JPS60102787A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS60102787A
JPS60102787A JP20906683A JP20906683A JPS60102787A JP S60102787 A JPS60102787 A JP S60102787A JP 20906683 A JP20906683 A JP 20906683A JP 20906683 A JP20906683 A JP 20906683A JP S60102787 A JPS60102787 A JP S60102787A
Authority
JP
Japan
Prior art keywords
layer
current blocking
active layer
current
buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20906683A
Other languages
Japanese (ja)
Inventor
Toshihiro Kono
河野 敏弘
So Otoshi
創 大歳
Takashi Kajimura
梶村 俊
Naoki Kayane
茅根 直樹
Michiharu Nakamura
中村 道治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20906683A priority Critical patent/JPS60102787A/en
Priority to EP19840100453 priority patent/EP0118671A1/en
Publication of JPS60102787A publication Critical patent/JPS60102787A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2081Methods of obtaining the confinement using special etching techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To contrive to reduce the wattless current and to convert the current into current of a lower threshold value by a method wherein the width of an optical guide layer is made larger than that of an active layer, current blocking layers are provided and the positions of interfaces to the active layer are respectively controlled. CONSTITUTION:Each mesa stripe of a first clad layer 2, an optical guide layer 3, an active layer 4, a second clad layer 5 and a cap layer 6 is laminatedly provided on a substrate 1 in the abovementioned order. The width of the optical guide layer 3 is formed wider than that of the active layer 4, and the side parts of the mesa stripes are buried with a multilayer film, which includes at least one layer of current blocking layers 7 of a reverse conductive type to that of the substrate 1 and has a larger forbidden band width than that of the active layer 4 and has a smaller refractive index than that of the layer 4. In this semiconductor laser constituted in such a way, at least one interface of either of the interface of the current blocking layer 7 and that of the current blocking layer 7 buried in the next place has been connected with the cap layer 6 at the sides of the mesa stripes. As a result, the sides of the active layer 4 are buried with the current blocking layers 7.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は高出力の埋込みへテロ型の半導体レーザ装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a high-output buried hetero type semiconductor laser device.

〔発明の背景〕[Background of the invention]

半導体レーザ装置の高出力化の試みは数多くの提案がな
されている。活性層に接していわゆる光ガイド層を設け
たシ、レーザ光の出力端面を透明化することなどがその
代表的な例であるが、まだ十分に高出力化を達成したと
はいい難い。
Many proposals have been made to try to increase the output of semiconductor laser devices. Typical examples include providing a so-called optical guide layer in contact with the active layer and making the output end face of the laser beam transparent, but it cannot be said that a sufficiently high output has been achieved yet.

〔発明の目的〕[Purpose of the invention]

本発明の目的は高出力且低しきい値の半導体レーザ装置
を提供するものである。
An object of the present invention is to provide a high output and low threshold semiconductor laser device.

本発明の別な目的は高出力でしかも横モードが安定化さ
れた半導体レーザ装置を提供するものである。
Another object of the present invention is to provide a semiconductor laser device with high output and stabilized transverse mode.

〔発明の概要〕[Summary of the invention]

所定の半導体基板の上部に第1.第2.第3および第4
の半導体層が順次液してなる光とじ込め領域を少なくと
も有し、第1および第4の半導体層は第2および第3の
半導体層より屈折率において小さく、且第3の半導体層
の屈折率は第2の半導体層の屈折率よシ犬に設定される
。少なくとも第1および第4の半導体層は互いに反対導
電型を有する如く設けられる。同時に第2および第4の
半導体層の禁制帯幅は第3の半導体層のそれより犬なる
如くに少なくとも設定される。こうして、キャリアは第
3の半導体層に、一方、フォトンは第2および第3の半
導体層に閉じ込められる。この第2の半導体層は光ガイ
ド層、第3の半導体層は活性層、第1および第4の半導
体層はクラッド層と通称されている。具体的な半導体レ
ーザ装置においては基板と前記光閉じ込め領域の間や、
光閉じ込め領域の上部に更に半導体層を設けることもあ
るが、この場合も本発明の適用が可能であり、本発明の
本質に影響はない。
A first layer is formed on a predetermined semiconductor substrate. Second. 3rd and 4th
The first and fourth semiconductor layers have a refractive index smaller than that of the second and third semiconductor layers, and the refractive index of the third semiconductor layer is smaller than that of the second and third semiconductor layers. is set to be equal to the refractive index of the second semiconductor layer. At least the first and fourth semiconductor layers are provided to have opposite conductivity types. At the same time, the forbidden band widths of the second and fourth semiconductor layers are set to be at least wider than that of the third semiconductor layer. Thus, carriers are confined to the third semiconductor layer, while photons are confined to the second and third semiconductor layers. The second semiconductor layer is commonly called a light guide layer, the third semiconductor layer is called an active layer, and the first and fourth semiconductor layers are called cladding layers. In a specific semiconductor laser device, between the substrate and the optical confinement region,
Although a semiconductor layer may be further provided above the optical confinement region, the present invention can be applied in this case as well, and the essence of the present invention is not affected.

