JPS60118289A - Water purifying method - Google Patents

Water purifying method

Info

Publication number
JPS60118289A
JPS60118289A JP58224413A JP22441383A JPS60118289A JP S60118289 A JPS60118289 A JP S60118289A JP 58224413 A JP58224413 A JP 58224413A JP 22441383 A JP22441383 A JP 22441383A JP S60118289 A JPS60118289 A JP S60118289A
Authority
JP
Japan
Prior art keywords
water
photo
titanium oxide
oxidation catalyst
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58224413A
Other languages
Japanese (ja)
Other versions
JPS6219240B2 (en
Inventor
Taro Yokotake
横竹 太郎
Mitsuo Mizuno
水野 光男
Yasuhiro Kobayashi
康裕 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giken Kogyo Co Ltd
Original Assignee
Giken Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giken Kogyo Co Ltd filed Critical Giken Kogyo Co Ltd
Priority to JP58224413A priority Critical patent/JPS60118289A/en
Publication of JPS60118289A publication Critical patent/JPS60118289A/en
Publication of JPS6219240B2 publication Critical patent/JPS6219240B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To efficiently decompose and remove the pollution substance in waste water, by irradiating water to be treated containing the pollution substance with ultraviolet rays in the presence of a photo-oxidation catalyst, which is obtained by baking an inorg. material molded body having organotitanate adhered thereto. CONSTITUTION:A flat plate shaped photo-oxidation catalyst molded body 2 coated with titanium oxide or titanium oxide supporting platinum is put in a reaction tank 3 and a light source 1 is arranged above said tank 3. The light source 1 emits light with a wavelength of about 420nm or less. For example, a high pressure mercury lamp, a low pressure mercury lamp or a black lamp is used. Water to be treated enters the reaction tank 3 from a water introducing port 6 by a pump 7 and air or oxygen is introduced into said tank 3 by an air diffusing tank 4 while water to be treated is irradiated with the light source 1 to oxidize impurities therein in the presence of the photo-oxidation catalyst and discharged from a discharge port 5 as treated water. If necessary, waste water is reciaculated to the reaction tank 3 by the pump 7.

Description

【発明の詳細な説明】 本発明は、被処理水中に含まれている汚染物質を、溶存
酸素存在下で、光酸化触媒の存在下において紫外線を照
射し汚染物質を分解除去する。水の浄化方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention decomposes and removes pollutants contained in water to be treated by irradiating them with ultraviolet rays in the presence of dissolved oxygen and a photo-oxidation catalyst. Concerning water purification methods.

と瓦に本発明による分解除去の対象とする物質は水に溶
解している有機成分であって1通常C0DCr(化学的
酸素要求量)値で表示される物質を主体とする。
The substances targeted for decomposition and removal according to the present invention are organic components dissolved in water and are usually expressed as CODCr (Chemical Oxygen Demand) values.

従来、排水規制に基〈汚水処理や排水の再利用のため、
凝集沈澱法や生物処理法等が普及しているが、さらに高
度な浄化処理技術がめられている。高度浄化処理すべき
対象の中で、溶解性有機物の除去は最も困難なもののひ
とつであり、従来は活性炭吸着、膜透過、オゾン酸化等
による除去法が行われてきたが、最近は光酸化による除
去法も開発されつつある。
Traditionally, based on wastewater regulations (for sewage treatment and wastewater reuse),
Coagulation-sedimentation methods, biological treatment methods, etc. are popular, but more advanced purification technology is being sought. Removal of soluble organic matter is one of the most difficult targets to undergo advanced purification treatment. Conventionally, removal methods such as activated carbon adsorption, membrane permeation, and ozone oxidation have been used, but recently, photo-oxidation has been used to remove soluble organic matter. Removal methods are also being developed.

活性炭吸着法は最も一般的に広く実用化されている方法
であるが、溶解性有機物の分子量が100〜10.00
0程度の場合には実用上問題はないが、比較的低分子の
飽和化合物やフミン酸のような高分子化合物に対しては
吸着容量が小さく、除去を完全に行なうためには大量の
活性炭が必要になり、実際に実行しようとすると莫大な
費用がか〜り不経済となる。膜透過法は消費エネルギー
が小さく優れた処理法であるが、アルコールのような親
水性の低分子化合物は除去しにく\、透過膜の目づまり
および微生物繁殖による膜の劣化、あるいは膜成分の溶
出等の難点を有している。オゾン酸化法は溶解性有機物
が炭酸ガスや水まで完全に酸化されないことから、追加
の処理が必要となる。ノ〜ロデン系酸化剤−1例えば次
亜塩素酸ソーダを併用した光酸化法は、発癌性があると
いわれているトリハロメタンを生成すると同時に、処理
水中に塩素イオンやナトリウムイオン等を増加させる結
果となり好ましくない。最近、上記のような欠点のない
、新しtツ洒染物質除去法として、光酸化触媒を使用す
る方法が開発されつ匁ある。この光酸化法は被処理水中
に含1れる、汚染物質を分解除去するのに十分な溶存酸
素の存在下で、酸化チタン粒子、あるいは白金族金属を
担持した酸化チタン粒子からなる光酸化触媒に、紫外線
を照射しながら接触通水することによって行なわれる。
The activated carbon adsorption method is the most common and widely used method, but when the molecular weight of soluble organic matter is 100 to 10.00,
If it is around 0, there is no practical problem, but the adsorption capacity is small for relatively low-molecular saturated compounds and high-molecular compounds such as humic acid, and a large amount of activated carbon is required to completely remove them. If this becomes necessary and it is actually attempted to implement it, it will be extremely expensive and uneconomical. Although the membrane permeation method is an excellent treatment method with low energy consumption, it is difficult to remove hydrophilic low-molecular compounds such as alcohol, and it may clog the permeable membrane and cause deterioration of the membrane due to microbial growth, or the loss of membrane components. It has problems such as elution. Since the ozone oxidation method does not completely oxidize soluble organic matter to carbon dioxide gas and water, additional treatment is required. No-Rhoden-based oxidizing agent-1 For example, the photo-oxidation method that uses sodium hypochlorite in combination produces trihalomethane, which is said to be carcinogenic, and at the same time results in an increase in chlorine ions, sodium ions, etc. in the treated water. Undesirable. Recently, a method using a photo-oxidation catalyst has been developed as a new method for removing dyed substances without the above-mentioned drawbacks. This photo-oxidation method uses a photo-oxidation catalyst consisting of titanium oxide particles or titanium oxide particles supporting platinum group metals in the presence of sufficient dissolved oxygen to decompose and remove pollutants contained in the water to be treated. This is done by contact water passage while irradiating ultraviolet rays.

