JPS6011953B2 - Cooling gas blowing device for vertical dry granule cooling tower - Google Patents

Cooling gas blowing device for vertical dry granule cooling tower

Info

Publication number
JPS6011953B2
JPS6011953B2 JP9630677A JP9630677A JPS6011953B2 JP S6011953 B2 JPS6011953 B2 JP S6011953B2 JP 9630677 A JP9630677 A JP 9630677A JP 9630677 A JP9630677 A JP 9630677A JP S6011953 B2 JPS6011953 B2 JP S6011953B2
Authority
JP
Japan
Prior art keywords
cooling gas
cooling
blowing
tower
red
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9630677A
Other languages
Japanese (ja)
Other versions
JPS5430205A (en
Inventor
雄三郎 田巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP9630677A priority Critical patent/JPS6011953B2/en
Publication of JPS5430205A publication Critical patent/JPS5430205A/en
Publication of JPS6011953B2 publication Critical patent/JPS6011953B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は赤熱コークスの如き赤熱粒体を冷却するため
の竪型乾式粒体冷却塔の冷却ガス吹込装置に係り、特に
塔体内に形成される赤熱粒体の移動層中に冷却ガスを適
切な流れ分布をもって向流させるようになし、赤熱粒体
の移動に追随させて均一に冷却処理し得る竪型乾式粒体
冷却塔の冷却ガス吹込装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a cooling gas blowing device for a vertical dry granule cooling tower for cooling red-hot granules such as red-hot coke, and particularly relates to a cooling gas blowing device for a vertical dry granule cooling tower formed within the tower body. Cooling gas blowing into a vertical dry granule cooling tower that allows cooling gas to flow counter-currently with an appropriate flow distribution into a moving bed of red-hot granules to follow the movement of red-hot granules and provide uniform cooling treatment. It is related to the device.

〔従来例〕[Conventional example]

一般に赤熱コークス等をその頭熱を回収しつつ冷却処理
するものとして竪型乾式粒体冷却塔が採用されている。
Generally, a vertical dry granule cooling tower is used to cool red hot coke and the like while recovering its head heat.

この竪型乾式粒体冷却塔はその頂部に赤熱粒体例えば赤
熱コークス粒体を装入するための装入口を、且つ底部に
粒体の切出口を備え、また中段にその回りに沿って複数
個ガス出口を且つ底部に冷却ガス吹込口を備える。そこ
で、塔体内に装入口から投入される赤熱粒体を底部切出
口へ向う移動層として形成し、他方冷却ガス吹込口より
冷却ガスを搭体内に吹き込み、この冷却ガスが上記赤熱
粒体移動層中を向流しつつガス出口に至って赤熱粒体を
冷却すると共に赤熱粒体中の顕熱を回収するものである
。〔発明が解決しようとする問題点〕 しかしながら、従来この種冷却塔にあっては、塔内頂部
から装入される高温の赤熱粒体と底部から吹き込まれる
冷却ガスとを均一に接触させることが難しい問題とされ
ている。
This vertical dry granule cooling tower has a charging port for charging red-hot granules such as red-hot coke granules at the top, a granule cutting port at the bottom, and a plurality of holes along the middle stage. It has two gas outlets and a cooling gas inlet at the bottom. Therefore, the red-hot granules introduced into the tower body from the charging port are formed as a moving layer that moves toward the bottom cutting port, and cooling gas is blown into the body from the cooling gas inlet, and this cooling gas flows into the red-hot granules moving bed. While flowing countercurrently through the gas, the gas reaches the outlet to cool the red-hot granules and recover the sensible heat in the red-hot granules. [Problems to be Solved by the Invention] However, in conventional cooling towers of this type, it has been difficult to uniformly bring the high-temperature red-hot particles charged from the top of the tower into contact with the cooling gas blown from the bottom. It is considered a difficult problem.