本発明においては前記第2の半導体層のレーザ光の進行
方向と直交する断面で且pn接合面と平行な方向の幅が
第3の半導体層のそれより広くなし、且少なくとも前記
第1〜第4の半導体層をメサストライプ状となし、前記
メサストライプ状半導体層におけるレーザ光の進行方向
と垂直な方向の側壁全第5の半導体層で埋込む。第5の
半導体層の屈折率は少なくとも第2および第3の半導体
層の屈折率より小ならしめる。この場合、この埋込み層
は半導体基板にまで達していることが製造上等で好まし
い。また、第5の半導体層を複数層で構成しても良い。
In the present invention, the width of the second semiconductor layer in the cross section perpendicular to the traveling direction of the laser beam and in the direction parallel to the pn junction surface is wider than that of the third semiconductor layer, and at least The semiconductor layer No. 4 is formed into a mesa stripe shape, and the entire side wall of the mesa stripe semiconductor layer in a direction perpendicular to the traveling direction of the laser beam is buried with the fifth semiconductor layer. The refractive index of the fifth semiconductor layer is made smaller than the refractive index of at least the second and third semiconductor layers. In this case, it is preferable for manufacturing reasons that the buried layer reach the semiconductor substrate. Further, the fifth semiconductor layer may be composed of multiple layers.

光ガイド層の幅が活性層のそれより大なるため、光ガイ
ド層を設けることにも増して高出力化を達成できる。
Since the width of the light guide layer is larger than that of the active layer, higher output can be achieved than by providing the light guide layer.

本発明は更に、電流ブロック層(埋込み層)を設け、活
性層に対するこの界面の位置を制御することにより無効
電流を低減し、低しきい電流値化を図るものである。
The present invention further provides a current blocking layer (buried layer) and controls the position of this interface with respect to the active layer to reduce reactive current and lower the threshold current value.

又、レーザ光の進行方向に平行な面での断面構造におい
て活性層は出力端面に達せず、一方、光ガイド層は出力
端面に達せしめるのがより好ましい。活性層が埋込み層
で覆われているので、光は主に光ガイド層よシ外部に放
出され、高出力化により適しており、亘長寿命化にも有
利である。
Further, in a cross-sectional structure taken in a plane parallel to the traveling direction of the laser beam, it is more preferable that the active layer does not reach the output end face, while the light guide layer reaches the output end face. Since the active layer is covered with the buried layer, light is mainly emitted outside the light guide layer, making it more suitable for high output and advantageous for extending life.

なお、第1〜第4の半導体層の積層で構成される光とじ
込め領域の積層順は基板に対し上述と逆の順で行なって
もよい。
Note that the stacking order of the light confinement region formed by stacking the first to fourth semiconductor layers may be reversed to the above-described order with respect to the substrate.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第2図および第3図により説明
する。なお、第1図は比較例を示す断面図である。
Embodiments of the present invention will be described below with reference to FIGS. 2 and 3. Note that FIG. 1 is a sectional view showing a comparative example.

実施例1 第2図は、本発明をGaAtAs 系半導体レーザに適
用した場合の断面図であり、(a)は電流ブロック層が
1層の場合、(b)は電流ブロック層が2層の場合であ
る。
Example 1 FIG. 2 is a cross-sectional view when the present invention is applied to a GaAtAs-based semiconductor laser. (a) shows a case where there is one current blocking layer, and (b) shows a case where there are two current blocking layers. It is.