光酸化法による汚染物質の除去法においては、光エネル
ギーによって光酸化触媒の表面に正孔と電子を生じさせ
、その正孔と電子の反応によって、生成した酸化能に富
むヒドロギゾルラジカル、スパーオキシド(0?)が汚
染物質を酸化する反応を利用したものであるから、従来
法のように汚染物質を酸化分解するための酸化剤を加え
ることなく汚染物質を酸化分解して、無害な炭酸ガスや
水に変えることができる。使用する触媒は酸化チタンと
白金族金属とから構成されているため水に不溶であり、
従来の酸化法のように酸化剤の分解生成物が残存するこ
となく、溶存酸素を含む被処理水を、紫外線照射下で、
光酸化触媒粒子に接触させるだけで汚染物質の除去が可
能となる。従って水の浄化方法としては極めて有利な方
法である。このことから、これまでに光酸化触媒を用い
た水の浄化方法がいくつか提案されているが、提案され
た方法における光酸化触媒の使用形態は粉末である。こ
れは前述したように光酸化触媒の表面において紫外線照
射によって生じた電子と正孔の再結合の割合を少なくす
るためである。つ1り光酸化触媒を粉末にすることによ
って、有機物の酸化効率が大巾に増加するためである。
In the photo-oxidation method for removing pollutants, holes and electrons are generated on the surface of a photo-oxidation catalyst using light energy, and the reaction between the holes and electrons generates hydrogizol radicals and spar, which are rich in oxidizing ability. Because Oxide (0?) utilizes the reaction that oxidizes pollutants, the pollutants are oxidized and decomposed into harmless carbon dioxide without adding an oxidizing agent to oxidize and decompose pollutants as in conventional methods. It can be converted into gas or water. The catalyst used is insoluble in water because it is composed of titanium oxide and platinum group metal.
Unlike conventional oxidation methods, the water to be treated containing dissolved oxygen is irradiated with ultraviolet rays without leaving any decomposition products of the oxidizing agent.
Contaminants can be removed simply by contacting with photo-oxidation catalyst particles. Therefore, it is an extremely advantageous method for purifying water. For this reason, several water purification methods using photo-oxidation catalysts have been proposed, but the photo-oxidation catalyst used in the proposed methods is in the form of powder. This is to reduce the rate of recombination of electrons and holes generated by ultraviolet irradiation on the surface of the photo-oxidation catalyst as described above. This is because by turning the photooxidation catalyst into powder, the oxidation efficiency of organic matter is greatly increased.

従って使用する光酸化触媒の粉末が細かければ細かいほ
ど酸化効率が良いといえる。
Therefore, it can be said that the finer the powder of the photo-oxidation catalyst used, the better the oxidation efficiency.

しかしながら、従来の方法によって水の浄化に酸化チタ
ン粉末を使用する場合は、水を浄化したのちの水と光酸
化触媒との分離に問題があシ、分離2回収が困難である
。酸化チタン、白金族金属は高価であり、水の浄化を経
済的に行なうためには触媒の回収、再使用が不可欠であ
るが、光酸化触媒が粉末である場合はその完全な回収・
再使用は不可能であり、実用上大きな難点となることが
認められた。
However, when titanium oxide powder is used to purify water by the conventional method, there are problems in separating the water and the photo-oxidation catalyst after purifying the water, and separation and recovery are difficult. Titanium oxide and platinum group metals are expensive, and recovery and reuse of the catalyst is essential for economical water purification. However, if the photooxidation catalyst is a powder, it is impossible to completely recover and reuse it.
It was recognized that reuse was impossible and would be a major practical difficulty.

本発明は上記に鑑みてなされたものであシ、汚染物質を
含む排水を、十分な溶存酸素の存在下、紫外線を照射し
、光酸化触媒によって汚染物質を除去するとき光酸化触
媒を成形体の形として使用し、使用後における光酸化触
媒の分離1回収操作を必要としない水の浄化方法を提供
するものである。
The present invention has been made in view of the above, and provides a method for removing pollutants by irradiating wastewater containing pollutants with ultraviolet rays in the presence of sufficient dissolved oxygen using a photo-oxidation catalyst. The purpose of the present invention is to provide a water purification method that does not require separation and recovery of the photo-oxidation catalyst after use.

