JPS60124112A - Surface elastic wave element - Google Patents

Surface elastic wave element

Info

Publication number
JPS60124112A
JPS60124112A JP23244583A JP23244583A JPS60124112A JP S60124112 A JPS60124112 A JP S60124112A JP 23244583 A JP23244583 A JP 23244583A JP 23244583 A JP23244583 A JP 23244583A JP S60124112 A JPS60124112 A JP S60124112A
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
film
silicon substrate
zinc oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23244583A
Other languages
Japanese (ja)
Other versions
JPH0311686B2 (en
Inventor
Ryuichi Asai
龍一 浅井
Takeshi Okamoto
猛 岡本
Shoichi Minagawa
皆川 昭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faurecia Clarion Electronics Co Ltd
Original Assignee
Clarion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clarion Co Ltd filed Critical Clarion Co Ltd
Priority to JP23244583A priority Critical patent/JPS60124112A/en
Priority to US06/677,712 priority patent/US4567392A/en
Priority to GB08430699A priority patent/GB2152315B/en
Priority to DE3444749A priority patent/DE3444749C2/en
Publication of JPS60124112A publication Critical patent/JPS60124112A/en
Publication of JPH0311686B2 publication Critical patent/JPH0311686B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To obtain highly efficient characteristics by forming an SiO2 film and a ZnO film on a silicon substrate cut at its (110) surface and also forming electrodes on the ZnO film to propagate surface elastic waves in the [001] axial direction of the silicon substrate. CONSTITUTION:The SiO2 film 12 having film thickness h2 is formed on the silicon substrate 11 cut at a surface almost equivalent to the (110) surfacce and the ZnO film 13 having film thickness h1 is formed on the film 12 so that a surface almost equivalent to a (0001) surface is parallel with the cut surface of said silicon substrate 11. Then, input electrodes 14 and output electrodes 15 consisting of comb line electrodes are formed on the film 13. When Sezawa waves are propagated in the direction almost equivalent to the [001] axial direction of the silicon substrate through said structure, characteristics having a high electromechanical coupling coefficient K are obtained. If the silicon substrate 11 is used as the substrate for an integrated circuit in common, a small-sized and high density element will be obtained.

Description

【発明の詳細な説明】 本発明は、尚効率で動作し141Iるnす造の表面弾性
波素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface acoustic wave device that operates efficiently and is constructed of 141 ln.

弾性体表面に沿って伝播】−る表面弾性波を利用した各
種表面弾性波素子が最近盛んに開発されつつある。この
理由としては、第1に表面弾性波の@wI速度はt磁波
速度の約10 倍であり、素子の小型化と高留度化が可
能であること。
Recently, various surface acoustic wave devices that utilize surface acoustic waves that propagate along the surface of an elastic body have been actively developed. The reasons for this are, firstly, that the @wI speed of surface acoustic waves is about 10 times the t magnetic wave speed, which allows for smaller devices and higher retention.

第2に表面弾性波は物質表面を伝播するKめ伝送路の任
意の場所から信号のタッピングが可#Vであること、第
3に物質表面忙エネルギーが集中していることから1元
や半導体のキャリアとの相互作用乞利用したデバイス、
あるいは高いエネルギー密度により非線形効果を利用し
たデバイスに応用でさること。
Second, surface acoustic waves can tap signals from any location on the transmission path that propagates on the surface of a material, and third, because surface acoustic waves concentrate energy on the surface of a material, it is possible to tap signals from any location on the surface of a material. Interaction with the carrier of the device,
Or it can be applied to devices that utilize nonlinear effects due to high energy density.

第4に七の製造技術にIC技術が活用できるため、IC
と組み合わせ1こ新しい素子の実状が期待できること2
等が挙げられる。
Fourthly, since IC technology can be used in the manufacturing technology mentioned above,
Combination 1. The actual state of new elements can be expected 2.
etc.