まず、液相エピタキシャル成長法によpn−GaA S
基板1上にnG ao、6s At、34AS クラッ
ド層2 (0,8〜211 m ) 、n Gao、t
Alo、sAS光ガイド層3(0,4〜3μm)、アン
ドープoao、ssA to、14 A S活性層4(
0,04〜0.4μm)、p−Gap、5Aム、5A8
クラッド層5(0,8〜2μm)、1) Gao、s 
Ato、2 A sキャップ層s (0,5〜1 tt
 m )を順次成長させる。この時、nおよびpクラッ
ド層の屈折率は活性層および光ガイド層の屈折率よシも
小さく、かつ光ガイド層の屈折率は活性層の屈折率よV
も小さくする。また、各層のAtAsの組成は本実施例
以外に上記屈折率の大小関係を満たす範囲で適当に選ん
でもよい。本実施例では、埋込み成長においてメサスト
ライプ上にエピタキシャル成長させないことおよび極力
オーミックコンタクトをとりやすくするためにキャップ
層をGa00IIAム、2AS層とした。
First, pn-GaAs was grown by liquid phase epitaxial growth.
nGao, 6s At, 34AS cladding layer 2 (0.8~211 m), nGao, t on substrate 1
Alo, sAS optical guide layer 3 (0.4-3 μm), undoped oao, ssA to, 14 A S active layer 4 (
0.04-0.4μm), p-Gap, 5Am, 5A8
Cladding layer 5 (0.8-2 μm), 1) Gao, s
Ato, 2 A s cap layer s (0,5~1 tt
m) are grown sequentially. At this time, the refractive index of the n and p cladding layers is smaller than the refractive index of the active layer and the light guide layer, and the refractive index of the light guide layer is V smaller than the refractive index of the active layer.
Also make it smaller. Furthermore, the composition of AtAs in each layer may be appropriately selected in addition to the present embodiment within a range that satisfies the above relationship in magnitude of refractive index. In this example, in order to avoid epitaxial growth on the mesa stripe during buried growth and to make ohmic contact as easy as possible, the cap layer was a Ga00IIAM and 2AS layer.

次に、フォトエツチング工程を経た後メサエッチングに
よp断面形状が台形となる方向にメサストライプを形成
する。更に、p −Gao、 At、5A8クラッド層
5を選択的にエツチングし幅を狭くする。
Next, after a photo-etching process, mesa-etching is performed to form mesa stripes in a direction in which the p-section has a trapezoidal shape. Furthermore, the p-Gao, At, 5A8 cladding layer 5 is selectively etched to narrow the width.

次に、上記選択エツチングにより露出した活性層4をエ
ツチングにより除去する。
Next, the active layer 4 exposed by the selective etching is removed by etching.

次に、上記メサストライプの側部を活性層よシも禁制帯
幅が大きく屈折率の小さい基板と逆の導定形(本実施例
でll″j:p形)の電流ブロック層を少なくとも1層
含む多層膜で埋込む。第2図(a)の場合は、まずpG
 ao、5A4+、5 A s電流プロ2ク層7で埋込
み、更に” Gao、s A4+、s Ass層で埋込
む。
Next, on the sides of the mesa stripe, at least one current blocking layer of a conductivity type opposite to that of the substrate (ll''j:p type in this example) is formed, which has a large forbidden band width and a small refractive index compared to the active layer. In the case of Fig. 2(a), first pG
ao, 5A4+, 5A s current proc layer 7, and ``Gao, s A4+, s Ass layer.

コ12)とき電流プtffツク層7とnGaQ、り A
!A、B Ass層の界面がメサストライプ側部でキャ
ップ層6に接するようにする。1だ、電流ブロック層7
のキャリア濃度up−クラッド層5のキャリア濃度に比
較して小さくする必要があり、本実施例の場合はp−ク
ラッド層5のキャリア濃度を6X1017m−3、電流
ブロック層7のキャリア濃度をlXl0”crn−”と
した。第2図(b)の場合は、まず、p−Gao、5A
tn、s A S電流ブロック層7で埋込み更にn G
ao、s層ム、sAS層8、pGao、s Ato、6
 As電流ブロック層9、n Gao、s Ala、s
 As層10の順に埋込む。
12) When current tff is applied to layer 7 and nGaQ, ri A
! The interface between the A and B Ass layers is made to contact the cap layer 6 at the side of the mesa stripe. 1, current blocking layer 7
It is necessary to make the carrier concentration of the up-cladding layer 5 smaller than that of the up-cladding layer 5. In this example, the carrier concentration of the p-cladding layer 5 is 6X1017m-3, and the carrier concentration of the current blocking layer 7 is lXl0''. crn-”. In the case of FIG. 2(b), first, p-Gao, 5A
tn, s A S Buried with current blocking layer 7 and further n G
ao, s layer, sAS layer 8, pGao, s Ato, 6
As current blocking layer 9, n Gao, s Ala, s
The As layer 10 is buried in this order.