特に、頂部から挿入される赤熱粒体の粒度分布が不均一
となって移動層を形成するために、その移動層中に吹き
込まれる冷却ガスが不均一な流れ分布を形成して移動層
内に向流し、粒体移動層の流れに追随して均一に冷却す
ることができなかった。即ち、赤熱粒体の移動層中大き
な粒子分布を形成している部分は通気抵抗が小さいため
に冷却ガスが多く流れて早く冷却されるが、反対に小さ
な粒子分布を形成する部分は通気抵抗が大きくなるため
に冷却ガスの流れが悪く、冷却が遅くなる。
In particular, since the particle size distribution of the red-hot particles inserted from the top becomes uneven and forms a moving layer, the cooling gas blown into the moving layer forms an uneven flow distribution and flows into the moving layer. It was not possible to cool the particles uniformly by following the flow of the particle moving layer. In other words, in the moving layer of red-hot particles, the part where a large particle distribution is formed has a small ventilation resistance, so a large amount of cooling gas flows and is cooled quickly, but on the other hand, the part where a small particle distribution is formed has a small ventilation resistance. Due to the large size, the flow of cooling gas is poor and cooling becomes slow.

〔発明の目的〕本発明の目的とするところは竪型乾式粒
体冷却塔において、赤熱粒体移動層に対して均一な流れ
分布と有効な冷却効果を得るために冷却ガスを吹き込み
且つ向流させることを可能にした竪型乾式粒体冷却塔の
冷却ガス吹込装置を提供する。
[Object of the Invention] The object of the present invention is to provide a vertical dry granule cooling tower in which a cooling gas is blown into the red-hot granule moving bed in order to obtain a uniform flow distribution and an effective cooling effect. To provide a cooling gas blowing device for a vertical dry granule cooling tower that makes it possible to

〔発明の概要〕上記目的を達成するために、本発明は、
頂部に赤熱粒体装入口と、また底部に切出口を有する塔
体内に赤熱粒体移動層を形成し、これに冷却ガスを向流
させて冷却する竪型乾式粒体冷却塔において、上記塔体
の底部に逆教頭円錐筒体を、その上方に位置される逆裁
頭円錐筒体の下端開□部に下方に位置される逆裁頭円錐
筒体の上端関口都内に所定の間隙を隔てて支持させて多
段に積み重ねて、その周方向に沿って且つ上下方向に多
段に冷却ガス吹込口を有する漏斗状の通路を形成し、該
通路の外周部に上記冷却ガス吹込口をその周方向に沿っ
て複数個に分割する吹込用ウィンドボックスを形成し、
これら吹込用ウインドボックスにそれぞれ流量調節弁を
介して冷却ガスで導入管を接続し且つ上記吹込用ウィン
ドボックス内に上下多段に形成された冷却ガス吹込口に
それぞれ流量調節弁を設けて構成し、塔内冷却ガスの流
れ分布を調節し得ると共に赤熱粒体の移動層に対して的
確に冷却ガスを吹き込むことを可能にしたものである。
[Summary of the invention] In order to achieve the above object, the present invention has the following features:
In a vertical dry granule cooling tower in which a red-hot granule moving bed is formed in the tower body having a red-hot granule charging inlet at the top and a cutting port at the bottom, and cooling gas is cooled by countercurrently flowing thereto, the tower An inverted vice principal conical cylinder is placed at the bottom of the body, and the upper end of the inverted truncated conical cylinder located below is placed at the lower end opening □ of the inverted truncated conical cylinder located above it with a predetermined gap in Sekiguchi. The cooling gas inlets are stacked in multiple stages along the circumferential direction and in the vertical direction to form a funnel-shaped passage having cooling gas inlet ports in multiple stages along the circumferential direction and in the vertical direction. Form a blowing wind box that is divided into multiple pieces along the
A cooling gas inlet pipe is connected to each of these blowing wind boxes through a flow rate control valve, and a flow rate control valve is provided in each of the cooling gas blowing ports formed in upper and lower stages in the blowing wind box, This makes it possible to adjust the flow distribution of the cooling gas in the tower and to blow the cooling gas accurately into the moving bed of red-hot particles.

