JPS60114803A - Optical element - Google Patents

Optical element

Info

Publication number
JPS60114803A
JPS60114803A JP22260783A JP22260783A JPS60114803A JP S60114803 A JPS60114803 A JP S60114803A JP 22260783 A JP22260783 A JP 22260783A JP 22260783 A JP22260783 A JP 22260783A JP S60114803 A JPS60114803 A JP S60114803A
Authority
JP
Japan
Prior art keywords
medium
elastic body
reflective
mercury
elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22260783A
Other languages
Japanese (ja)
Other versions
JPH0327089B2 (en
Inventor
Hiroyasu Nose
博康 能瀬
Takashi Serizawa
芹沢 高
Masayuki Usui
臼井 正幸
Takeshi Baba
健 馬場
Hiroyuki Imataki
今滝 寛之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP22260783A priority Critical patent/JPS60114803A/en
Priority to US06/606,538 priority patent/US4783155A/en
Priority to DE19843424068 priority patent/DE3424068A1/en
Publication of JPS60114803A publication Critical patent/JPS60114803A/en
Publication of JPH0327089B2 publication Critical patent/JPH0327089B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0825Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a flexible sheet or membrane, e.g. for varying the focus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0875Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE:To enable a reflective face to change its focal distance by forming a reflective face on the interface between a transparent medium and a reflective medium, and rendering its form variable. CONSTITUTION:An optical element comprises a cylindrical vessel 11 having a circular opening 12, a transparent elastic medium 13, an optically transparent flat plate 14 mobile in parallel for pressurizing the elastic member 13, mercury 15 as a reflective medium, an elastic member 16 made of rubber or the like, and a vessel for storing said mercury. When pressure is applied to the elastic member 13 by moving the mobile plate 14, a part 13a of the elastic member 13 is protruded out of the opening 12 like a convex lens, and the protruded part 13a is in contact with the mercury 15, forming a contact face 18 between the member 13 and the mercury 15 serviceable as a reflective face for reflecting a luminous flux 19 incident from the side of the elastic member 13. This reflective face 18 can be utilized as a concave mirror, and this concave mirror can be changed in focal distance by changing the pressure to be applied to the plate 14 to change the protrusion length of this member 13a like a concave lens and the radius of curvature of the reflective face 18.

Description

【発明の詳細な説明】 本発明はカメラ、ビデオ等の光学様器や光通信、レーザ
ーディスクをはじめとするエレクトロオプテイクス機器
に用いられる光学素子に関し、特に光学表面形状を変化
させることにより、焦点距離を変化させ5るような可変
焦点光学素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to optical elements used in optical devices such as cameras and videos, optical communications, and electro-optical devices such as laser discs, and particularly relates to optical elements used in optical devices such as cameras and videos, and electro-optical devices such as laser discs. This invention relates to a variable focus optical element that changes the distance.

従来、可変焦点レンズとしては、特開昭55.−368
57に見られる様な弾性体の容器に液体をつめその液圧
でその形状を変化せしめるものや、特開昭56−110
403、特開昭58−85415のよ5に圧電体を使用
したものが提案されている。
Conventionally, as a variable focus lens, Japanese Patent Application Laid-open No. 55. -368
57, in which liquid is filled in an elastic container and its shape is changed by the pressure of the liquid, and JP-A-56-110.
403 and Japanese Patent Application Laid-open No. 58-85415, a device using a piezoelectric material has been proposed.

又、これ等の方法とは別に、本件用麗人は、弾性体自体
を部材の開口から凸状に突出又は凹状に沈降させること
によって、その開口部での弾性体が形成する光学表面を
変形して、所望の光学特性、例えば焦点距離を得る事が
出来る光学素子である弾性体レンズを提案した。この光
学素子は、弾性体に対して外力を印加するだけで、或い
は、弾性体の体積を変化させるだけで光学イ(面を可逆
的に変化させて所望の光学特性が得られるため光学素子
の構成や制御が極めて容易で、且つ光学表面の形状変化
に基く光学特性の変化のため光学特性の変化率を極めて
太き(設定することができる。
In addition, apart from these methods, the present method deforms the optical surface formed by the elastic body at the opening by causing the elastic body itself to protrude convexly or sink concavely from the opening of the member. Therefore, we proposed an elastic lens, which is an optical element that can obtain desired optical characteristics, such as focal length. This optical element can achieve optical properties by simply applying an external force to the elastic body or changing the volume of the elastic body (reversibly changing the surface to obtain desired optical characteristics). It is extremely easy to configure and control, and because the optical characteristics change based on changes in the shape of the optical surface, the rate of change in the optical characteristics can be set to an extremely high rate.