第1図および第2図は従来の表面弾性波素子の構造を示
すもので、■はニオブ敵リチウム(LiNb03)から
なる圧■基板で132°Yカツトされ1こものからなり
、2はシリコンからなる半導体基板で(110)面とほ
ぼ等価な面でカットされ1こものからなり、3は酸化亜
鉛(ZnO)からなる圧電薄膜で(00017面とほぼ
等イ曲な面が上記シリコン基板2のカット面と平行にな
るように形成され1こものからなり、4.5は上1己二
オフ゛酸リチウム基板l上および酸11:、亜鉛膜3上
に互いに交差するように設けられたくし型電極で、クリ
えは4は人力電極、5は出力電極として使用される。
Figures 1 and 2 show the structure of a conventional surface acoustic wave device. 3 is a piezoelectric thin film made of zinc oxide (ZnO), whose surface is approximately equicurved to the 00017 plane, and is cut on a plane substantially equivalent to the (110) plane. The comb-shaped electrodes 4.5 are formed parallel to the cut surface and are provided on the lithium dioxate substrate 1 and the acid 11 on the zinc film 3 so as to intersect with each other. 4 is used as a manual electrode, and 5 is used as an output electrode.

ここで人力電極4から励振された表′面弾性波は上記ニ
オブ酸リチウム基IJii 1表面あるいは酸化亜鉛膜
3表面を伝播して出力’1IHk5から取り出される。
Here, the surface acoustic wave excited from the manual electrode 4 propagates through the surface of the lithium niobate group IJii 1 or the surface of the zinc oxide film 3 and is extracted from the output '1IHk5.

これらのイ溝造において第1区Iにおいては表面’j’
lL性波としてレイリー波を用いて伝播させた場合。
In these Izo-zukuri, the surface 'j' in the first section I
When propagating using Rayleigh waves as LL waves.

素子特性上重役な指標である霜気イ2.!械結合V々D
Kの二乗値に2は約5.5%と犬ぎなIaが旬らhるの
で、この利点Y?古かして神々の分野に応用されている
う しかしその反面基板が単−相和から構成されているため
に、1j気檄械結合係酵1(か基板結晶軸方向ま6よび
それに対″3−る表面弾性波の伝播方向によって固定化
されてしまう欠点がある。
Frost a, which is an important indicator for device characteristics 2. ! Mechanical connection Vd
Since the square value of K is about 5.5% and Ia is small, this advantage Y? However, on the other hand, since the substrate is composed of a monomorphic material, the mechanical coupling fermentation 1 (or the direction of the substrate crystal axis or 6) 3. There is a drawback that the direction of propagation of the surface acoustic waves is fixed.

この点部2図においては表面弾性波としてセザワe、を
用いてシリコン基板2のC00L)軸方向とほぼ等価な
方間に伝播さセた場合、酸化亜鉛膜3の膜厚b1を解析
によってまる成る値に遺ぷことによりI<特性に柔軟性
を持たせることができ。
In this point part 2 figure, when using Sezawa e as a surface acoustic wave and propagating in a direction almost equivalent to the C00L) axis direction of the silicon substrate 2, the film thickness b1 of the zinc oxide film 3 can be calculated by analysis. By setting the value to be I<, the property can be made more flexible.

また第1図構造よりも太さな1気機械結合係数1(ン得
ることができるっ例えば上記酸化亜鉛膜厚h]ンωJ 
= 8000 (ωは表面弾性波の角周波数)に選ぶこ
とによりKは約586%を得ることができる。
In addition, it is possible to obtain a mechanical coupling coefficient of 1 (1) which is thicker than the structure shown in FIG.
By selecting = 8000 (ω is the angular frequency of the surface acoustic wave), K can be approximately 586%.

しかしこの構造では酸化亜鉛膜3はスパンタ技術等によ
り形成されるが、上記のように最適特性を得るにはその
膜厚を比較的太さく形成する必要があるため生産性の点
でコストアップになるのが避けられない欠点があるうこ
の1こめできるだけ小さな膜厚でできるだけ太ぎなル気
機械結合係数Kが得られるような構造が望まれている。
However, in this structure, the zinc oxide film 3 is formed by spunter technology, etc., but as mentioned above, in order to obtain the optimum characteristics, it is necessary to form the film relatively thick, which increases costs in terms of productivity. However, it is desirable to have a structure in which a mechanical coupling coefficient K as large as possible can be obtained with a film thickness as small as possible.

本発明は以上の間均に対処してなされたもので。The present invention has been made to address the above-mentioned problems.