実施例 次に、本発明に係る竪型乾式粒体冷却塔の冷却ガス吹込
装置の好適一実施例について、添付図面に従って詳述す
る。
Embodiment Next, a preferred embodiment of the cooling gas blowing device for a vertical dry granule cooling tower according to the present invention will be described in detail with reference to the accompanying drawings.

第1図に示す如く、シャフト型あるいは塔型に形成され
た冷却塔本体1はその頂部に赤熱コークス粒体の装入口
2を有し且つ底部に冷却後のコークス粒体の切出口3を
有する。
As shown in FIG. 1, a cooling tower main body 1 formed in a shaft or tower shape has a charging port 2 for red-hot coke granules at its top and a cutting port 3 for cooled coke granules at its bottom. .

この冷却塔1の中段部には放射状に複数個のガス出口4
が形成される。これらの排ガス出口4は冷却塔1を形成
する煉瓦壁を上向きに臨んで穿設されている。またこれ
らのガス出口4は環状通路5に蓮設され、この環状通路
5は図示しないが廃熱回収ボィラに蓮通されている。特
に、本発明は上記冷却塔1の底部に存在し、冷却塔1の
底部切出口3上には冷却塔1の内壁6より切出口3に懐
斜面7を有する漏斗状の通路8が形成される。
A plurality of gas outlets 4 are arranged radially in the middle part of the cooling tower 1.
is formed. These exhaust gas outlets 4 are bored facing upward through the brick wall forming the cooling tower 1. Further, these gas outlets 4 are disposed in an annular passage 5, and the annular passage 5 is connected to a waste heat recovery boiler (not shown). In particular, the present invention is provided at the bottom of the cooling tower 1, and above the bottom cutout 3 of the cooling tower 1, a funnel-shaped passage 8 having a face 7 at the cutout 3 is formed from the inner wall 6 of the cooling tower 1. Ru.

この漏斗状通路8は冷却塔1の底部切出口3へ粒体を案
内するためのもので、塔体1の底部内径を切出口3の内
径へと順次絞った所謂漏斗状を呈し、冷却塔1内の粒体
を切出口3へ案内しつつ移送させるものである。この通
路8は冷却塔1と一体的に形成される。この漏斗状通路
8は図示例にあっては逆教頭円錐筒体9を多段に重ね合
せ且つそれぞれの筒体9の間に一定の間隙10を形成す
る如く構成されている。
This funnel-shaped passage 8 is for guiding the particles to the bottom cutting port 3 of the cooling tower 1, and has a so-called funnel shape in which the inner diameter of the bottom of the tower body 1 is sequentially narrowed to the inner diameter of the cutting port 3. The granules in 1 are guided and transferred to the cutting port 3. This passage 8 is formed integrally with the cooling tower 1. In the illustrated example, the funnel-shaped passage 8 is constructed by stacking inverted conical cylinders 9 in multiple stages and forming a constant gap 10 between each cylinder 9.

