JPS60102611A - Plane scanning optical device - Google Patents

Plane scanning optical device

Info

Publication number
JPS60102611A
JPS60102611A JP21010583A JP21010583A JPS60102611A JP S60102611 A JPS60102611 A JP S60102611A JP 21010583 A JP21010583 A JP 21010583A JP 21010583 A JP21010583 A JP 21010583A JP S60102611 A JPS60102611 A JP S60102611A
Authority
JP
Japan
Prior art keywords
scanning
scanning line
image
optical device
resolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21010583A
Other languages
Japanese (ja)
Inventor
Hiroaki Kodera
宏曄 小寺
Kazufumi Suzuki
一史 鈴木
Yukifumi Tsuda
津田 幸文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21010583A priority Critical patent/JPS60102611A/en
Publication of JPS60102611A publication Critical patent/JPS60102611A/en
Pending legal-status Critical Current

Links

Landscapes

  • Facsimile Heads (AREA)

Abstract

PURPOSE:To raise a resolution by a titled device which is small-sized, simple and inexpensive without requiring each adjustment of a lens position by dividing a linear image of an original picture onto plural CCD image sensor arrays, and projecting it by a magnification of one to one. CONSTITUTION:A long size type rod lens array 401-1 and 401-2 having an effective length equal to a scanning width of an original picture are inclined by an angle theta to each other against a perpendicular line of an original picture 406, placed in parallel to a scanning line 400, and an image 402-1 and 402-2 are formed by projecting the scanning line 400 in the respective directions. As for a long size type rod array 401, generally, (m) pieces are provided. Each sensor 403-1, 403-2 of a CCD array sensor group placed so that the photodetecting surfasce coincides with the image 402-1 and 402-2 photodetects by dividing alternately by a part each of a linear scanning line image. Each CCD array sensor 403-1, 403-2 takes a partial charge of a section of a length L/n which has divided a scanning width L into (n) equal parts. A resolution to the original picture 406 can be made almost equal to a resolution of the CCD array sensors 403-1, 403-2.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、写真や図if+iなどの画像読取に使用され
る平面走査光学装置に関し、割算機への画像テータ入力
、ファクンミリ送信装置、印刷における電子製版用スキ
ャナなどに利用しつる高オ)5度の−i1/面走査光学
装置を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a flat scanning optical device used for reading images such as photographs and figures if+i, and for inputting image data to a divider, facunmillimeter transmitting device, and electronic scanning in printing. The present invention provides an optical device for scanning the -i1/plane with a vertical angle of 5 degrees for use in plate-making scanners and the like.

従来例の構成とその問題点 従来、レントゲンフィルムの写真解析や印刷製版などに
必要とされる高分解能のa淡側像読取装置としては、主
としてドラム走査型のメカニカルスキャナが用いられて
きた。これは、回転トラム上の原稿面の微小点からの反
射光もしくは透過光を点順次走査によって読取るもので
、高分解能か得られる。しかし、読取速度が遅く、走査
系か抜雑、大型、高価となるなどの欠点があった。
Conventional Structures and Problems Conventionally, drum-scanning mechanical scanners have been mainly used as high-resolution a-light side image reading devices required for photographic analysis of X-ray films, printing plates, and the like. This method reads reflected light or transmitted light from minute points on the surface of a document on a rotating tram by dot-sequential scanning, resulting in high resolution. However, it had drawbacks such as slow reading speed, unsophisticated scanning system, large size, and high cost.

これに対し最近では、COD固体イメージセンサを用い
た平面走査型のスキャナが開発され、ファクシミリをは
じめ設計図面の読取りなどに利用されている。第1図は
その基本構成図で、原稿面上の幅りの走査線100を、
レンズ101により倍率1/mに縮小し、その像102
をQCDアレイセンサ103の受光面に投影する。10
3はたとえば2048素子から成り、走査幅りを204
8画素に分割した濃淡信号を出力する。この場合、レン
ズ101の位置を調節して縮小比mを変えることによシ
、種々の原稿幅りに対応できるが、−辺当りの分解画素
数はCODの素子数で決まる。
On the other hand, recently, a plane scanning type scanner using a COD solid-state image sensor has been developed and is used for reading facsimile and other design drawings. FIG. 1 is a diagram showing its basic configuration, showing a width scanning line 100 on the document surface.
The lens 101 reduces the magnification to 1/m, and the image 102
is projected onto the light receiving surface of the QCD array sensor 103. 10
3 consists of 2048 elements, and the scanning width is 204.
A gray signal divided into 8 pixels is output. In this case, various document widths can be accommodated by adjusting the position of the lens 101 and changing the reduction ratio m, but the number of resolved pixels per -side is determined by the number of COD elements.