(110)面とほぼ等価な面でカットされ1こシリコン
基板と、このンリコ/基板上に形成された二酸化シリコ
ン膜と、この二酸化シリコン膜上に(0001)面とほ
ぼ等1曲な面が上記シリコン基板のカット面と平行にな
るように形成され定酸化亜鉛膜と、この酸化亜鉛膜上に
形成された電極とを含み、上記シリコン基板の(001
)軸方向とほぼ等価な方向に表面弾性波を伝播させるよ
うに構成して従来欠点を除去するようにした表面弾性波
素子を提供することを目的とするものである。以下図面
を参照して本発明実施例〉説明する〇 第3図は本発明実施タリによる表面弾性波素子を示1断
面図で、11は(110)面とほぼ等価な面でカットさ
れ瓦シリコン基板、12はこのシリコン基板11上に形
成され1こ膜厚h2を有する二酸化シリコン(5iOz
 )膜、13はこの二酸化シリコン膜12上に(000
1)面とほぼ等価な面が上記シリコン基板11のカット
面と平行になるように形成され1こ膜厚111ン有する
酸化亜鉛膜、14.15は各々互いに交差するように形
@されkくし型電極からなる入力電極および出力電極、
16は上記酸化亜鉛膜13と二酸化シリコン膜12間に
形成された導電膜で膜厚は無限に小さいことが望ましい
う なお上記導電膜】6あるいは酸化亜鉛膜13はくし型’
[1@14.15の少なくとも交差幅部分の真下に位置
するように形成されることが望ましい。
A silicon substrate cut with a plane almost equivalent to the (110) plane, a silicon dioxide film formed on the substrate, and a curved plane almost equivalent to the (0001) plane on the silicon dioxide film. The silicon substrate includes a constant zinc oxide film formed parallel to the cut surface of the silicon substrate, and an electrode formed on the zinc oxide film.
) It is an object of the present invention to provide a surface acoustic wave element configured to propagate surface acoustic waves in a direction substantially equivalent to the axial direction, thereby eliminating the conventional drawbacks. Embodiments of the present invention will be explained below with reference to the drawings. 〇 Figure 3 shows a cross-sectional view of a surface acoustic wave device according to the present invention. A substrate 12 is formed on the silicon substrate 11 and is made of silicon dioxide (5iOz
) film, 13 is (000
1) A zinc oxide film having a thickness of 111 mm and formed so that a surface substantially equivalent to the surface thereof is parallel to the cut surface of the silicon substrate 11; input and output electrodes consisting of type electrodes;
Reference numeral 16 denotes a conductive film formed between the zinc oxide film 13 and the silicon dioxide film 12, and the film thickness is preferably infinitely small.
[1@14.15] It is desirable to be formed so as to be located directly below at least the crossing width portion.

以上の構造(ZnO(0001)/5i02/Si (
110) (001:]と略記)の表面弾性波素子に対
し、表面弾性波としてセザワ波を用いてシリコン基板1
1の(001)軸方向とほぼ等価な方向に伝播させるこ
とにより第4図および第5図のようなに特性曲線が得ら
れに0 第4図において横軸は二酸化7リコシ膜12の膜厚h2
の厚さをωh2 (ωは角周波数)で示し、縦軸は電気
機械結合係iKの二乗値K を百分率で示すものである
。ま1こ第5図において楡軸は酸化亜鉛膜り、の厚さ馨
ωh】(ωは角周波数)で示し。
The above structure (ZnO(0001)/5i02/Si (
110) For a surface acoustic wave device (abbreviated as 001:]), a silicon substrate 1 is fabricated using Sezawa waves as surface acoustic waves.
By propagating in a direction almost equivalent to the (001) axis direction of 1, characteristic curves as shown in FIGS. 4 and 5 can be obtained. In FIG. h2
The thickness of is indicated by ωh2 (ω is the angular frequency), and the vertical axis indicates the square value K of the electromechanical coupling coefficient iK in percentage. In Fig. 5, the axis is the thickness of the zinc oxide film, which is indicated by ωh (ω is the angular frequency).