このように上記通路8に形成された間隙10は冷却ガス
吹込口13を形成する。また、逆裁顔円錐筒体9は冷却
塔1の底部内壁6からその下方の切出口3に順次その内
径の大きさを小さくなるように重ね合され、上記漏斗状
の通路8を形成する。また、逆裁頭円錐筒体9は図中上
方に位置する筒体9aの下端関口部11がその下方に位
置される筒体9bの上端開口部12内に支持されて、そ
れぞれ閉口部端縁11a,12a、を所定の間隙10を
有するように重ね合される。このように筒体9を重ね合
せることにより、ガス吹込口13は漏斗状通路8の内側
壁面に沿って下向き!こ臨んで形成され、この通路8内
を案内されて通過する粒体が上記冷却ガス吹込ロー3内
に侵入して目詰りを起すことを防止している。また冷却
ガス吹込口13は第1図及び第2図に示す如く、上記通
路8の軸万向に沿って多段に形成される。上記通路8の
外周には半径方向に拡大された吹込用ウインドボックス
14が設けられる。この吹込用ウィンドボックス14は
冷却ガス吹込口13を有する通路8の外周壁9aと冷却
塔1の外壁15下に延長される筒状の因綴壁16とによ
って区画され、また第2図に示す如く上記外周壁9aと
囲経壁16との間に設けられる隔壁17により、上記通
路8を麹として放射状に分割されて複数個に区画される
。このように漏斗状通路8の外周側には分割された複数
個の吹込用ウィンドボックス14a,14b,14c・
・・・・・・・・・・・が形成されることにより、上記
逆裁頭円錐筒体9によって上記適路8上に環状に形成さ
れた冷却ガス吹込口13は藤方向に沿って分割され、第
2図に示す如く、通路8の周囲に沿って複数の冷却ガス
吹込口13が形成されることになる。また、漏斗状通路
8を形成する円錐筒体9は上記隔壁17・・・・・・・
…・・によって支持されている。上記吹込用ウィンドボ
ックス14の外周側には冷却ガス導入管としての環状管
18が設けられ、この環状管18は冷却ガス発生源に管
路20を介して蓮通されている。
The gap 10 thus formed in the passage 8 forms a cooling gas inlet 13. Further, the inverted face conical cylinders 9 are stacked one on top of the other from the bottom inner wall 6 of the cooling tower 1 to the cutout port 3 below the cooling tower 1 so that the inner diameter thereof becomes smaller in order to form the above-mentioned funnel-shaped passage 8. In addition, the inverted truncated conical cylinder 9 has a lower end entrance part 11 of the cylinder 9a located at the upper side in the figure and is supported in an upper end opening 12 of the cylinder 9b located below it, so that the end edge of the closed part 11a and 12a are overlapped with a predetermined gap 10 between them. By stacking the cylinders 9 in this way, the gas inlet 13 faces downward along the inner wall surface of the funnel-shaped passage 8! This prevents particles passing through the passage 8 from entering the cooling gas blowing row 3 and causing clogging. Further, the cooling gas inlet 13 is formed in multiple stages along the axis of the passage 8, as shown in FIGS. 1 and 2. A blowing wind box 14 enlarged in the radial direction is provided on the outer periphery of the passage 8. This blowing wind box 14 is partitioned by an outer circumferential wall 9a of a passage 8 having a cooling gas blowing port 13 and a cylindrical wall 16 extending below the outer wall 15 of the cooling tower 1, as shown in FIG. The passage 8 is radially divided into a plurality of sections by the partition wall 17 provided between the outer circumferential wall 9a and the surrounding wall 16. In this way, a plurality of divided blowing wind boxes 14a, 14b, 14c, .
By forming . . . , the cooling gas inlet 13 formed in an annular shape on the suitable path 8 by the inverted truncated conical cylinder 9 is divided along the wisteria direction. As shown in FIG. 2, a plurality of cooling gas inlets 13 are formed along the periphery of the passage 8. Further, the conical cylinder 9 forming the funnel-shaped passage 8 is the partition wall 17...
Supported by... An annular pipe 18 as a cooling gas introduction pipe is provided on the outer peripheral side of the blowing wind box 14, and this annular pipe 18 is passed through a cooling gas generation source via a pipe line 20.