上述した光学素子を反射鏡として利用する場合、形成さ
れた光学表面に蒸着等の手段によりアルミニウム、銅等
の金属反射面を設ける必要がある。
When the above-mentioned optical element is used as a reflecting mirror, it is necessary to provide a reflective surface of a metal such as aluminum or copper on the formed optical surface by means of vapor deposition or the like.

しかしながら、液体を入れた弾性体、或いは開口から突
出又は沈降する弾性体の表面に斯様な蒸着を施こした場
合、前記弾性体の表面は形状の変化により太き(伸縮す
る為に、従来の金属薄膜そは弾性体との弾性率が合わず
、従って金属薄膜が剥離したり、弾性体の形状変化を阻
害する欠点があった。
However, when such vapor deposition is performed on the surface of an elastic body filled with liquid, or an elastic body that protrudes or settles from an opening, the surface of the elastic body becomes thick due to a change in shape (because it expands and contracts, it becomes thicker than before). The elastic modulus of the metal thin film does not match that of the elastic body, which has the drawback that the metal thin film peels off or inhibits the shape change of the elastic body.

本発明の目的は、従来の欠点を除去した反射型の可変焦
点光学素子を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a reflective variable-focus optical element that eliminates the drawbacks of the prior art.

本発明に係る光学素子に於いては、圧力変化、温度変化
等の要因によってその形状が変化可能な透明な第1の媒
体と光反射性の第2の媒体とを接触せしめ、第2の媒体
と接する第1の媒体の面の形状を変化させることにより
、第2の媒体の反射表面の形状を変化させるものである
In the optical element according to the present invention, a transparent first medium whose shape can be changed depending on factors such as pressure change and temperature change and a light-reflective second medium are brought into contact with each other, and the second medium The shape of the reflective surface of the second medium is changed by changing the shape of the surface of the first medium that is in contact with the second medium.

前記第1の媒体とは、液体或いは気体を内包しており、
液体或いは気体によりその形状が変化する弾性体、或い
は、開口から、突出又は沈降される弾性体の様なもので
あり、第2の媒体とは水銀等の液体の様なものである。
The first medium contains a liquid or gas,
The second medium is something like an elastic body whose shape changes depending on liquid or gas, or an elastic body that protrudes or settles from an opening, and the second medium is something like a liquid such as mercury.

以下に述べる本発明に係る実施例に於いては、光透過性
の第1の媒体として弾性体レンズを第2の媒体として水
銀を例示して述べるが、本発明は−1これ等の実施例に
限定されるものでな(・ことは、レンズと呼ばれる光学
素子の代表的な基本構成の1析面を示すものである01
は円形開口部2を有する円筒形の容器、6は透明な弾性
体、4は弾性体を加圧するための可動部で光学的に透明
な平行平板からなるう第1図は、圧力を加えて℃・l工
℃・状kQでおる。&32図は可動部4を通じて弾性体
6に圧力を加えた状態であり、この場合加えた圧力の大
きさにしたがって、弾性体の一部が開口部より凸レンズ
状に突出する。第6図は、可動部4を通じて弾性体に負
圧を加えた状態で、この場合弾性体は開口部において凹
レンズ状になる。
In the following embodiments of the present invention, an elastic lens is used as a light-transmitting first medium and mercury is used as a second medium. (This is an analysis plane of a typical basic configuration of an optical element called a lens.)
1 is a cylindrical container with a circular opening 2, 6 is a transparent elastic body, and 4 is a movable part for pressurizing the elastic body, which is an optically transparent parallel flat plate. It is ℃・l ℃・state kQ. 32 shows a state in which pressure is applied to the elastic body 6 through the movable part 4, and in this case, a part of the elastic body protrudes from the opening in the shape of a convex lens according to the magnitude of the applied pressure. FIG. 6 shows a state in which negative pressure is applied to the elastic body through the movable part 4, and in this case, the elastic body has a concave lens shape at the opening.

