沈殿物が非透過水側に析出す
るのを抑制し、かつこのような処理を行なってもなお境
膜濃縮によって逆浸透膜の膜面に重合珪酸に起因する沈
殿物が析出した場合は脱塩処理時のI)Hより高いpI
−1の洗浄水で逆浸透膜を効果的に同生処理できるので
・珪酸と硬度成分か多量に含有する水を逆浸透膜で処理
するにあたり・低コストで透過水の回収率を大きくする
ことができ・その経済的メリットは大きい。
As explained above, the present invention prevents precipitates caused by hardness components from precipitating in non-permeable daffodils by removing the hardness components in advance, even if the raw water contains large amounts of silicic acid and hardness components. Furthermore, since the solubility of silicic acid is increased by increasing the pH of the feed water, even if the concentration ratio is increased, the precipitation of silicic acid-induced precipitates on the non-permeated water side is suppressed, and such treatment is If a precipitate caused by polymerized silicic acid is still deposited on the membrane surface of the reverse osmosis membrane due to membrane concentration even after desalination treatment, the pI is higher than I)H during desalination treatment.
-Since the reverse osmosis membrane can be treated effectively with the washing water in step 1 - When using a reverse osmosis membrane to treat water that contains a large amount of silicic acid and hardness components - The recovery rate of permeated water can be increased at low cost. The economic benefits are great.

以下に本発明の効果を明確にするために実施例を説明す
る。
Examples will be described below to clarify the effects of the present invention.

実施例 第1表に示す組成の原水を第1図に示した本発明のフロ
ーに従って・まずNa形の強酸性カチオン交換樹脂を充
填した硬水軟化装置で軟化処理し・当該処理水に力性ソ
ーダを加えてpH9に調整し・耐アルカリ性の逆浸透膜
であるポリエーテル系複合膜I日東曹工■製NTlt−
7199膜(商品名)を用いた逆浸透膜装置で透過水回
収率75チ・供給圧力30kg/ciの条件で処理した
。またこのような処理の続行により・逆浸透膜装置の透
過水量比が0.94に減少、した時点で・本発明方法と
しに透過水に力性ソーダを加えてpH11に調整し・当
該洗浄水を供給圧力5kg/ahで1時間逆浸透膜装置
に供給し・回生処理を行なった。
Example Raw water having the composition shown in Table 1 was softened in accordance with the flow of the present invention shown in Figure 1. First, it was softened in a water softening device filled with Na-type strongly acidic cation exchange resin. The pH was adjusted to 9 with the addition of
The treatment was carried out using a reverse osmosis membrane device using a 7199 membrane (trade name) under conditions of a permeate recovery rate of 75 cm and a supply pressure of 30 kg/ci. In addition, by continuing such treatment, when the permeated water amount ratio of the reverse osmosis membrane device decreased to 0.94, the pH was adjusted to 11 by adding sodium hydroxide to the permeated water according to the method of the present invention, and the washing water was was supplied to a reverse osmosis membrane device for 1 hour at a supply pressure of 5 kg/ah for regeneration treatment.

その結果を第3図に示した。第3図は運転時間tの経過
に伴う透過水量Qtの変化を・運転時間L = oの透
過水量Qoを基準として透過水量比(Q t/Q、o 
)を算出し・これを縦軸に・処理・時間を横軸に示した
ものである。
The results are shown in Figure 3. Figure 3 shows the change in the amount of permeated water Qt with the passage of operating time t.The permeated water amount ratio (Q t/Q, o
) is calculated, and this is shown on the vertical axis, and the processing time is shown on the horizontal axis.

なお本発明の回生処理を行なわながった場合の結果も第
3図に併せて示した。
The results obtained when the regeneration process of the present invention was not performed are also shown in FIG. 3.

第3図に見られるごとく・本発明の回生処理を行なうと
・透過4水量比はもとの状態に復帰するが・回生処理を
行なわない従来の方法では処理時間の続行とともに透過
水量比が低下した。
As seen in Figure 3, when the regenerative treatment of the present invention is performed, the permeated water volume ratio returns to its original state, but in the conventional method without regenerative treatment, the permeated water volume ratio decreases as the treatment time continues. did.