コノとき電流ブロック層9とn Gao、a Ato、
B As層10の界面がメサストライプ側部でキャップ
層6に接するようにし、かつ活性層4の側部を電流ブロ
ック層9で埋込む。この実施例においても、p−クラッ
ド層5と電流ブロック層9のキャリア濃度はそれぞれ6
X 10 ” cm−”、I X 1017Crn−”
とした。
When the current blocking layer 9 and n Gao, a Ato,
The interface of the BAs layer 10 is brought into contact with the cap layer 6 at the side of the mesa stripe, and the side of the active layer 4 is buried with the current blocking layer 9. Also in this embodiment, the carrier concentrations of the p-cladding layer 5 and the current blocking layer 9 are each 6.
X 10” cm-”, I X 1017Crn-”
And so.

第2図(a)における電流ブロック層7とn −oao
、5Aム、5 A 5層8の界面および第2図(b)に
おける電流ブロック層9とn −Gao、5Aム、SA
s層10の界面は理想的には活性層4と同位置かごく近
傍にあることが望ましいが、本実施例に示すようなメサ
ストライプ構造をもつS B H(5trip Bur
iedHeterostructure )型レーザに
おいては、前記界面の位置を活性層4の近傍に制御する
ことは非常に困難である。それに対し、本実施例のよう
に前記界面がキャップ層6に接するように制御すること
は容易である。また、埋込み層は活性層側部を埋込む電
流ブロック層のみを活性層よりも禁制帯幅が大きく屈折
率の小さいGaAtA3層としてもよい。
Current blocking layer 7 and n-oao in FIG. 2(a)
, 5A, 5A The interface between the 5 layers 8 and the current blocking layer 9 in FIG. 2(b) and the n-Gao, 5A, SA
Ideally, it is desirable that the interface of the s-layer 10 be at the same position as the active layer 4 or very close to it.
In the (iedHeterostructure) type laser, it is very difficult to control the position of the interface to be close to the active layer 4. On the other hand, it is easy to control the interface so that it is in contact with the cap layer 6 as in this embodiment. Further, as the buried layer, only the current blocking layer that buries the sides of the active layer may be a GaAtA3 layer having a larger forbidden band width and a lower refractive index than the active layer.

次にメサストライプ領域にZnの選択拡散11を施す(
但し、本実施例ではメサストライプ領域以外には電流ブ
ロック層が設けであるので全面拡散でもよい)。12.
13はnおよびp電極である。
Next, selective diffusion 11 of Zn is applied to the mesa stripe area (
However, in this embodiment, the current blocking layer is provided in areas other than the mesa stripe area, so the entire surface may be diffused). 12.
13 are n and p electrodes.

第2図(b)では、電流ブロック層が2層の場合につい
て示したが、電流ブロック層を2層以上n −Gao、
s Ato、s A s層と交互に埋込んでもよい。但
し活性層4の側部は必ず少なくとも1つの電流ブロック
層で埋込む。このようにして多数の電流ブロック層を設
けることによってメサストライプ領域以外への電流の流
れを阻止する効果が大になる。
In FIG. 2(b), the case where the current blocking layer is two layers is shown, but the current blocking layer is made of two or more layers of n-Gao,
The s Ato and s A s layers may be buried alternately. However, the sides of the active layer 4 are always filled with at least one current blocking layer. Providing a large number of current blocking layers in this manner increases the effect of blocking current flow to areas other than the mesa stripe region.