また、環状管18には上記吹込用ウィンドボックス14
a,14b,14cの夫々に運通する蓮通管19が設け
られる。これらの蓮通管19のそれぞれには流量調節弁
21が設けられ、環状管18から各吹込用ウインドボッ
クス14a,14b,14c・・・・・・・・…・への
冷却ガス吹込量を調節し得るように構成される。さらに
吹込用ウインドボックス14a,14b,14cと各吹
込口13の間には冷却ガス吹込量を調節し得るよう流量
調節弁21aが設けられている。
Further, the annular pipe 18 is provided with the above-mentioned blowing wind box 14.
A lotus passage pipe 19 is provided for transporting each of a, 14b, and 14c. Each of these lotus tubes 19 is provided with a flow control valve 21, which adjusts the amount of cooling gas blown from the annular tube 18 to each blowing wind box 14a, 14b, 14c... be configured so as to be able to do so. Further, a flow rate control valve 21a is provided between the blowing wind boxes 14a, 14b, 14c and each blowing port 13 so as to adjust the amount of cooling gas blown.

次に、第3図の変形例について述べる。Next, a modification of FIG. 3 will be described.

図示する如く、第1図及び第2図の実施例と同様に冷却
塔1の底部に漏斗状の通路8を形成し、この通路8の外
周に環状の吹込用ウインドボックス14が設けられる。
As shown, a funnel-shaped passage 8 is formed at the bottom of the cooling tower 1, and an annular blowing wind box 14 is provided around the outer periphery of the passage 8, as in the embodiments of FIGS. 1 and 2.

また、このウインドボックス14内には隔壁17が配設
されて適宜分割される。更に、上記通路8に形成される
ガス吹込口13には夫々独立した運通路19aが設けら
れる。また、これらの蓮通路19aには流量調節弁21
がそれぞれ設けられ、それぞれのガス吹込口13の流量
調節を可能とする。また、流量調節弁21はそれぞれ独
立して開閉作動され得るように構成されている。図中2
0aは冷却ガス導入口である。
Further, a partition wall 17 is provided within the wind box 14 to divide it appropriately. Further, each of the gas blowing ports 13 formed in the passage 8 is provided with an independent passage 19a. Further, a flow rate control valve 21 is provided in these lotus passages 19a.
are provided respectively, and the flow rate of each gas blowing port 13 can be adjusted. Further, the flow control valves 21 are configured to be able to be opened and closed independently. 2 in the diagram
0a is a cooling gas inlet.

以上の構成からなる本装置の作用について、以下に述べ
る。
The operation of this device having the above configuration will be described below.

先ず、第1図乃至第2図に示す実施例装置にあっては冷
却ガス発生源から供給される冷却ガスは管路2川こより
環状管18内に案内される。
First, in the embodiment shown in FIGS. 1 and 2, the cooling gas supplied from the cooling gas generation source is guided into the annular pipe 18 through two pipes.