第1表Table 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図は水温25℃における珪酸の溶解度を示したグラ
フであり・縦軸r(溶解瓜・横軸KpHを示したもので
あり・第2図は本発明の実施態様の一例を示すフローの
説明図である。また第3図は実施例における処理時間に
対する透過水量比の低下を示すもので・縦軸に透過水−
[ii比・横軸に処理時間を示す。 1 、、、、硬水軟化装置 2 、、、、力性ソーダ注
入ポンプ3、・・・ 力性ソーダ槽 463.・ ライ
ンミキサー5、−−、 pl+検出部 6 、、、、p
i−1調節計7 、、、、高圧ポンプ 8 、、、、逆
浸透膜装置90.・、透過水槽 10 、、、・洗浄水
ポンプ第1図 3 4 5 6 7 8 9 10 H1213□ P
H 第2図 第3図 OIoo 200 300 400 500 600<
14.崎fj1 (hr〕′ 手続補正書(自発) 昭和60年3月8日 特許庁長官 志 賀 学 殿 1、事件の表示 昭和58年特許願第231471号 2、発明の名称 逆浸透膜装置の回生方法 3、補正をする者 事件との関係 特許出願人 住 所 東京都文京区本郷5丁目5番16号名 称 (
440) オルガノ株式会社代表者 永 井 邦 夫 4、代理人〒113 置、 812−5151 6、補正の内容 7 別紙のとおり 明細書中の下記事項を訂正願います。 1、第3頁10行目に「硫酸カルシウム」とあるのを「
炭酸カルシウム、硫酸カルシウム」と訂正する。 2、第3頁15行目に「透過処理する場合、」の後に次
の文章を挿入する。「前段に酸を添加して炭酸カルシウ
ムの析出を防止する方法や、水の回収率を下げる方法お
よび」 3、第3頁18行目に「硫酸カルシウムと」とあるのを
「炭酸カルシウムや」と訂正する。 4、第4頁最下行〜第5頁1行目に「硫酸カルシウムな
ど」とあるのを「炭酸カルシウムなど」と訂正する。 5、第13頁4行目に「第1図」とあるのを「第2図」
と訂正する。 以上
Figure 1 is a graph showing the solubility of silicic acid at a water temperature of 25°C. The vertical axis shows r (dissolved melon) and the horizontal axis shows KpH. Figure 2 shows a flow chart showing an example of an embodiment of the present invention. It is an explanatory diagram. Fig. 3 shows the decrease in the permeated water amount ratio with respect to the treatment time in the example. The vertical axis shows the permeated water -
[ii Ratio/The processing time is shown on the horizontal axis. 1. Water softener 2. Soda injection pump 3. Soda tank 463.・Line mixer 5, --, pl+detection section 6,,,,p
i-1 controller 7, high pressure pump 8, reverse osmosis membrane device 90.・、Permeated water tank 10 、、・・Washing water pump Fig. 1 3 4 5 6 7 8 9 10 H1213□ P
H Figure 2 Figure 3 OIoo 200 300 400 500 600<
14. Saki fj1 (hr)' Procedural amendment (voluntary) March 8, 1985 Manabu Shiga, Commissioner of the Patent Office1, Indication of the case 1981 Patent Application No. 2314712, Name of the invention Regeneration of reverse osmosis membrane device Method 3: Relationship with the person making the amendment Patent applicant address 5-5-16 Hongo, Bunkyo-ku, Tokyo Name (
440) Organo Co., Ltd. Representative Kunio Nagai 4, Agent Address: 113, 812-5151 6 Contents of amendment 7 Please amend the following matters in the specification as shown in the attached sheet. 1. On page 3, line 10, replace "calcium sulfate" with "
Calcium carbonate, calcium sulfate.'' 2. On page 3, line 15, insert the following sentence after "When performing transparency processing." ``A method for preventing the precipitation of calcium carbonate by adding an acid in the first stage and a method for reducing the recovery rate of water.'' 3. On page 3, line 18, ``with calcium sulfate'' is replaced with ``calcium carbonate''. I am corrected. 4. From the bottom line of page 4 to the first line of page 5, the words "calcium sulfate, etc." are corrected to "calcium carbonate, etc." 5. On the 4th line of page 13, replace "Figure 1" with "Figure 2"
I am corrected. that's all

Claims (1)

【特許請求の範囲】[Claims] 珪酸と硬度成分を含有する原水を軟化処理し・当該処理
水のpI−1を8以上に調整して耐アルカリ性の逆浸透
膜を用いた逆浸透膜装置で脱塩する方法において・脱塩
処理時の透過水量比が0・8以下に至る以前に脱塩時の
pl−1より高いpHの洗浄水で逆浸透膜を洗浄すると
1とを特徴とする逆浸透膜装置の回生方法
In a method in which raw water containing silicic acid and hardness components is softened, the pI-1 of the treated water is adjusted to 8 or more, and desalination is performed using a reverse osmosis membrane device using an alkali-resistant reverse osmosis membrane.Desalination treatment 1. A regeneration method for a reverse osmosis membrane device, characterized in that the reverse osmosis membrane is washed with wash water having a pH higher than pl-1 during desalination before the permeated water amount ratio reaches 0.8 or less.
JP58231471A 1983-12-09 1983-12-09 Regeneration of reverse osmosis membrane apparatus Pending JPS60125208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58231471A JPS60125208A (en) 1983-12-09 1983-12-09 Regeneration of reverse osmosis membrane apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58231471A JPS60125208A (en) 1983-12-09 1983-12-09 Regeneration of reverse osmosis membrane apparatus