このようにして、容器の可動部に印加する外力の大きさ
によって弾性体の1部により開口部に所望の光学我面形
状を実現することができるものである。
In this way, a desired optical surface shape can be realized at the opening by a portion of the elastic body depending on the magnitude of the external force applied to the movable portion of the container.

ここで用いる弾性体6としては物体に力を加えると変形
を起し、加えた力があまシ大き(ない限シ(弾性限界内
で)、力を取り去ると変形も元にもどる性質(弾性)を
有するものを用いることができる。
The elastic body 6 used here has the property of causing deformation when force is applied to the object, and as long as the applied force is not too large (within the elastic limit), the deformation returns to its original state when the force is removed (elasticity). can be used.

通常の固体では、その弾性限界内での最大のひずみ(限
界ひずみ)は1チ程度である。また、加硫された弾性ゴ
ムでは、弾性限界が非常に太き(その限界ひずみは1o
oos近(になる。
In a normal solid, the maximum strain (critical strain) within its elastic limit is about 1 inch. In addition, vulcanized elastic rubber has a very large elastic limit (the limit strain is 1o
oos is coming.

このような弾性体としては一般に6ゴム”と知られてい
る天然ゴムや、例えばスチレンブタジェンゴム(SBR
)、ブタジェンゴム(B it )、インブレゴム(1
几)、エチレンプロピレンゴム(EPM、EPDM)、
ブチルゴム(11B)、クロロプレンゴム(C1()ア
クリロニトリル−ブタジェンゴム(NBR)、ウレタン
ゴム(U)、シリコーンゴム(8i)、ふっ素ゴム(E
PM)、多(jft化−1’A (T )、ポリエーテ
ルゴム(POIIJCHR、CHC)などの合成ゴムを
挙げることができる。これらはいずれも室温でゴム状態
を示す。
Examples of such elastic materials include natural rubber, which is generally known as 6-rubber, and styrene-butadiene rubber (SBR).
), butadiene rubber (B it ), inbre rubber (1
), ethylene propylene rubber (EPM, EPDM),
Butyl rubber (11B), chloroprene rubber (C1()) acrylonitrile-butadiene rubber (NBR), urethane rubber (U), silicone rubber (8i), fluorine rubber (E)
Examples include synthetic rubbers such as poly(jft-1'A (T)), polyether rubber (POIIJCHR, CHC), etc. All of these exhibit a rubber state at room temperature.

しかし、一般に高分子物質は分子のブラウン運動の程度
によって、ガラス状態、ゴム状態又は溶融状態のいずれ
かをとる0従って、光学素子の使用温度においてゴム状
態を示す冒分子物質は広く弾性体として利用できる0ゴ
ム状態における弾性率は、主にその弾性体を構成してい
る高分子鎖の架橋状態によって決定され、従って、例え
ば、天然ゴムにおける加硫は弾性率を決める処理に他な
らない。
However, in general, polymeric substances take either a glassy state, a rubbery state, or a molten state depending on the degree of Brownian motion of the molecules. Therefore, polymeric substances that exhibit a rubbery state at the operating temperature of optical elements are widely used as elastic bodies. The modulus of elasticity in the zero rubber state that can be created is mainly determined by the crosslinking state of the polymer chains that make up the elastic body, and therefore, for example, vulcanization of natural rubber is nothing but a process that determines the modulus of elasticity.