以下本発明による水の浄化方法について説明する。酸化
チタンを触媒として使用するとき、粉末であることの欠
点を回避するためには酸化チタンを成形体とすればよい
が、酸化チタンは低温においては粒子間の焼結が起り難
いため充分な機械的強度を有する成形体を得ることが困
難であり、逆に高温で焼結すると機械的強度のある成形
体を得ることは出来るが有効な光触媒活性が得られなく
なる。本発明者等は酸化チタン光酸化触媒の欠点を克服
すべく鋭意研究を行った結果、酸化チタンを後述の無機
材料からなる成形体表面に後述の方法で強固に付着させ
、高い光触媒活性を有する成形体が得られることを見出
し、この光酸化触媒を使用すれば排水中の汚染物質が能
率よく除去できることを確めた。
The water purification method according to the present invention will be explained below. When using titanium oxide as a catalyst, it is possible to form the titanium oxide into a compact in order to avoid the disadvantages of being a powder, but since titanium oxide does not easily cause sintering between particles at low temperatures, it cannot be It is difficult to obtain a molded body with mechanical strength, and on the other hand, if sintered at a high temperature, a molded body with mechanical strength can be obtained, but effective photocatalytic activity cannot be obtained. The present inventors conducted extensive research to overcome the drawbacks of titanium oxide photooxidation catalysts, and as a result, titanium oxide was firmly attached to the surface of a molded product made of an inorganic material using the method described below, and the result was a high photocatalytic activity. It was discovered that a molded body could be obtained, and it was confirmed that pollutants in wastewater can be efficiently removed by using this photooxidation catalyst.

!1−料はガラス、アルミナ、シリカ、酸化チタン、ム
ライト、コージライトの中から選ばれたいずれかを主体
とし、これらを単独もしくは混合物として使用し、少量
の結合材を加えて成形、焼結して成形体とする。“成形
体は平板状2円筒状。
! 1-The material is mainly one selected from glass, alumina, silica, titanium oxide, mullite, and cordierite, and these are used alone or as a mixture, and a small amount of binder is added, then molded and sintered. and form a molded body. “The molded body has a flat plate and two cylindrical shapes.

円柱状等任意の形状を選び、かつ多孔質とするか若しく
は表面に凹凸を設は光照射部表面積の大きいもので、用
いる装置に適合し、光照射面積が効率的に利用できるよ
うな形のものとすることが好ましい。なお、無機材料と
しては上記のほか、長石、粘土質等よりなる陶器、電解
用素焼隔膜、屋根ガラス等の土器、レンガ、タイル等の
拓器類も有機チタネートが付着すれば使用可能である。
Choose any shape such as cylindrical, and make it porous or have an uneven surface so that the surface area of the light irradiation area is large, and the shape is compatible with the equipment used and allows for efficient use of the light irradiation area. It is preferable that In addition to the above-mentioned inorganic materials, pottery made of feldspar, clay, etc., unglazed diaphragms for electrolysis, earthenware such as roof glass, and pottery such as bricks and tiles can also be used if organic titanates are attached to them.

光酸化触媒は上記の無機材料成形体表面に有機チタネー
トを付着させ、一定の焼成条件で処理し酸化チタンとし
、必要な場合は更に白金族金属を担持させることによっ
て得られる。次にその製法を詳述する。無機材料表面に
付着させる有機チタネートはアルキルチタネート、アリ
ルチタネート。
The photooxidation catalyst can be obtained by attaching an organic titanate to the surface of the above-mentioned inorganic material molding, treating it under certain firing conditions to form titanium oxide, and further supporting a platinum group metal if necessary. Next, the manufacturing method will be explained in detail. The organic titanates that are attached to the surface of inorganic materials are alkyl titanates and allyl titanates.

チタンアンレート、チタンキレートで、これらの中から
選ばれたいずれかの1種もしくは2種以上を混合物とし
て使用する。これらチタネートはメタノール、エタノー
ル、プロパツール、ブタノール、ベンゼン、トルエン、
ヘキサン、四m化炭J。
Among titanium anlate and titanium chelate, one or more selected from these are used as a mixture. These titanates include methanol, ethanol, propatool, butanol, benzene, toluene,
Hexane, tetramerized carbon J.

メチルクロロホルム、酢酸等の希釈剤にとかし溶液とし
、またジヒドロキシビス(ラクタト)チタンモノアンモ
ニウム塩のようなチタンキレートを使用する場合は水を
希釈剤として水溶液とし、成形体表面に付着させる。付
着きせる方法としては成形体を有機チタネート溶液に浸
漬して取出す方法、刷子等で有機チタネート溶液を塗布
する方法。
It is dissolved in a diluent such as methyl chloroform or acetic acid to form a solution, and when a titanium chelate such as dihydroxybis(lactato)titanium monoammonium salt is used, water is used as a diluent to form an aqueous solution and the solution is applied to the surface of the molded article. The method of adhesion is to immerse the molded body in an organic titanate solution and take it out, or to apply the organic titanate solution with a brush or the like.

あるいはスプレーで噴霧する方法等をとることができる
。有機チタネートを付着量せた無機材料成形体は100
C〜110Cで乾燥後、酸化性ガス雰囲気下で、焼成温
度350C〜700Cの範囲、好1しくは400C〜5
00Cの範囲で焼成処理をする。その結果、有機チタネ
ートが酸化分解されて、高い光酸化触媒活性を有する酸
化チタンで覆われた成形体が得られる。焼成温度として
は350Cより光酸化触媒活性を有する酸化チタンが得
られはじめ。
Alternatively, a method such as spraying can be used. The inorganic material molded body with a deposited amount of organic titanate is 100
After drying at C to 110C, the firing temperature is in the range of 350C to 700C, preferably 400C to 5C in an oxidizing gas atmosphere.
Firing treatment is performed in the range of 00C. As a result, the organic titanate is oxidatively decomposed and a molded body covered with titanium oxide having high photooxidation catalytic activity is obtained. Titanium oxide with photooxidation catalytic activity begins to be obtained at a firing temperature of 350C.