p−G ao、s A tCl、s A s層はn G
ao、5Ato、s層s層に比して比抵抗が高い為、本
実施例のように活性層4の側部をI) Gao、5At
o、s層s層(電流ブロック層7あるいは9)で埋込み
、かつ電流ブロック層とその次に埋込んだn G ao
、s ALo、B A s層の少なくとも1つの界面が
メサストライプ側部でキャップ層6に接する構造にする
ことによって、実質的なストライブ領域(活性層幅に相
当)以外に流れる第1図中に矢印で示したような無効電
流を低減することができる。
p-G ao, s A tCl, s A s layer is n G
ao, 5Ato, s layer Since the specific resistance is higher than that of the s layer, the side part of the active layer 4 is I) Gao, 5At as in this example.
o, s layer buried with s layer (current blocking layer 7 or 9), and buried with current blocking layer and then n Gao
, s ALo, B A By creating a structure in which at least one interface of the s layer is in contact with the cap layer 6 at the side of the mesa stripe, the area flowing outside the substantial stripe region (corresponding to the width of the active layer) in FIG. The reactive current as shown by the arrow can be reduced.

第1図に示す構造の半導体レーザでは、活性層3〜5μ
mのときしきい電流70〜100mA程(9) 度であった。しかし、本実施例によれば上記活性層幅に
おいてしきい電流40〜50mA程度まで低減すること
ができ、電流ブロック層7あるいは9とその次に埋込ん
だn−()aへ5Aム、SAS層の界面が活性層4と同
位置かあるいはそのごく近傍にある場合と同程度のしき
い電流低減効果が得られた。
In the semiconductor laser having the structure shown in FIG. 1, the active layer is 3 to 5μ
The threshold current was about 70 to 100 mA (9) degrees. However, according to this embodiment, the threshold current can be reduced to about 40 to 50 mA at the active layer width, and 5 A of SAS to the current blocking layer 7 or 9 and the n-()a buried next. The same level of threshold current reduction effect as when the interface between the layers was located at the same position as the active layer 4 or very close thereto was obtained.

実施例2 第3図は、実施例1の上記半導体レーザ製画において、
レーザ光に対して端面を透明化した素子のレーザ光軸方
向の断面構造を示したものである。
Example 2 FIG. 3 shows the above semiconductor laser manufacturing in Example 1,
This figure shows a cross-sectional structure in the laser optical axis direction of an element whose end face is made transparent to laser light.

光ガイド層3はレーザ光反射端面まで存在し、活性層4
の端面ば上記反射端面よりも内側にある構造となってい
る。実施例1において、メサエッチングによシ断面形状
が台形となる方向にメサストライプを形成した後、端面
近傍のpGaQ、8 Ato4A8キャップ層6、I)
 −Gao、 s Ato、5A Sクラッド層5およ
び活性層4のみをエツチングにより除去する。その後、
メサストライプの外部を実施例1に示した埋込み成長法
によシ埋込んだ。このとき、(10) 第3図に示したようにレーザ光軸方向の断面においても
活性層4の側部は電流ブロック層(本実施例ではpG 
ao、5Ato、B A s層7)で埋込むようにする
The light guide layer 3 exists up to the laser beam reflecting end face, and the active layer 4
The end face is located inside the reflective end face. In Example 1, after forming a mesa stripe in a direction in which the cross-sectional shape becomes a trapezoid by mesa etching, a pGaQ, 8 Ato4A8 cap layer 6, I) near the end face is formed.
-Gao, s Ato, 5A S Only the cladding layer 5 and active layer 4 are removed by etching. after that,
The outside of the mesa stripe was filled in by the filling growth method shown in Example 1. At this time, (10) As shown in FIG.
ao, 5Ato, B A s layer 7).

本実施例により、しきい電流は実施例1と同程度まで低
減され、更に最大光出力IWの可視半導体レーザ装置が
得られた。また、レーザ光反射端面近傍に流れる電流も
低減できるため熱による端面損傷も低減され信頼性も向
上した。
In this example, the threshold current was reduced to the same level as in Example 1, and a visible semiconductor laser device with a maximum optical output IW was obtained. In addition, because the current flowing near the laser beam reflecting end face can be reduced, damage to the end face due to heat is also reduced and reliability is improved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電流ブロック層の位置を制御すること
により無効電流を低減することができ、しきい電流を低
減することができる。したがって特に高出力動作での信
頼性が向上する。しきい電流は、発振波長780nm、
活性層幅3〜5μmの素子において40〜50mAのも
のが得られた。
According to the present invention, reactive current can be reduced by controlling the position of the current blocking layer, and threshold current can be reduced. Therefore, reliability is improved, especially in high-power operation. The threshold current has an oscillation wavelength of 780 nm,
An output of 40 to 50 mA was obtained in a device with an active layer width of 3 to 5 μm.