ここで用いる弾性体としては、通常の固体での弾性率1
0”〜10”dyne/cffl よりも小さ−く、ゴ
ム弾性体の10 Bdyne76ffl 以下が適当で
、好ましくは10’ dyne、4J 以下、特に好ま
しくは5 X iQ dyne/CIII以下であり、
下限は弾性体が光学素子を構成する場合に、通常の液体
とは異なり、こぼれなり・性状の弾性体であれば小さい
程好ましい。
The elastic body used here has an elastic modulus of 1 for a normal solid.
0" to 10" dyne/cffl, suitably 76 ffl or less of 10 Bdyne of the rubber elastic body, preferably 10' dyne, 4J or less, particularly preferably 5 X iQ dyne/CIII,
The lower limit is preferably as small as possible when the elastic body constitutes an optical element and the elastic body has properties such as spillage, unlike ordinary liquids.

弾性体の開口部での光学表面を変形させる方法は、外力
の他、上記材料を用いて熱膨張・収縮やゾル−ゲル変化
などによる体積変化を利用することもできる。
As a method for deforming the optical surface at the opening of the elastic body, in addition to external force, it is also possible to use the volume change due to thermal expansion/contraction, sol-gel change, etc. using the above-mentioned materials.

又、矩形のスリット状に開口を設ける事により、シリン
ドリカルレンズ及びトーリックレンズを形成することも
できる。
Further, by providing an opening in the shape of a rectangular slit, a cylindrical lens and a toric lens can also be formed.

これら開口によって形成される光学素子はその弾性体に
加える外力又は弾性体の体積変化によって、その形状を
任意に変化させる事ができ、その程度はその効果を検出
しながらフィードバックしてコントロールする事が可能
である。
The optical element formed by these apertures can change its shape arbitrarily by applying an external force to the elastic body or by changing the volume of the elastic body, and the degree of change can be controlled by feedback while detecting the effect. It is possible.

又、この開口を円筒型ピエゾの様に圧電素子で設ける事
も可能であり、これにより著しく菓子のコンパクト化を
実現する事ができる。
Further, it is also possible to provide this opening with a piezoelectric element such as a cylindrical piezo, and thereby the confectionery can be made significantly more compact.

弾性体に外力を与える手段は、従来知られている全べて
の方法で行う事が可能であるが、その弾性体の変形を、
ブL学効果を検出しながらフィードバック機構で行う事
が望しく、この為には電磁石やステッピングモーター、
圧電素子等の電気的な制御が可能な方法が好ましい。ま
た、加熱による体積変化は、弾性体の外部又は内部に設
けられたヒーターをもって行なうことが出来る。
All the conventionally known methods can be used to apply an external force to the elastic body, but the deformation of the elastic body can be
It is desirable to perform this with a feedback mechanism while detecting the magnetic effect, and for this purpose, electromagnets, stepping motors, etc.
A method that allows electrical control of a piezoelectric element or the like is preferred. Further, the volume change due to heating can be performed using a heater provided outside or inside the elastic body.

第4図及び第5図は各々、本発明の光学素子の一実施例
を示す図である。
FIG. 4 and FIG. 5 are diagrams each showing an embodiment of the optical element of the present invention.

図中、11は円形開口部12を有するFJ+4F#−M
44由ば中学を拵ヰ福円筒形の容器、16は上述した透
明な弾性体、14は弾性体16を加圧するための可動部
で光学的に透明な平行平板、15は反射媒体である水銀
、16はゴム等の弾性部材、17は水銀を貯めておく容
器である。第4図は平行平板可動部14を通じて弾性体
16に圧力を加えた状態で、この場合加えた圧力の大き
さにより弾性体16の一部15aが開口部12より凸レ
ンズ状に突出する。この時、凸レンズ状に突出した部分
13aは水銀15に接し、弾性体16と水蝮15の間で
接面18を形成する。この面18は弾性体16側より入
射する光束19に対しては反射面となる。弾性体13は
加圧されるにつれて、その突出部分16aは、接面18
の形状を変化させながら、水銀15を押しのけてゆ(0
押しのけられた水銀15は、容易に変形する弾性部月1
6を変形させて逃げるので、水gaisは凸レンズ状に
突出する弾性部材16を阻げない。
In the figure, 11 is FJ+4F#-M having a circular opening 12
44 is a cylindrical container, 16 is the above-mentioned transparent elastic body, 14 is a movable part for pressurizing the elastic body 16 and is an optically transparent parallel flat plate, and 15 is mercury as a reflective medium. , 16 is an elastic member such as rubber, and 17 is a container for storing mercury. FIG. 4 shows a state in which pressure is applied to the elastic body 16 through the parallel plate movable portion 14, and in this case, a portion 15a of the elastic body 16 protrudes from the opening 12 in the shape of a convex lens due to the magnitude of the applied pressure. At this time, the convex lens-shaped protruding portion 13a comes into contact with the mercury 15 and forms a contact surface 18 between the elastic body 16 and the water bottle 15. This surface 18 serves as a reflective surface for the light beam 19 entering from the elastic body 16 side. As the elastic body 13 is pressurized, its protruding portion 16a will contact the contact surface 18.
Push mercury 15 away while changing the shape of (0
The displaced mercury 15 is an elastic part 1 that is easily deformed.
Since the water gas deforms the elastic member 16 and escapes, the water gas cannot block the elastic member 16 that projects like a convex lens.