環状管18内に案内供給された冷却ガスは境圧されて、
蓮通管19を介してそれぞれの吹込用ウインドボックス
14a,14b,14c…………に供給される。この吹
込用ウィンドボックス14a・・・.・….・.・はウ
ィンドボックス即ち冷却ガスを均一なガス圧に保持乃至
維持する働きをしている。さらに各吹込口13毎に設け
られている流量調節弁21を操作し吹込用ウィンドボッ
クス14a,14b,14cから各吹込口13に入る冷
却ガス量を変えて漏斗状通路8の冷却ガス吹込口13へ
所定圧の冷却ガスを噴射乃至吹き出す。このように、繋
体1内に形成される赤熱粒体の移動層c内に、その底部
より多段且つ円周方向から堵内断面全面的に任意に冷却
ガスを吹き込みつつ向流させる。赤熱粒体の移動層c中
に大きな粒子分布地帯乃至部分が形成された場合には、
その粒子分布に相応する位置の底部吹込口13の吹き込
み冷却ガス量を流量調節弁21及び21aによって減少
させて、冷却を遅らせつつ移動層の移動に追従させ均一
に冷却させる。これとは反対に移動層中に小さな粒子則
ち通気抵抗が大きな粒子分布地帯乃至部分が形成された
場合には、その粒子分布に相応する位置の吹込口13の
冷却ガス量を流量調節弁21及び21aによって増大さ
せて、冷却を早めつつ移動層の切出口3の移動に追従さ
せ、均一に冷却させ流量調節弁の調整は出口ガスの周囲
方向の温度を計測し、調節することも可能である。特に
、この実施例にあっては第2図に示す如く冷却塔1の底
部よりその中央の切出口3を中心として、冷却塔1内を
軸方向に分割する如く、冷却ガス吹込口13が形成され
ており、赤熱粒体移動層中に起る粒子分布の異変の大き
さに対処し得る。例えば移動層の断面積中、吹込用ウィ
ンドボックス14a,14b上に異変が起った場合には
この吹込ウインドボックス14a,14Mこ供給する冷
却ガス量を流量調節弁21,21aを作動させて、各冷
却ガス吹込ロー3からの吹出量を調節する。このように
、冷却ガスを赤熱粒体移動層中に吹き込み且つ向流させ
ることにより、移動層の移動断面積を均一に冷却するこ
とができる。
The cooling gas guided and supplied into the annular pipe 18 is subjected to ambient pressure,
It is supplied to each of the blowing wind boxes 14a, 14b, 14c... through the lotus pipe 19. This blowing wind box 14a...・….・.. * serves as a wind box, which maintains the cooling gas at a uniform gas pressure. Furthermore, by operating the flow rate control valve 21 provided for each inlet 13, the amount of cooling gas entering each inlet 13 from the blowing wind boxes 14a, 14b, 14c is changed, and the amount of cooling gas inlet 13 of the funnel-shaped passage 8 is changed. Cooling gas at a predetermined pressure is injected or blown out. In this way, the cooling gas is optionally blown into the moving layer c of the red-hot particles formed in the connecting body 1 from the bottom in multiple stages and from the circumferential direction over the entire inner cross-section, causing countercurrent flow. If a large particle distribution zone or part is formed in the moving layer c of red-hot particles,
The amount of cooling gas blown into the bottom blow-in port 13 at a position corresponding to the particle distribution is reduced by the flow rate control valves 21 and 21a, thereby delaying cooling and following the movement of the moving layer to achieve uniform cooling. On the other hand, if small particles, that is, a particle distribution zone or part with large ventilation resistance, is formed in the moving bed, the flow rate control valve 2 and 21a to speed up the cooling and follow the movement of the cutting port 3 of the moving bed to uniformly cool the flow rate.The flow rate control valve can also be adjusted by measuring the temperature in the surrounding direction of the outlet gas. be. In particular, in this embodiment, as shown in FIG. 2, cooling gas inlet ports 13 are formed from the bottom of the cooling tower 1 so as to divide the inside of the cooling tower 1 in the axial direction around the cutting port 3 in the center. It is possible to cope with the size of the abnormality in particle distribution that occurs in the red-hot particle moving bed. For example, if an abnormality occurs on the blowing wind boxes 14a, 14b in the cross-sectional area of the moving bed, the flow rate control valves 21, 21a are operated to adjust the amount of cooling gas supplied to the blowing wind boxes 14a, 14M. The blowing amount from each cooling gas blowing row 3 is adjusted. In this way, by blowing the cooling gas into the red-hot particle moving bed and causing it to flow counter-currently, the moving cross-sectional area of the moving bed can be uniformly cooled.

尚、第3図実施例においても、同様に各冷却ガス吹込口
13の冷却ガス量を流量調節弁21によって調節しつつ
、粒体移動層内に均一に吹き込みながら向流させること
ができる。
In the embodiment shown in FIG. 3 as well, the amount of cooling gas in each cooling gas inlet 13 can be similarly adjusted by the flow rate control valve 21, and countercurrent flow can be achieved while uniformly blowing into the particle moving bed.

以上の如く、本装置は冷却塔1の底部切出口の近傍にお
いて、赤熱粒体の移動層にその断面積に相応させて可変
的に冷却ガスを吹き込みつつ向流させることができるも
のであり、切出口3により粒体を完全に冷却させて外部
へ切り出すことができるものである。
As described above, this device is capable of blowing cooling gas variably into the moving bed of red-hot particles in a countercurrent manner in accordance with the cross-sectional area of the moving bed near the bottom outlet of the cooling tower 1, and The granules can be completely cooled through the cutting port 3 and then cut out to the outside.