また、端面の透明化によシ上記特性に加え最大光出力I
Wの素子が得られ、端面近傍に流れる電流の低減により
熱による端面損傷も低減され信頼性も向上した。
In addition to the above characteristics, the maximum light output I
A W element was obtained, and by reducing the current flowing near the end face, damage to the end face due to heat was reduced and reliability was improved.

(11) 第1図に示した構造の半導体レーザ装置においては図中
に矢印で示したレーザ発振に寄与しない無効電流がある
。これらの無効電流は、実質的なストライプ領域(活性
層幅に相当)を流れる電流に比較してかなり大きな割合
となっている。したがって、この構造ではしきい電流が
大きいという欠点がある。
(11) In the semiconductor laser device having the structure shown in FIG. 1, there is a reactive current that does not contribute to laser oscillation, as indicated by an arrow in the figure. These reactive currents have a considerably large proportion compared to the current flowing through the substantial stripe region (corresponding to the width of the active layer). Therefore, this structure has the disadvantage that the threshold current is large.

なお、M1図においては、第2図と同一部位は同一符号
を符しである。
In addition, in FIG. M1, the same parts as in FIG. 2 are designated by the same reference numerals.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に対する比較例を示す半導体レーザ装置
の断面図、第2図は、本発明による半導体レーザ装置の
断面図、第3図は、第2図の半導体レーザ装置において
端面を透明化した素子のレーザ光軸方向の断面図である
。 1−n−GaAS基板、2 = n Gao、ss A
7!(+、3J A sクラッド層、3 ”・n Ga
+1.7 At43.3As光ガイド層、4・・・アン
ドープG ao、HA414 A 8活性層、5・・・
pG ao、s A Lo、s A sクラッド層、6
 、・I) −Ga0,8Aム、2ASキャップ層、7
 ・・−1) −GaQ、5 Ato、5AS電(12
) 流ブロック層、8 ・・・n −Gao、s Ato、
s A 8層、9・・・pGao、s Alo4 A 
s電流ブロック層、10・ n−Ga0.II Alo
、5As層、1l−Zn拡散層、12−n(13) 第 1 図 第 3 図 第1頁の続き ■発明者 中村 道治 国分寺■稔ケ 央研究所内 窪1丁目28幡地 株式会社日立製作所中439−
FIG. 1 is a sectional view of a semiconductor laser device showing a comparative example to the present invention, FIG. 2 is a sectional view of a semiconductor laser device according to the present invention, and FIG. 3 is a semiconductor laser device of FIG. FIG. 1-n-GaAS substrate, 2 = n Gao, ss A
7! (+, 3JAs cladding layer, 3”・n Ga
+1.7 At43.3As optical guide layer, 4... Undoped Gao, HA414 A 8 active layer, 5...
pG ao, s A Lo, s A s cladding layer, 6
,・I) -Ga0,8Am,2AS cap layer, 7
...-1) -GaQ, 5 Ato, 5AS electric (12
) flow block layer, 8...n-Gao, s Ato,
s A 8 layers, 9... pGao, s Alo4 A
s current blocking layer, 10.n-Ga0. II Alo
, 5As layer, 1l-Zn diffusion layer, 12-n (13) Fig. 1 Fig. 3 Continued from Fig. 1 page ■ Inventor Michiharu Nakamura Kokubunji ■ Minoru Keo Research Institute Uchikubo 1-28 Hitachi, Ltd. Middle 439-

Claims (1)