700C以上の高温では光酸化触媒活性が失われる。At high temperatures of 700C or higher, photooxidation catalyst activity is lost.

なお、無機材料表面への有機チタネートの被覆量が多い
と、乾燥あるいは焼成過程でひび割れを生じて成形体表
面から剥離する恐れがあるので、これを防ぐために1回
当りの有機チタネートの被覆量を少なくして、すなわち
、有機チタネートの被覆−乾燥−焼成処理を必要な回数
だけ繰り返すことによって、希望する酸化チタンの膜厚
に調製する。と〜に得られた酸化チタンを付着した成形
体でも水の浄化用光酸化触媒成形体として十分使用でき
るが、この酸化チタン表面に白金族金属を担持すること
により更に効率の良い光酸化触媒成形体が得られる。担
持する金属として白金、パラジウム、ロジウム、ルテニ
ウム等の中から選ばれたいずれかの1種もしくは2種以
上の混合物が使用できる。これらの金属を酸化チタンを
付着した成形体に担持させる方法としては、これら金属
を水溶性無機化合物の形で含有する水溶液の中に、成形
体を浸漬した状態で紫外線を照射することによって金属
を担持させる方法、あるいは還元剤を加えて金属を担持
させる方法等によって行なう。
In addition, if the amount of organic titanate coated on the surface of the inorganic material is large, cracks may occur during the drying or firing process and there is a risk of peeling from the surface of the molded product. In other words, by repeating the organic titanate coating-drying-baking process as many times as necessary, the desired thickness of the titanium oxide film can be obtained. Although the titanium oxide-attached molded product obtained in and can be used satisfactorily as a photo-oxidation catalyst molded product for water purification, even more efficient photo-oxidation catalyst molding can be achieved by supporting platinum group metals on the surface of this titanium oxide. You get a body. As the supported metal, one selected from platinum, palladium, rhodium, ruthenium, etc. or a mixture of two or more thereof can be used. A method for supporting these metals on a molded body to which titanium oxide is attached is to immerse the molded body in an aqueous solution containing these metals in the form of a water-soluble inorganic compound and irradiate the metal with ultraviolet rays. This is carried out by a method of supporting the metal, or a method of adding a reducing agent to support the metal.

金属担持の主なる目的は紫外線の照射により酸化チタン
の表面に生成した電子と正孔の再結合を防ぐことにある
。光照射面積に対する金属の被覆率を小さく、そして単
位光照射面積における金属のスポット数が大きいほど光
酸化触媒活性が高くなる。それ故、金属の付着量および
付着状態をコントロールしつ〜金属を担持させる。金帆
の量は酸化チタンに対し0.01 wt 4〜1wt%
である。
The main purpose of supporting metal is to prevent recombination of electrons and holes generated on the surface of titanium oxide by ultraviolet irradiation. The smaller the coverage ratio of metal to the light irradiation area and the larger the number of metal spots per unit light irradiation area, the higher the photooxidation catalyst activity. Therefore, the amount and state of the metal deposited are controlled and the metal is supported. The amount of gold fan is 0.01 wt 4-1 wt% relative to titanium oxide
It is.

図は本発明の光酸化触媒を使用する水の浄化装置の基本
的概念を説明する図である。
The figure is a diagram explaining the basic concept of a water purification device using the photo-oxidation catalyst of the present invention.

反応槽3に酸化チタンあるいは白金担持酸化チタンで被
覆した平板状光酸化触媒成形体2があり、その上部に光
源1を設置する。光源は波長がおよそ420部m以下の
光を発する例えば高圧水銀灯、低圧水銀灯、ブラックラ
ンプ、キセノンランプ等であり、太陽光も光源として使
用可能である。光源を浸漬した状態で用いる場合は光源
の保護のため石英管に挿入して用いる。高圧水銀灯を使
用する場合はパイレックスガラス等も使用できる。被処
理水はポンプ7により導入口6より反応槽3に入り、散
気管4により空気又は酸素が導入され、光源1によって
照射され、光酸化触媒により不純物が酸化され、処理水
として排水口5より排出される。必要に応じて排水は再
びボンシフにより反応槽3に循環される。
A reaction tank 3 has a flat photooxidation catalyst molded body 2 coated with titanium oxide or platinum-supported titanium oxide, and a light source 1 is installed above it. The light source may be a high-pressure mercury lamp, a low-pressure mercury lamp, a black lamp, a xenon lamp, etc. that emit light with a wavelength of about 420 parts m or less, and sunlight can also be used as a light source. When using the light source in a immersed state, insert it into a quartz tube to protect the light source. When using a high-pressure mercury lamp, Pyrex glass can also be used. The water to be treated enters the reaction tank 3 through the inlet 6 by the pump 7, air or oxygen is introduced through the aeration pipe 4, is irradiated by the light source 1, impurities are oxidized by the photo-oxidation catalyst, and the water is discharged as treated water through the drain port 5. be discharged. If necessary, the waste water is circulated to the reaction tank 3 again by Bonschiff.