〔発明の効果〕〔Effect of the invention〕

要するに本発明によれば、次のごとき優れた効果を発揮
する。
In short, according to the present invention, the following excellent effects are achieved.

【1} 冷却塔内に形成される赤熱粒体移動層に対して
均一な流れ分布に冷却ガスを吹き込みつつ同流させるこ
とができ、上記移動層の流れに追随させて順次冷却する
ことができ、もって連続的な冷却粒体の切り出しを可能
にしたものである。
[1] Cooling gas can be blown into the moving bed of red-hot particles formed in the cooling tower in a uniform flow distribution, and the moving bed can be sequentially cooled by following the flow of the moving bed. , which made it possible to continuously cut out the cooled granules.

■ また、ガス吹込口のそれぞれに流量調節弁を設ける
ことにより、吹込口からの冷却ガス流量を可変的に調節
することができ、また吹込口に吹き込み冷却ガスの控室
を形成し、均圧なガスを吹込口に供給し得るものである
■ In addition, by providing a flow rate control valve in each gas inlet, the flow rate of cooling gas from the inlet can be variably adjusted.Also, by forming a waiting chamber for the cooling gas blown into the inlet, the pressure can be equalized. It is capable of supplying gas to the inlet.

【31 冷却ガス吹込口から赤熱粒体が逆流することが
なく的確に冷却ガスを吹き出すことができる。
[31] Cooling gas can be accurately blown out from the cooling gas inlet without backflow of red-hot particles.

‘41 更に、構造が極めて簡単で且つ操作性に優れる
等の諸特長を発揮し、実用上の価値は頗る甚大である。
'41 Furthermore, it exhibits various features such as an extremely simple structure and excellent operability, and has enormous practical value.

図面の簡単な説明第1図は本発明の好適−実施例を示す
概略断面図、第2図は第1図のA−A線矢視図、第3図
は変形実施例を示す部分断面図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic sectional view showing a preferred embodiment of the present invention, FIG. 2 is a view taken along line A-A in FIG. 1, and FIG. 3 is a partial sectional view showing a modified embodiment. It is.

図中、1は冷却塔、8は漏斗状の通路、13は冷却ガス
吹込口、9は逆教頭円錐筒体、14は吹込用ウィンドボ
ックス、21,21aは流量調節弁である。
In the figure, 1 is a cooling tower, 8 is a funnel-shaped passage, 13 is a cooling gas inlet, 9 is an inverted conical cylinder, 14 is a wind box for blowing, and 21, 21a are flow rate control valves.