【特許請求の範囲】 1、基板上に、第1のクラッド層、光ガイド層、活性層
、第2のクラッド層、中ヤツプ層の各メサストライプを
上記順に積み重ねて設け、光ガイド層幅が活性層幅よシ
も広く、上記メサストライプの側部が基板と逆の導電形
の電流ブロック層を少なくとも1層含む活性層よシも禁
制帯′幅が大きく、屈折率の小さい多層膜で埋込まれた
半導体レーザ装置において、電流ブロック層とその次に
埋込んだ層の少なくとも1つの界面がメサストライプ側
部でキャップ層と接しておシ、活性層側部が電流ブロッ
ク層によシ埋込まれていることを特徴とする半導体レー
ザ装置。 2、特許請求の範囲第1項記載の半導体レーザ装置にお
いて、光ガイド層はレーザ共振器の反射端面まで存在し
、活性層端面は上記反射端面よりも内側にあり、反射端
面近傍が半導体層によシ埋込まれていること全特徴とす
る半導体レーザ装置。
[Claims] 1. The mesa stripes of the first cladding layer, the optical guide layer, the active layer, the second cladding layer, and the middle layer are stacked in the above order on the substrate, and the width of the optical guide layer is The width of the active layer is wide, and the sides of the mesa stripes include at least one current blocking layer of the conductivity type opposite to that of the substrate. In the embedded semiconductor laser device, at least one interface between the current blocking layer and the next buried layer is in contact with the cap layer on the side of the mesa stripe, and the side of the active layer is buried in the current blocking layer. A semiconductor laser device characterized in that: 2. In the semiconductor laser device according to claim 1, the optical guide layer exists up to the reflective end face of the laser resonator, the active layer end face is located inside the reflective end face, and the vicinity of the reflective end face is located in the semiconductor layer. A semiconductor laser device characterized by being fully embedded.
JP20906683A 1983-01-17 1983-11-09 Semiconductor laser Pending JPS60102787A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP20906683A JPS60102787A (en) 1983-11-09 1983-11-09 Semiconductor laser
EP19840100453 EP0118671A1 (en) 1983-01-17 1984-01-17 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20906683A JPS60102787A (en) 1983-11-09 1983-11-09 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS60102787A true JPS60102787A (en) 1985-06-06

Family

ID=16566683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20906683A Pending JPS60102787A (en) 1983-01-17 1983-11-09 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS60102787A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6388886A (en) * 1986-10-01 1988-04-19 Mitsubishi Electric Corp Semiconductor laser device
JPH01302887A (en) * 1988-05-31 1989-12-06 Matsushita Electric Ind Co Ltd Semiconductor laser device and semiconductor laser array device
US4901171A (en) * 1987-04-06 1990-02-13 Sony Corporation Optical tape end sensing arrangement for magnetic tape cassette

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6388886A (en) * 1986-10-01 1988-04-19 Mitsubishi Electric Corp Semiconductor laser device
US4901171A (en) * 1987-04-06 1990-02-13 Sony Corporation Optical tape end sensing arrangement for magnetic tape cassette
JPH01302887A (en) * 1988-05-31 1989-12-06 Matsushita Electric Ind Co Ltd Semiconductor laser device and semiconductor laser array device

Similar Documents

Publication Publication Date Title
US4282494A (en) Stripe-geometry double heterojunction laser element
JPS60252329A (en) Optical switch
JPS60102787A (en) Semiconductor laser
JPS606119B2 (en) Composite semiconductor device
JPS61164287A (en) Semiconductor laser
JPS63144589A (en) Semiconductor laser element
JPS61102086A (en) Semiconductor laser
JPS59227177A (en) Semiconductor laser
JP2940158B2 (en) Semiconductor laser device
JPS59145590A (en) Semiconductor laser device
JPS6218078A (en) Buried structure semiconductor laser and manufacture of the same
JPS6284581A (en) Semiconductor light-emitting device
JPH04107428A (en) Substrate type optical switch
JPS5916432B2 (en) Composite semiconductor laser device
JPS59155981A (en) Buried type semiconductor laser element and manufacture thereof
JPH0337875B2 (en)
JPH06112582A (en) Semiconductor laser diode and fabrication thereof
JP2806695B2 (en) Semiconductor laser device
JPS61137386A (en) Double hetero-structure semiconductor laser
JPH05226775A (en) Semiconductor laser element
JPS59145589A (en) Semiconductor laser device
JPH0233988A (en) Semiconductor laser
JPH01270035A (en) Optical modulator
JPS61220388A (en) Optical semiconductor device
JPS60134489A (en) Semiconductor laser device