この方式の水の浄化方法によれば、酸化チタンは粉状で
ないため、分離したり回収したりする必要はなく、成形
体に固く付着しているため長期間使用しても脱落するこ
とがなく、高活性の酸化能力な維持できるので能率よく
汚染水の処理が可能となり、又照射光として紫外線を含
む光源を照射すれば、カビ、バクテリヤ、ウィルス等の
殺菌処理も同時に行なえるのでその効果は極めて大きい
According to this method of water purification, titanium oxide is not in powder form, so there is no need to separate or recover it, and because it is firmly attached to the molded object, it will not fall off even after long-term use. Since it maintains a highly active oxidizing ability, it is possible to efficiently treat contaminated water, and if a light source containing ultraviolet light is used as the irradiation light, it can also sterilize mold, bacteria, viruses, etc. at the same time, so the effect is Extremely large.

以下に実施例を示す。Examples are shown below.

実施例1 ガラス板5×5crnをジーインゾロボキシ、ビス(ア
セチルアセトナタ)チタン10部、インプロピルアルコ
ール90部、メタノール200部からなる混合溶液に浸
漬し、ついで取出し110Cで30分間乾燥後、酸素雰
囲気下で500Cで30分間焼成を行なうことによって
、酸化チタンを被覆したガラス板を得た。ついで硝酸パ
ラジウム水溶液に浸漬したのち、還元剤としてアスコル
ビン酸を加えて加温処理を行なってパラジウムを担持し
た。
Example 1 A 5×5 crn glass plate was immersed in a mixed solution consisting of 10 parts of di-inzoloboxy, bis(acetylacetonata) titanium, 90 parts of inpropyl alcohol, and 200 parts of methanol, then taken out and dried at 110C for 30 minutes. A glass plate coated with titanium oxide was obtained by firing at 500C for 30 minutes in an oxygen atmosphere. After immersing it in an aqueous palladium nitrate solution, ascorbic acid was added as a reducing agent and a heating treatment was performed to support palladium.

このようにして得られた光酸化触媒をデキストラン溶液
100 ml((、’0Dcr濃度5omp、’z)と
ともに反応槽に入れ、酸素を吹き込みなから100Wの
高圧水銀灯を12時間照射した。その結果C0Dcr 
@度は14mg/lであった。
The photooxidation catalyst thus obtained was placed in a reaction tank together with 100 ml of dextran solution ((,'0Dcr concentration 5omp,'z), and after oxygen was blown in, it was irradiated with a 100W high-pressure mercury lamp for 12 hours. As a result, C0Dcr
The concentration was 14 mg/l.

実施例2 表面にガラスをコーティングしたアルミナからなる直径
4.3cm、厚さ4mm、長さ20.0 fflの多孔
性円筒形成形体(商品名ケラミツイルター)をインプロ
ピルチタネート30音1(、インゾロビルアルコール1
30部、および酢酸1()部からなる混合溶液に浸漬し
、ついで取出し110Cで1時間乾燥後、空気雰囲気下
で400Cで5時間焼成を行なうことによって、酸化チ
タンを被覆した成形体を得た。その〜後超音波洗浄な行
なって付着強度の弱い酸化チタンを除去し、次いで酢酸
、酢酸ナトリウムおよび塩化白金酸を含む水溶液中に、
酸化チタンを被覆した成形体を浸漬した状態で、内部か
ら100 Wの高圧水銀灯を用いて照射し、白金を担持
した。
Example 2 A porous cylindrical body (trade name: Kerami Tsuilter) made of alumina coated with glass and having a diameter of 4.3 cm, a thickness of 4 mm, and a length of 20.0 ffl was injected with inpropyl titanate 30 to 1 (in-propyl titanate). Zorobil alcohol 1
A molded body coated with titanium oxide was obtained by immersing it in a mixed solution consisting of 30 parts and 1 part of acetic acid, taking it out, drying it at 110C for 1 hour, and firing it at 400C in an air atmosphere for 5 hours. . After that, ultrasonic cleaning was performed to remove titanium oxide with weak adhesion strength, and then in an aqueous solution containing acetic acid, sodium acetate, and chloroplatinic acid.
While the titanium oxide-coated molded body was immersed, it was irradiated from inside using a 100 W high-pressure mercury lamp to support platinum.

このようにして得られた光酸化触媒成形体を再び超音波
洗浄を行ったのちデキストラン溶液500w (cut
)cr43my/l )とともに反応槽に入れ、空気を
吹き込みながら100Wの高圧水銀灯を6時間照射した
。その結果、C0Dcr濃度は7 rn9/lまで減少
した。またこのとき炭酸ガスの発生が認められた。
The thus obtained photo-oxidation catalyst molded body was again subjected to ultrasonic cleaning, and then 500w of dextran solution (cut
) cr43my/l) and irradiated with a 100W high-pressure mercury lamp for 6 hours while blowing air. As a result, the C0Dcr concentration decreased to 7 rn9/l. At this time, generation of carbon dioxide gas was also observed.

実施例3 実施例2で使用した光酸化触媒成形体を使って各種の有
機物な含む水溶液500 mを反応槽の中で空気を吹き
込みなから6Wの紫外線殺菌灯を用いて光照射した。そ
の結果を下表に示した。
Example 3 Using the photo-oxidation catalyst molded body used in Example 2, 500 m of an aqueous solution containing various organic substances was irradiated with light using a 6W ultraviolet germicidal lamp after air was blown into a reaction tank. The results are shown in the table below.