この反射面18は凹面鏡として利用出来、平行平板14
を加圧する大きさを変化すれば、凸レンズ状に突出する
葉が変化して反射面18の曲率が変化するので、可変焦
点の凹面鏡となる0第5図は、平行平板14により弾性
体16に負圧、即ち弾性体13を平行平板14により引
っ張った場合で、弾性体16は開口部12において凹レ
ンズ状になる。この時も、水銀15は、変形した弾性体
16と接する面18を形成しており、該1コ 面18を凸面鏡となっている0平行平板14にかける負
圧の大きさを変化させることによシ、凸面鏡18の曲率
を連続的に変化させることが可能である0 上述した反射面を形成する水銀の代りに、反射面を形成
可能な他の液状物質へ例えばキジロール等の溶媒にアル
ミニウム微粉末を懸濁した液体を利用しても良い。更に
水銀の代りに、反射面を形成することが出来、容易に変
形可能な弾性体、例えばアルミ微粉末を混入したシリコ
ンゴムを配しても良い。
This reflecting surface 18 can be used as a concave mirror, and the parallel plate 14
By changing the amount of pressure applied, the leaves protruding into a convex lens shape will change and the curvature of the reflecting surface 18 will change, resulting in a concave mirror with a variable focus. Under negative pressure, that is, when the elastic body 13 is pulled by the parallel plate 14, the elastic body 16 becomes concave lens-shaped at the opening 12. At this time as well, the mercury 15 forms a surface 18 in contact with the deformed elastic body 16, and this surface 18 is used to change the magnitude of the negative pressure applied to the zero-parallel flat plate 14, which is a convex mirror. However, it is possible to continuously change the curvature of the convex mirror 18. Instead of mercury, which forms the reflective surface described above, other liquid substances capable of forming the reflective surface can be used, for example, aluminum powder in a solvent such as Kijiroru. A liquid in which powder is suspended may also be used. Further, instead of mercury, an easily deformable elastic body that can form a reflective surface, such as silicone rubber mixed with fine aluminum powder, may be used.

以上九本発明に係る反射型可変焦点の光学素子に於いて
は、透明な媒体と反射媒体とを接した面で反射面を形成
し、透明媒体に物理的な作用を加えることにより、反射
面の形状を変化させその焦点距離を変化させることを可
能とするもので、簡易な構成で、可変のパワーを有する
反射面が得られたものである。
In the above nine reflective variable focus optical elements according to the present invention, the reflective surface is formed by the surface where the transparent medium and the reflective medium are in contact with each other, and the reflective surface is formed by applying a physical action to the transparent medium. It is possible to change the shape of the reflector to change its focal length, and a reflecting surface with variable power can be obtained with a simple configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図及び第6図は、本発明に係る光学素子に
適用する弾性体レンズを示す図、第4図及び第5図は各
々、本発明に係る光学素子の一実施例を示す図。 11・・・容器、12・・・円形開口部、16・0弾性
体、14侮・・平行平板、15・・・水銀、16・・・
弾性部材、17・・・容器、18・・・反射面、19・
・・光束。 出願人 キャノン株式会社
1, 2, and 6 are views showing an elastic lens applied to the optical element according to the present invention, and FIGS. 4 and 5 each show an embodiment of the optical element according to the present invention. Figure shown. 11... Container, 12... Circular opening, 16.0 elastic body, 14... Parallel flat plate, 15... Mercury, 16...
Elastic member, 17... Container, 18... Reflective surface, 19.
... Luminous flux. Applicant Canon Co., Ltd.