縦軸は電気機械結合係iKの二乗値に’Y百分率で示す
ものである。第4図においてはωh1=7000に設定
した状態でωh2馨変比変化た(望ましくは126〜1
0000の範囲内で)場合のKの変化乞示し、第5図に
おいてはωh2=looOに設定した状態でωhlを変
化させた(望ましくは4200〜15000の範囲内で
)場合のIくの変化を示している。
The vertical axis represents the square value of the electromechanical coupling coefficient iK expressed as a 'Y percentage. In Figure 4, when ωh1 is set to 7000, the ωh2 ratio changes (preferably 126 to 1
Figure 5 shows the change in I when ωhl is changed (preferably within the range of 4200 to 15000) with ωh2 = looO. It shows.

第4図および第518!!Jから明らかなように、酸化
亜鉛膜13の膜厚h1および二酸化シリコン膜12の膜
厚h2ン各々ω11z=7000およびωh2=100
0に泗ぷことにより、A点において極大値に2=5.8
9%が得られ友。
Figures 4 and 518! ! As is clear from J, the thickness h1 of the zinc oxide film 13 and the thickness h2 of the silicon dioxide film 12 are ω11z=7000 and ωh2=100, respectively.
By adding 0 to the maximum value at point A, 2=5.8
I got 9%, my friend.

上記値は第2図の従来構造でiUられた値(K″′= 
5.86%、ωhl = 8000 )よりも大であり
、しかも酸化亜鉛13の膜厚111は二酸化シリコン[
12を介在させることにより従来のωJ = 8000
からωhl = 7000へと小さくすることかできる
The above value is the value obtained by iU in the conventional structure shown in Fig. 2 (K″′=
5.86%, ωhl = 8000), and the film thickness 111 of zinc oxide 13 is larger than that of silicon dioxide [
By interposing 12, the conventional ωJ = 8000
can be reduced from ωhl = 7000.

これにより生産件の点でコストダウンを計ることができ
る。
This makes it possible to reduce costs in terms of production.

また酸化亜鉛膜13の膜厚h1および二酸化シリコン膜
12の膜厚h2を前記した範囲内で種々調整することに
より1%性の点で従来構造より浸れた柔軟性を持った表
面弾性波素子乞実現することができる。
In addition, by adjusting the thickness h1 of the zinc oxide film 13 and the thickness h2 of the silicon dioxide film 12 variously within the above-mentioned ranges, a surface acoustic wave device with greater flexibility than the conventional structure in terms of 1% resistance can be obtained. It can be realized.

なおシリコン基板IJのカット面は(110)面とほぼ
等価な面、酸化亜鉛膜13は(0001)面とほぼ等価
な面およびシリコン基板11の伝播軸は(001)軸方
向とほぼ等価な方向の場合に例ケとって説明したが、そ
れらに示した所定値からl(1”以下の傾き乞有してい
る場合でも素子特性には本質的差異は認められない。
Note that the cut surface of the silicon substrate IJ is approximately equivalent to the (110) plane, the zinc oxide film 13 is approximately equivalent to the (0001) plane, and the propagation axis of the silicon substrate 11 is approximately equivalent to the (001) axis direction. Although the explanation has been given by taking the example of the case shown in FIG.

第6図は本発明の曲の実施例としてコンホルパ用素子に
適用した列な示1もので、17は酸化亜鉛膜13上の人
力電極14と出力’i、 i415間に設けられ1こゲ
ート電極である。
FIG. 6 shows a row applied to a conformer element as an embodiment of the present invention, in which 17 is a gate electrode provided between the manual electrode 14 on the zinc oxide film 13 and the outputs 'i and i415. It is.

この構造によれは導電1ii416がそのま1設けられ
ているので前実施列同禄にに特性に曖れに素子t1aる
ことかできるう なおくし型電極の代りに、シリコン基板11.二酸化シ
リコン膜12および酸化亜鉛膜13内に発生する電気的
ボテンシャル馨利用することかでざる。
In this structure, since the conductive layer 1ii416 is provided as is, the silicon substrate 11. It is possible to utilize the electric potential generated within the silicon dioxide film 12 and the zinc oxide film 13.

以上述べて明らかなように本究明によれば。As is clear from the above, according to this investigation.