第1図 第2図 第3図Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 頂部に赤熱粒体装入口と、また底部に切出口を有す
る塔体内に赤熱粒体移動層を形成し、これに冷却ガスを
向流させて冷却する竪型乾式粒体冷却塔において、上記
塔体の底部に逆截頭円錐筒体を、その上方に位置される
逆截頭円錐筒体の下端開口部に下方に位置される逆截頭
円錐筒体の上端開口部内に所定の間隙を隔てて支持させ
て多段に積み重ねて、その周方向に沿って且つ上下方向
に多段に冷却ガス吹込口を有する漏斗状の通路を形成し
、該通路の外周部に上記冷却ガス吹込口をその周方向に
沿って複数個に分割する吹込用ウインドボツクスを形成
し、これら吹込用ウインドボツクスにそれぞれ流量調節
弁を介して冷却ガスで導入管を接続し且つ上記吹込用ウ
インドボツクス内に上下多段に形成された冷却ガス吹込
口にそれぞれ流量調節弁を設けたことを特徴とする竪型
乾式粒体冷却塔の冷却ガス吹込装置。
1. In a vertical dry granule cooling tower in which a red-hot granule moving bed is formed in the tower body having a red-hot granule charging inlet at the top and a cutting port at the bottom, and cooling gas is cooled by countercurrently flowing thereto, the above-mentioned An inverted truncated conical cylinder is provided at the bottom of the tower body, and a predetermined gap is provided in the lower end opening of the inverted truncated conical cylinder located above the inverted truncated conical cylinder and in the upper end opening of the inverted truncated conical cylinder located below. They are separated and supported and stacked in multiple stages to form a funnel-shaped passage having cooling gas inlet ports in multiple stages along the circumferential direction and in the vertical direction, and the cooling gas inlet ports are installed on the outer periphery of the passage. A blowing window box is formed which is divided into a plurality of pieces along the direction, an inlet pipe is connected to each of these blowing window boxes via a flow rate control valve with cooling gas, and the blowing window boxes are formed in multiple stages above and below within the blowing window box. 1. A cooling gas blowing device for a vertical dry granular cooling tower, characterized in that each cooling gas blowing port is provided with a flow control valve.
JP9630677A 1977-08-11 1977-08-11 Cooling gas blowing device for vertical dry granule cooling tower Expired JPS6011953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9630677A JPS6011953B2 (en) 1977-08-11 1977-08-11 Cooling gas blowing device for vertical dry granule cooling tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9630677A JPS6011953B2 (en) 1977-08-11 1977-08-11 Cooling gas blowing device for vertical dry granule cooling tower

Publications (2)

Publication Number Publication Date
JPS5430205A JPS5430205A (en) 1979-03-06
JPS6011953B2 true JPS6011953B2 (en) 1985-03-29

Family

ID=14161336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9630677A Expired JPS6011953B2 (en) 1977-08-11 1977-08-11 Cooling gas blowing device for vertical dry granule cooling tower

Country Status (1)

Country Link
JP (1) JPS6011953B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3000992C2 (en) * 1980-01-12 1982-08-12 Didier Engineering Gmbh, 4300 Essen Process for dry cooling of coke and apparatus for carrying out such a process
KR950013988B1 (en) * 1991-04-26 1995-11-20 돕빵 인사쯔 가부시끼가이샤 Dispenser for viscous material

Also Published As

Publication number Publication date
JPS5430205A (en) 1979-03-06

Similar Documents

Publication Publication Date Title
US11053611B2 (en) Oxidation furnace
CN102962461B (en) Metal injection molded continuous sintering furnace
CN106765275A (en) A kind of adjustable type differential pulverized coal distributor
JPS6011953B2 (en) Cooling gas blowing device for vertical dry granule cooling tower
US2766969A (en) Inter-deck soot blower
GB1465463A (en) Apparatus to control top pressure in a blast furnace and to clean and cool gases emanating therefrom
US2802280A (en) Heat-exchange apparatus including cyclone separators
JPH0396579U (en)
GB1505946A (en) Method and apparatus for separating lighter and heavier portions of threshed tobacco
CN205403507U (en) Vertical cooling furnace air feeder of sintering deposit
US2642338A (en) Method of and apparatus for producing nitric oxide
CN212199119U (en) Dry quenching furnace with multidirectional adjustable air distribution device
JPS5825383A (en) Cooling gas blowing device in dry coke quencher
US4121611A (en) Jet pipe for conducting hot gases
JPS5952360B2 (en) Vertical counterflow moving bed cooling system
CN215808528U (en) Water-cooling wind cap
US2062869A (en) Method of conducting chemical and metallurgical operations in a rotary furnace
US2048193A (en) Dry cooling of coke
US2763337A (en) Gas treating apparatus and method
US2222673A (en) Incineration
CN216770175U (en) Nitrogen-sealed water-cooling material pipe
JPS6122991Y2 (en)
JPS609073B2 (en) Gas distributor for dry cooling equipment for coke and other raw materials
US685911A (en) Apparatus for reheating compressed air for industrial purposes.
US2913237A (en) Apparatus for cooling finely divided materials