秦花王石鹸(株)台所用洗剤〔商品名チェリーナ〕実施
例4 ムライト(2Az2o3・5Si02)からなる直径4
.0crnl 厚さ5m、の円形成形体をヒドロキシチ
タンステアレート20部、フェニルチタネート10部。
Hata Kao Soap Co., Ltd. kitchen detergent [trade name Cerina] Example 4 Diameter 4 made of mullite (2Az2o3・5Si02)
.. 0crnl 20 parts of hydroxytitanium stearate and 10 parts of phenyl titanate were prepared into a circular molded body having a thickness of 5 m.

トルエン130部からなる混合溶液に浸漬し、ついで取
出し110Cで1時間乾燥体、空気雰囲気下で500C
で1時間焼成を行なうことによって、酸化チタンを被覆
した成形体を得た。この成形体を光酸化触媒としてデキ
ストラン溶液100 mJ (COpcr40mf//
l、)とともに反応槽に入れ、空気を吹き込みながら1
00Wの高圧水銀灯を15時間照射した。
The body was immersed in a mixed solution consisting of 130 parts of toluene, then taken out and dried at 110C for 1 hour, and then dried at 500C in an air atmosphere.
A molded body coated with titanium oxide was obtained by firing for 1 hour. Using this molded body as a photo-oxidation catalyst, 100 mJ of dextran solution (COpcr40mf//
1,) into a reaction tank, and while blowing air
The sample was irradiated with a 00W high-pressure mercury lamp for 15 hours.

その結果、C0Dcr濃度は20 m9/lまで減少し
た。
As a result, the C0Dcr concentration decreased to 20 m9/l.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の光酸化触媒な使用する水の浄化装置の基
本概念説明図である。 l・・・光源、2・・・光酸化触媒、3・・・反応槽、
4・・・散気管、5・・・排水口、6・・・導入口、7
・・・ポンプ。 特許出願人 技研興業株式会社 代理人弁理士 秦野拓也 ==工≠エエエユ 廿 ■ 抄
The drawing is an explanatory diagram of the basic concept of the water purification device using the photo-oxidation catalyst of the present invention. l... light source, 2... photo-oxidation catalyst, 3... reaction tank,
4... Diffuser pipe, 5... Drain port, 6... Inlet port, 7
···pump. Patent Applicant Giken Kogyo Co., Ltd. Representative Patent Attorney Takuya Hadano

Claims (1)

【特許請求の範囲】 八 汚染物質を含む被処理水に、光酸化触媒の存在下、
紫外線もしくは紫外線を含む光を照射し、汚染物質を酸
化除去する方法において、無機材料よりなる成形体表面
に、有機チタネートを付着せしめたのち、焼成処理して
当該成形体表面に酸化チタンを形成させ、もしくは更に
上記酸化チタンに白金族金属を担持して得られた光酸化
触媒を使用して、汚染物質を酸化除去することを特徴と
する水の浄化方法。 コ、前記有機チタネートはアルキルチタネート。 了りルチタネート、チタンアシレート、チタンキレート
の中から選ばれた、いずれかの1種もしくは2種以上の
混合物である%特許請求の範囲第1項記載の水の浄化方
法。 3、前記焼成処理が酸化性ガス雰囲気下で、焼成温度3
50C〜700Cの範囲でおこなわれる、特許請求の範
囲第1項記載の水の浄化方法。 ゲ、前記白金族金属は白金、パラジウム、ロジウム、ル
テニウムの中から選ばれた、いずれかの1種もしくは2
種以上の混合物である、特許請求の範囲第1項記載の水
の浄化方法。 り、前記無機材料よりなる成形体はガラス、アルミナ、
シリカ、酸化チタン、ムライト、コージライトの中から
選ばれたいずれかを主体とし、これらを単独もしくは混
合物とし、少量の結合材を加えて成形、焼結した成形体
である特許請求の範囲第1項記載の水の浄化方法。
[Claims] 8. Water to be treated containing pollutants in the presence of a photo-oxidation catalyst,
In the method of oxidizing and removing contaminants by irradiating ultraviolet rays or light containing ultraviolet rays, organic titanate is attached to the surface of a molded object made of an inorganic material, and then titanium oxide is formed on the surface of the molded object by firing treatment. or further, a method for purifying water, characterized in that pollutants are oxidized and removed using a photo-oxidation catalyst obtained by supporting a platinum group metal on titanium oxide. K. The organic titanate is an alkyl titanate. The water purification method according to claim 1, wherein the water purification method is one or a mixture of two or more selected from among rutitanate, titanium acylate, and titanium chelate. 3. The firing process is performed in an oxidizing gas atmosphere at a firing temperature of 3.
The water purification method according to claim 1, which is carried out at a temperature in the range of 50C to 700C. Ge, the platinum group metal is one or two selected from platinum, palladium, rhodium, and ruthenium.
The method for purifying water according to claim 1, which is a mixture of more than one species. The molded body made of the inorganic material is glass, alumina,
The first claim is a molded body made of one selected from silica, titanium oxide, mullite, and cordierite, either singly or as a mixture, molded and sintered with the addition of a small amount of binder. Water purification method described in section.
JP58224413A 1983-11-30 1983-11-30 Water purifying method Granted JPS60118289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58224413A JPS60118289A (en) 1983-11-30 1983-11-30 Water purifying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58224413A JPS60118289A (en) 1983-11-30 1983-11-30 Water purifying method

Publications (2)