Publications (1)

Publication Number Publication Date
JPS60125208A true JPS60125208A (en) 1985-07-04

Family

ID=16924014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58231471A Pending JPS60125208A (en) 1983-12-09 1983-12-09 Regeneration of reverse osmosis membrane apparatus

Country Status (1)

Country Link
JP (1) JPS60125208A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176507A (en) * 1986-01-31 1987-08-03 Japan Organo Co Ltd Regenerating treatment of super filter membrane
JPH01297690A (en) * 1988-05-26 1989-11-30 Fujitsu Ltd Face down type electrostatic recorder
JPH0377686A (en) * 1989-08-16 1991-04-03 Toyo Netsu Kogyo Kk Sterilized water supplying device
JP2012192373A (en) * 2011-03-17 2012-10-11 Miura Co Ltd Water treatment apparatus
US8617398B2 (en) 1996-08-12 2013-12-31 Debasish Mukhopadhyay Method for high efficiency reverse osmosis operation
US8758720B2 (en) 1996-08-12 2014-06-24 Debasish Mukhopadhyay High purity water produced by reverse osmosis

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075177A (en) * 1973-11-07 1975-06-20
JPS5226379A (en) * 1975-08-25 1977-02-26 Asahi Chem Ind Co Ltd Method of washing ultrafiltration membranes
JPS54162683A (en) * 1978-06-14 1979-12-24 Ebara Infilco Co Ltd Desalting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075177A (en) * 1973-11-07 1975-06-20
JPS5226379A (en) * 1975-08-25 1977-02-26 Asahi Chem Ind Co Ltd Method of washing ultrafiltration membranes
JPS54162683A (en) * 1978-06-14 1979-12-24 Ebara Infilco Co Ltd Desalting method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176507A (en) * 1986-01-31 1987-08-03 Japan Organo Co Ltd Regenerating treatment of super filter membrane
JPH01297690A (en) * 1988-05-26 1989-11-30 Fujitsu Ltd Face down type electrostatic recorder
JPH0377686A (en) * 1989-08-16 1991-04-03 Toyo Netsu Kogyo Kk Sterilized water supplying device
US8617398B2 (en) 1996-08-12 2013-12-31 Debasish Mukhopadhyay Method for high efficiency reverse osmosis operation
US8641905B2 (en) 1996-08-12 2014-02-04 Debasish Mukhopadhyay Method for high efficiency reverse osmosis operation
US8758720B2 (en) 1996-08-12 2014-06-24 Debasish Mukhopadhyay High purity water produced by reverse osmosis
US9073763B2 (en) 1996-08-12 2015-07-07 Debasish Mukhopadhyay Method for high efficiency reverse osmosis operation
US9428412B2 (en) 1996-08-12 2016-08-30 Debasish Mukhopadhyay Method for high efficiency reverse osmosis operation
JP2012192373A (en) * 2011-03-17 2012-10-11 Miura Co Ltd Water treatment apparatus

Similar Documents

Publication Publication Date Title
US4969520A (en) Steam injection process for recovering heavy oil
TWI727046B (en) Water treatment method and apparatus, and method of regenerating ion exchange resin
JP4241684B2 (en) Membrane module cleaning method
US5338456A (en) Water purification system and method
JPH03118897A (en) Treatment of fluoride-containing water
JP3646900B2 (en) Apparatus and method for treating boron-containing water
JP3735883B2 (en) Membrane separation apparatus and membrane module cleaning method
JPS59112890A (en) Desalination by reverse osmosis membrane device
JPS62294484A (en) Reverse osmosis treatment of water containing silica at high concentration
JPS60125208A (en) Regeneration of reverse osmosis membrane apparatus
JP3334142B2 (en) Treatment method for fluorine-containing water
JP2014213306A (en) Pure water production apparatus, pure water and filtered water production apparatus, pure water production method, and pure water and filtered water production method
JP2001149950A (en) Water treating method and water treating device
KR102398703B1 (en) Method for Recycling Reverse Osmosis Membrane, Process for Producing Ultra Pure Water, and System for Manufacturing Ultra Pure Water
JP2503806B2 (en) Fluoride-containing water treatment method
JP2021007927A (en) Regeneration process of water softener, and manufacturing apparatus of desalted water
JP3270133B2 (en) Purification method
CN210103628U (en) RO concentrated water full-automatic desalination device rich in barium strontium ions
KR20140044548A (en) A water treatment apparatus using nano membrane for softening water and method using the same
TWI715974B (en) Method for removing chlorine-containing salt from industrial wastewater and apparatus thereof
JP3697800B2 (en) Wastewater treatment method
JPH091141A (en) Method for operating reverse osmosis membrane device
JPH0630792B2 (en) Treatment method of water supply treatment device
TW202136156A (en) Water treatment method and device for boilers
CN218596218U (en) Softening and salt dissolving system