(110)ljiiとほぼ等1曲な面でカットされ1こ
シリコン基板と、この7リコ/基板上に形成された二酸
化シリコン膜と、この二酸化シリコン膜上に(0001
)面とほぼ等価な面か上記シリコン基板のカット面と平
行になるように形成された酸化亜鉛膜と、この酸化亜鉛
膜上に形成された電極とを含み。
(110) A silicon substrate cut with a curved surface approximately equal to (110) ljii, a silicon dioxide film formed on this seven silicon substrate, and a silicon dioxide film formed on this silicon dioxide film (0001
) plane or parallel to the cut plane of the silicon substrate, and an electrode formed on the zinc oxide film.

上記シリコン基板の〔001)軸方向とほぼ等価な方向
に表面弾性波素子描さゼるように構成したものであるか
ら、電気様械結台係数ン太き(とることができるので表
面弾性波素子ケ効率よく動作させることかできる。
Since the surface acoustic wave element is constructed so that it is drawn in a direction approximately equivalent to the [001] axis direction of the silicon substrate, the electrically-like mechanical coupling coefficient is large. The device can be operated efficiently.

なお本発明によればシリコン基板として乗積回路と共通
24仮を用いることにより、集積回路技術を活用して機
能素子と牛導体素子ン一体化した小型かつ高密度な素子
の実現が可能である。
In addition, according to the present invention, by using a 24-layer circuit common to multiplication circuits as a silicon substrate, it is possible to realize a compact and high-density element that integrates a functional element and a conductor element by utilizing integrated circuit technology. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1曲および第2図は共に従来的を示す断面図、第3図
および第6図は共に本発明実施列馨示す断面図、第4図
および第5図は共に本発明によって得られた結果ン示す
特性図である。 11・・・シリコン基板、12・・・二数化シリコン膜
、13・・・酸化亜鉛膜、14・・・人力電極、15・
・・出力電極、16・・・導電膜、17・・・ゲート電
極。 乍I図 学2図 年3図 手続補正書 昭和59年4月、)−3日 特許庁長官 着 杉 相 夫 殿 1、事件の表示 昭和58年特許願 第232445号 2、発明の名称 表面弾性波素子 3 補正をする者 事件との関係 特許出願人 住所 名 称 (148) クラリオン株式会社4代理人〒1
05 住 所 東京都港区芝3丁目2番14号芝三丁目ビル5
 補正の対象 明細杏の発明の詳細な説明の欄 6 補正の内容 (1) 本願明細書第10頁第4行乃至第5行1専電膜
16がそのまま設けられているので」を削除する。 (21同頁第7行10代りに」を「ン用いずとも」に補
正する。 (3)同頁第9行「ことかできる」を「素子の実現が期
待できる」に補正する。
1 and 2 are sectional views showing the conventional method, 3 and 6 are sectional views showing the implementation of the present invention, and 4 and 5 are the results obtained by the present invention. FIG. DESCRIPTION OF SYMBOLS 11... Silicon substrate, 12... Divalent silicon film, 13... Zinc oxide film, 14... Manual electrode, 15.
... Output electrode, 16... Conductive film, 17... Gate electrode.乍Fig. 2, 3, Procedural Amendment (April 1980) - 3, Director General of the Patent Office, Aio Sugi, 1, Indication of the case, 1983 Patent Application No. 232445, 2, Name of the invention, Surface elasticity. Wave element 3 Relationship with the case of the person making the amendment Patent applicant address name (148) Clarion Co., Ltd. 4 agent 〒1
05 Address: Shiba 3-chome Building 5, 3-2-14 Shiba, Minato-ku, Tokyo
Detailed Description of the Invention Column 6: Contents of the Amendment (1) ``Since the exclusive electric film 16 is provided as is in lines 4 to 5 of page 10 of the specification of the present application'' is deleted. (21, same page, line 7, in place of 10) is corrected to ``without using''. (3) Same page, line 9, ``can be done'' is corrected to ``it is expected that the device will be realized.''