Publication Number Publication Date
JPS60118289A true JPS60118289A (en) 1985-06-25
JPS6219240B2 JPS6219240B2 (en) 1987-04-27

Family

ID=16813377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58224413A Granted JPS60118289A (en) 1983-11-30 1983-11-30 Water purifying method

Country Status (1)

Country Link
JP (1) JPS60118289A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193696A (en) * 1986-02-20 1987-08-25 Nomura Micro Sci Kk Production of extremely pure water
JPS63104696A (en) * 1986-10-22 1988-05-10 アクアフアイン・コ−ポレイシヨン Device and method for conditioning water
JPS63248443A (en) * 1987-04-01 1988-10-14 Agency Of Ind Science & Technol Photooxidation catalyst and its production
JPH01189322A (en) * 1988-01-22 1989-07-28 Hitachi Ltd Deodorizing device
JPH02500258A (en) * 1987-07-27 1990-02-01 ウイスコンシン アラムニ リサーチ ファンデーション Method for decomposing organic chemicals using titanium ceramic membrane
JPH02501543A (en) * 1988-03-02 1990-05-31 トラステイーズ・オブ・ボストン・ユニバーシテイ Catalytic process for decomposing organic substances in aqueous and organic liquids to yield environmentally compatible products
EP0430370A2 (en) * 1989-12-01 1991-06-05 ENIRICERCHE S.p.A. Process for purifying contaminated soil
US5032241A (en) * 1987-09-04 1991-07-16 Nutech Energy Systems Inc. Fluid purification
WO1996000190A1 (en) * 1994-06-27 1996-01-04 Ronald William Arthur Method and apparatus for photocatalytic oxidation of water-borne chemical species
US5541096A (en) * 1993-07-12 1996-07-30 Ishihara Sangyo Kaisha, Ltd. Photocatalyst and process for purifying water with same
KR20000072137A (en) * 1999-08-14 2000-12-05 김영웅 apparatus for purification of contaminated water by using rotating member coated with titanium dioxide thin film
KR20010067693A (en) * 2001-03-08 2001-07-13 김현용 Air floatation type photocatalytic water treatment system
KR100392070B1 (en) * 2000-11-27 2003-07-23 주식회사 미래엔지니어링 A waste-water Treatment system using titanium dioxide as catalyst which immobilized with Sol-gel method
JP2005238174A (en) * 2004-02-27 2005-09-08 Fuji Silysia Chemical Ltd Humic substance removing agent, humic substance removing method and water clalification method
JP2006159028A (en) * 2004-12-03 2006-06-22 The Inctec Inc Dispersion and coating liquid
US8109923B2 (en) 2005-12-13 2012-02-07 The Invention Science Fund I, Llc Osmotic pump with remotely controlled osmotic pressure generation
US8172833B2 (en) 2005-11-09 2012-05-08 The Invention Science Fund I, Llc Remote control of substance delivery system
US8273071B2 (en) 2006-01-18 2012-09-25 The Invention Science Fund I, Llc Remote controller for substance delivery system
US8349261B2 (en) 2006-03-09 2013-01-08 The Invention Science Fund, I, LLC Acoustically controlled reaction device
US8906000B2 (en) 2005-11-09 2014-12-09 The Invention Science Fund I, Llc Injectable controlled release fluid delivery system
US8968274B2 (en) 2005-11-09 2015-03-03 The Invention Science Fund I, Llc Acoustically controlled substance delivery device
US9067047B2 (en) 2005-11-09 2015-06-30 The Invention Science Fund I, Llc Injectable controlled release fluid delivery system
US9254256B2 (en) 2005-11-09 2016-02-09 The Invention Science Fund I, Llc Remote controlled in vivo reaction method
CN105439241A (en) * 2016-01-06 2016-03-30 江苏大学 Waste water treatment device based on thin-layer water film ultraviolet-light-catalyzed waste water