Claims (1)

【特許請求の範囲】 (1)光透過性を有する第1の媒体と光反射性を有する
M2の媒体とを接して形成した、その形状を可変とする
、反射面を有する事を特徴とする光学素子。 (2前記面形状の変化は、第1の媒体の形状変化、によ
る特許請求の範囲第1項記載の光学素子。 (6)前記第1の媒体は弾性体であり、第2の媒体は光
反射性の液体である特許請求の範囲f:A 1項記載の
光学素子。
[Scope of Claims] (1) It is characterized by having a reflective surface whose shape is variable, which is formed by contacting a first medium having a light transmitting property and an M2 medium having a light reflective property. optical element. (2) The optical element according to claim 1, wherein the change in the surface shape is a change in the shape of the first medium. (6) The first medium is an elastic body, and the second medium is an optical element. Claim f: The optical element according to claim A1, which is a reflective liquid.
JP22260783A 1983-10-17 1983-11-25 Optical element Granted JPS60114803A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP22260783A JPS60114803A (en) 1983-11-25 1983-11-25 Optical element
US06/606,538 US4783155A (en) 1983-10-17 1984-05-03 Optical device with variably shaped optical surface and a method for varying the focal length
DE19843424068 DE3424068A1 (en) 1983-10-17 1984-06-29 OPTICAL COMPONENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22260783A JPS60114803A (en) 1983-11-25 1983-11-25 Optical element

Publications (2)

Publication Number Publication Date
JPS60114803A true JPS60114803A (en) 1985-06-21
JPH0327089B2 JPH0327089B2 (en) 1991-04-12

Family

ID=16785105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22260783A Granted JPS60114803A (en) 1983-10-17 1983-11-25 Optical element

Country Status (1)

Country Link
JP (1) JPS60114803A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5210654A (en) * 1991-10-31 1993-05-11 Lajet, S.A. Rapid defocusing system for electromagnetic radiation reflective concentrator
JPH06258502A (en) * 1992-04-13 1994-09-16 Nakamura Yoshihiko Lens and reflection mirror with variable radius of curvature

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5210654A (en) * 1991-10-31 1993-05-11 Lajet, S.A. Rapid defocusing system for electromagnetic radiation reflective concentrator
JPH06258502A (en) * 1992-04-13 1994-09-16 Nakamura Yoshihiko Lens and reflection mirror with variable radius of curvature

Also Published As

Publication number Publication date
JPH0327089B2 (en) 1991-04-12

Similar Documents

Publication Publication Date Title
US4783155A (en) Optical device with variably shaped optical surface and a method for varying the focal length
US4783141A (en) Array lens
JP4359627B2 (en) Optical modulator and method for controlling light with an optical modulator
JP5581053B2 (en) Polymer lens
US6747806B2 (en) Method for controlling light beam using adaptive micro-lens
US4781445A (en) Optical device having positionally changeable optical surfaces and a method of varying an image forming position
JPS60185918A (en) Optical modulating method
US20010008469A1 (en) Deformable mirror, in particular for a laser beam material machining apparatus
JP2002131513A (en) Variable focal distance lens
JPS60114803A (en) Optical element
JPS6275401A (en) Optical element
JPS60114802A (en) Optical element
JPH0327081B2 (en)
JPS6084502A (en) Optical element
JPH0327086B2 (en)
JPS60156003A (en) Optical element
JPH0327082B2 (en)
JPS62239106A (en) Variable focus optical element
JPH02210302A (en) Focal distance variable mirror
KR100234236B1 (en) Optical device with variable magnification
KR100752855B1 (en) Camera lens using supercritical fluid
JPH0327083B2 (en)
KR100474885B1 (en) Fine light amount variable device and method
JPS60208728A (en) Optical element
JPS60217323A (en) Automatic focus optical device