Claims (1)

【特許請求の範囲】 1、(110)面とほぼ等価な面でカットされたシリコ
ン基板と、このシリコン基板上に形成された二酸化シリ
コン膜と、この二酸化シリコン膜上K (0001)面
とほぼ等価な面が上記シリコン基板のカット面と平行に
なるように形成された酸化亜鉛膜と、この酸化亜鉛膜上
に形成された電極と馨含み、上記シリコン基板の(oo
i)軸方向とはli等価な方向に表面弾性波ン伝播させ
るように構成したことt%徴とする表面弾性波素子つ2
、 上記結晶面およびその伝播軸が所定結晶面および伝
播軸方向から10”以内の傾きを持つことン特徴とする
特許請求の範囲第194記載の表面弾性波素子つ 3、 上記表面弾性波素子としてセザワ波を用いること
を特徴とする特許請求の範囲第1狽又は第2項記載の表
面弾性波素子つ 4、上記酸化亜鉛膜の膜厚b3が、4200<ωhj<
15000 (7,、:だし、ωは表面弾性波の角周波
数)の範囲に属すること馨特隊とする特許請求の範囲第
1項乃至第3項のいずれかに記載の表面弾性波素子。 5、 上記二酸化シリコン膜の膜厚h2が、 126<
ωh2<10000 (ただし、ωは表面弾性波の角周
波数)の範囲に属Tること馨特徴とする%I¥F請求の
範囲第1項乃至第4項のいずれかに記載の表面弾性波素
子。 6、 上記酸化亜鉛膜と二酸化シリコン膜間に導電膜が
形睡されることを特徴とする特許請求の範囲第1項乃至
第5項のいずれかに記載の表面弾性波素子。 7、 上記電極がくし型構造ケ有することを特徴とする
特許請求の範囲第1JJ4乃主第6唄のいずれかに記載
の表面弾性波素子つ 8、 上記導電膜が上記<Lm電極の少なくとも交麦幅
部分の真下に位置することを特徴とする特許請求の範囲
第1項乃至第7埃のいずれかに記載の表面弾性波素子。 9. 上記酸化亜鉛膜が上記くし型電極の少なくとも反
差l1viI部分の真下に位りすることを特徴とする特
許請求の範囲第1項乃至第8項のいずれかに記載の表面
弾性波素子つ 川、上記シリコン基板として集積回路と共通の基板を用
いたことを特徴とする特許請求の範囲第1項乃至第9項
のいずれかに記載の表面弾性波素子。
[Claims] 1. A silicon substrate cut on a plane substantially equivalent to the (110) plane, a silicon dioxide film formed on this silicon substrate, and a silicon dioxide film cut on a plane substantially equivalent to the (0001) plane. A zinc oxide film formed such that an equivalent surface is parallel to the cut surface of the silicon substrate, and an electrode formed on the zinc oxide film are included.
i) A surface acoustic wave element configured to allow surface acoustic waves to propagate in a direction equivalent to the axial direction.
3. The surface acoustic wave device according to claim 194, wherein the crystal plane and its propagation axis have an inclination within 10” from the predetermined crystal plane and propagation axis direction. In the surface acoustic wave device according to claim 1 or 2, characterized in that Sezawa waves are used, the film thickness b3 of the zinc oxide film is 4200<ωhj<
15,000 (7,: where ω is the angular frequency of the surface acoustic wave). 5. The thickness h2 of the silicon dioxide film is 126<
The surface acoustic wave device according to any one of claims 1 to 4, characterized in that it belongs to the range of ωh2<10000 (where ω is the angular frequency of the surface acoustic wave). . 6. The surface acoustic wave device according to any one of claims 1 to 5, characterized in that a conductive film is interposed between the zinc oxide film and the silicon dioxide film. 7. The surface acoustic wave device according to any one of Claims 1JJ4 to 6, wherein the electrode has a comb-shaped structure.8. The surface acoustic wave element according to any one of claims 1 to 7, wherein the surface acoustic wave element is located directly below the width portion. 9. The surface acoustic wave device according to any one of claims 1 to 8, wherein the zinc oxide film is located directly below at least the reciprocal l1viI portion of the comb-shaped electrode. 10. The surface acoustic wave device according to claim 1, wherein the silicon substrate is a common substrate with an integrated circuit.
JP23244583A 1983-12-09 1983-12-09 Surface elastic wave element Granted JPS60124112A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP23244583A JPS60124112A (en) 1983-12-09 1983-12-09 Surface elastic wave element
US06/677,712 US4567392A (en) 1983-12-09 1984-12-04 Sezawa surface-acoustic-wave device using ZnO(0001)/SiO2 / Si(100)(011)
GB08430699A GB2152315B (en) 1983-12-09 1984-12-05 Surface acoustic wave device
DE3444749A DE3444749C2 (en) 1983-12-09 1984-12-07 Component forming acoustic surface waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23244583A JPS60124112A (en) 1983-12-09 1983-12-09 Surface elastic wave element