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193696A (en) * 1986-02-20 1987-08-25 Nomura Micro Sci Kk Production of extremely pure water
JPS63104696A (en) * 1986-10-22 1988-05-10 アクアフアイン・コ−ポレイシヨン Device and method for conditioning water
JPS63248443A (en) * 1987-04-01 1988-10-14 Agency Of Ind Science & Technol Photooxidation catalyst and its production
JPH02500258A (en) * 1987-07-27 1990-02-01 ウイスコンシン アラムニ リサーチ ファンデーション Method for decomposing organic chemicals using titanium ceramic membrane
US5032241A (en) * 1987-09-04 1991-07-16 Nutech Energy Systems Inc. Fluid purification
JPH01189322A (en) * 1988-01-22 1989-07-28 Hitachi Ltd Deodorizing device
JP2574840B2 (en) * 1988-01-22 1997-01-22 株式会社日立製作所 Deodorizing device
JPH0569597B2 (en) * 1988-03-02 1993-10-01 Torasuteiizu Obu Bosuton Univ
JPH02501543A (en) * 1988-03-02 1990-05-31 トラステイーズ・オブ・ボストン・ユニバーシテイ Catalytic process for decomposing organic substances in aqueous and organic liquids to yield environmentally compatible products
EP0430370A2 (en) * 1989-12-01 1991-06-05 ENIRICERCHE S.p.A. Process for purifying contaminated soil
US5541096A (en) * 1993-07-12 1996-07-30 Ishihara Sangyo Kaisha, Ltd. Photocatalyst and process for purifying water with same
WO1996000190A1 (en) * 1994-06-27 1996-01-04 Ronald William Arthur Method and apparatus for photocatalytic oxidation of water-borne chemical species
KR20000072137A (en) * 1999-08-14 2000-12-05 김영웅 apparatus for purification of contaminated water by using rotating member coated with titanium dioxide thin film
WO2001012562A1 (en) * 1999-08-14 2001-02-22 Ec. Tech Co., Ltd. Apparatus for purification of contaminated water by using rotating member
KR100392070B1 (en) * 2000-11-27 2003-07-23 주식회사 미래엔지니어링 A waste-water Treatment system using titanium dioxide as catalyst which immobilized with Sol-gel method
KR20010067693A (en) * 2001-03-08 2001-07-13 김현용 Air floatation type photocatalytic water treatment system
JP2005238174A (en) * 2004-02-27 2005-09-08 Fuji Silysia Chemical Ltd Humic substance removing agent, humic substance removing method and water clalification method
JP4723193B2 (en) * 2004-02-27 2011-07-13 富士シリシア化学株式会社 Humic substance removing agent, humic substance removing method, and water purification method
JP4724416B2 (en) * 2004-12-03 2011-07-13 株式会社Dnpファインケミカル Dispersion and coating liquid
JP2006159028A (en) * 2004-12-03 2006-06-22 The Inctec Inc Dispersion and coating liquid
US8992511B2 (en) 2005-11-09 2015-03-31 The Invention Science Fund I, Llc Acoustically controlled substance delivery device
US9474712B2 (en) 2005-11-09 2016-10-25 Gearbox, Llc In situ reaction device
US8172833B2 (en) 2005-11-09 2012-05-08 The Invention Science Fund I, Llc Remote control of substance delivery system
US9254256B2 (en) 2005-11-09 2016-02-09 The Invention Science Fund I, Llc Remote controlled in vivo reaction method
US9067047B2 (en) 2005-11-09 2015-06-30 The Invention Science Fund I, Llc Injectable controlled release fluid delivery system
US9028467B2 (en) 2005-11-09 2015-05-12 The Invention Science Fund I, Llc Osmotic pump with remotely controlled osmotic pressure generation
US8882747B2 (en) 2005-11-09 2014-11-11 The Invention Science Fund I, Llc Substance delivery system
US8906000B2 (en) 2005-11-09 2014-12-09 The Invention Science Fund I, Llc Injectable controlled release fluid delivery system
US8936590B2 (en) 2005-11-09 2015-01-20 The Invention Science Fund I, Llc Acoustically controlled reaction device
US8968274B2 (en) 2005-11-09 2015-03-03 The Invention Science Fund I, Llc Acoustically controlled substance delivery device
US8998886B2 (en) 2005-12-13 2015-04-07 The Invention Science Fund I, Llc Remote control of osmotic pump device
US8192390B2 (en) 2005-12-13 2012-06-05 The Invention Science Fund I, Llc Method and system for control of osmotic pump device
US8109923B2 (en) 2005-12-13 2012-02-07 The Invention Science Fund I, Llc Osmotic pump with remotely controlled osmotic pressure generation
US8273071B2 (en) 2006-01-18 2012-09-25 The Invention Science Fund I, Llc Remote controller for substance delivery system
US8367003B2 (en) 2006-03-09 2013-02-05 The Invention Science Fund I, Llc Acoustically controlled reaction device
US8349261B2 (en) 2006-03-09 2013-01-08 The Invention Science Fund, I, LLC Acoustically controlled reaction device
CN105439241A (en) * 2016-01-06 2016-03-30 江苏大学 Waste water treatment device based on thin-layer water film ultraviolet-light-catalyzed waste water

Also Published As

Publication number Publication date
JPS6219240B2 (en) 1987-04-27

Similar Documents

Publication Publication Date Title
JPS60118289A (en) Water purifying method
JPS60118236A (en) Molded photo-oxidation catalyst body
KR100470747B1 (en) Method and apparatus for eliminating the stench and volatile organic compounds in the polluted air
JP2600103B2 (en) Photocatalytic filter and method for producing the same
JPH08196903A (en) Porous photocatalyst and manufacture thereof
JPH0899041A (en) Photocatalyst of titanium oxide porous thin film and preparation of the same
JP2945926B2 (en) Photocatalyst particles and method for producing the same
WO2005099778A1 (en) Method for decomposing harmful substance and apparatus for decomposing harmful substance
JP3484470B2 (en) Film material with photocatalytic function
CN211302639U (en) Low temperature plasma active carbon all-in-one
JP2002238981A (en) Air cleaning device
JP2003285060A (en) Water treatment device
JPH0975929A (en) Circulative purifying device for liquid, purifying method for liquid and circulative purifying system for liquid
JP3118558B2 (en) Water treatment catalyst and water treatment method
KR100239241B1 (en) Deodorizing method and its apparatus with optical catalyst
JPH11226419A (en) Immobilizing method of photocatalyst
JP2005329360A (en) Cleaning material and its manufacturing method
JP3175168B2 (en) Ozone water generator
CN112933918A (en) Multistage gas-liquid two-phase dielectric barrier discharge waste gas treatment system and method
CN101306205A (en) Active composite catalyst air cleaning system
KR20050055650A (en) The process of hybrid system composed of tube-shaped photo-catalytic reactor and biofilter to eliminate vocs and malodor efficiently
JP2019181446A (en) Method for producing catalyst that decomposes ammonium ions and urea at room temperature, and method for application thereof to waste water purification
JP2000117271A (en) Water treating device
JP3900460B2 (en) Water treatment equipment
JP3864223B2 (en) Manufacturing method of environmental materials