Publications (2)

Publication Number Publication Date
JPS60124112A true JPS60124112A (en) 1985-07-03
JPH0311686B2 JPH0311686B2 (en) 1991-02-18

Family

ID=16939382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23244583A Granted JPS60124112A (en) 1983-12-09 1983-12-09 Surface elastic wave element

Country Status (1)

Country Link
JP (1) JPS60124112A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160869A (en) * 1989-12-26 1992-11-03 Sumitomo Electric Industries Ltd. Surface acoustic wave device
EP0608864A2 (en) * 1993-01-29 1994-08-03 Sumitomo Electric Industries, Limited Surface acoustic wave device and method for manufacturing the same
US5783896A (en) * 1995-08-08 1998-07-21 Sumitomo Electric Industries, Ltd. Diamond-Zn0 surface acoustic wave device
US5959389A (en) * 1995-08-08 1999-09-28 Sumitomo Electronic Industries, Ltd. Diamond-ZnO surface acoustic wave device
JP2006526919A (en) * 2003-06-04 2006-11-24 エプコス アクチエンゲゼルシャフト Electroacoustic component and manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145419A (en) * 1981-03-05 1982-09-08 Clarion Co Ltd Surface acoustic wave element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145419A (en) * 1981-03-05 1982-09-08 Clarion Co Ltd Surface acoustic wave element
JPS5863214A (en) * 1981-03-05 1983-04-15 Clarion Co Ltd Surface acoustic wave element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160869A (en) * 1989-12-26 1992-11-03 Sumitomo Electric Industries Ltd. Surface acoustic wave device
EP0608864A2 (en) * 1993-01-29 1994-08-03 Sumitomo Electric Industries, Limited Surface acoustic wave device and method for manufacturing the same
EP0608864A3 (en) * 1993-01-29 1995-11-08 Sumitomo Electric Industries Surface acoustic wave device and method for manufacturing the same.
US5783896A (en) * 1995-08-08 1998-07-21 Sumitomo Electric Industries, Ltd. Diamond-Zn0 surface acoustic wave device
US5959389A (en) * 1995-08-08 1999-09-28 Sumitomo Electronic Industries, Ltd. Diamond-ZnO surface acoustic wave device
JP2006526919A (en) * 2003-06-04 2006-11-24 エプコス アクチエンゲゼルシャフト Electroacoustic component and manufacturing method

Also Published As

Publication number Publication date
JPH0311686B2 (en) 1991-02-18

Similar Documents

Publication Publication Date Title
JPH0336326B2 (en)
JPH029485B2 (en)
JPS60169210A (en) Surface wave device
JPH06112763A (en) Surface acoustic wave device
JPS60124109A (en) Surface elastic wave element
JPS60124112A (en) Surface elastic wave element
US5973438A (en) Ultrasonic switching device
JPH05259802A (en) Surface acoustic wave device
US4567392A (en) Sezawa surface-acoustic-wave device using ZnO(0001)/SiO2 / Si(100)(011)
US5925967A (en) Ultrasonic switching device
JPH0311685B2 (en)
US4707631A (en) Isotropic acoustic wave substrate
JP3449013B2 (en) Shear wave transducer
JP3194784B2 (en) Surface acoustic wave device
JP2764866B2 (en) Surface acoustic wave device
Morgan et al. Effect of electromagnetic delays and SAW dispersion in SAW convolvers
JPS6192021A (en) Elastic surface wave element
JP3090219B2 (en) Surface acoustic wave device
JP3157022B2 (en) Surface acoustic wave device and communication system using the same
EP0153093A2 (en) Isotropic acoustic wave substrate
JP2015228638A (en) Variable frequency acoustic wave converter and electronic apparatus using the same
JPH0425213A (en) Surface acoustic wave convolver
JPH04302210A (en) Surface acoustic wave convolver
JPS59215109A (en) Surface acoustic wave device
JPH05136652A (en) Surface acoustic wave element