したがって、Lが大になるほど画素サイズが大となり分
解能が低下するのは止むを得ず、L=21C+++(A
4判の短辺)では分解能はほぼ0.1關であるが、L 
に42 Cm (A 3判の短辺)になると0.2ff
+’1と粗くなり、高精度を要する大判の設計図面など
の読取りには適しない。
Therefore, it is inevitable that the larger L becomes, the larger the pixel size becomes, and the lower the resolution becomes. L=21C+++(A
The resolution is approximately 0.1 degrees on the short side of 4-size paper, but
42 cm (short side of A3 size) is 0.2ff
+'1, which is coarse, making it unsuitable for reading large-sized design drawings that require high precision.

これに対し、第2図のように、複数個のCODアレイセ
ンサを1列に並べて、Lが大なる原稿を高分解能で読取
る入力装置が開発されている。図示の例では、蛍光管2
05の光を原稿206にjlii射し原稿206上の走
査線200を6組のレンズ201とCODアレイセンサ
203で5分割i−で読取り、実効的な分解能を5倍に
−にげている。しかしながら、この方法では、高価なレ
ンズ系が多数必要であり、かつレンズによる周辺光量の
低下を補正するだめのシェーディング板204を41]
加しなければならず、址だ原稿206面からCODアレ
イセンサ203までの光路長が長くなるので装置が大型
化するなどの欠点があった。
In response to this, an input device has been developed that uses a plurality of COD array sensors arranged in a row to read a document with a large value L with high resolution, as shown in FIG. In the illustrated example, the fluorescent tube 2
The scanning line 200 on the original 206 is read by dividing it into five by six sets of lenses 201 and a COD array sensor 203, increasing the effective resolution by five times. However, this method requires a large number of expensive lens systems, and also requires a shading plate 204 (41) to correct the decrease in peripheral light intensity caused by the lenses.
However, since the optical path length from the surface of the original document 206 to the COD array sensor 203 becomes long, there is a drawback that the apparatus becomes larger.

発明の目的 本発明は、高分解能のIF−面走査+i!+i像読取″
All’l騒−簡便かつ小型に実現し、〃・つカラー化
も容易な−・1・−面走査光学装置を構成することを目
的とする。
OBJECTS OF THE INVENTION The present invention provides high resolution IF-plane scanning +i! +i image reading''
It is an object of the present invention to construct a one-plane scanning optical device that can be realized simply and compactly, and can be easily converted into color.

発明の構成 本発明は、−走査線幅と同等の有効開口長をもつ光集束
性のロッドレンズアレイを少くとも2組以上と、−走査
線幅をn分割し7て電子的に走査するn個の1次元リニ
アイメージセンザアレイトj有し、各イメージセンサア
レイの各々が原画面の走査線長の分割小区間を相互に重
ならないように受光走査するようにした平面走査光学装
置により」二11己目的を達成する。
Structure of the Invention The present invention provides: - At least two or more light-focusing rod lens arrays having an effective aperture length equivalent to the scanning line width; - The scanning line width is divided into n and electronically scanned by n. By means of a plane scanning optical device having two one-dimensional linear image sensor arrays, each image sensor array receives and scans light in small sections of the scanning line length of the original screen so as not to overlap with each other. 211 Achieve your purpose.

実施例の説明 以下本発明の実施例について図面とともに詳細に説明す
る。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明では、第1図や第2図の通常のレンズの代りに、
第3図に示すような分布屈折率ロットレンズを用いる。
In the present invention, instead of the normal lens shown in FIGS. 1 and 2,
A distributed refractive index Rott lens as shown in FIG. 3 is used.

これは、同図(alに図示するごとく、ガラスの屈折率
がロット301の中心はど高く、周辺へいくにつれて放
物線状に低くなるような分布をもった光集束性ガラスと
して知られている。
This is known as a light-focusing glass that has a distribution in which the refractive index of the glass is high at the center of the lot 301 and decreases parabolically toward the periphery, as shown in the same figure (al).

このようなガラスを適当な長さの円柱に切り出して用い
ると、第3図(blのような棒状ロッドレンズとして結
像作用を示し、ロット301の中心から原画300まで
の距離d。と等距離の位置に原画3o○の等倍像302
を結ぶ。この分布屈折率ロッドレンズは、ロットの長さ
によシ種々の焦点距離が得られかつ径を小さくできるの
で、第3図(C1のように多数のロットを一タリに並へ
たアレイ構6のロットレンズアレイ301とすることか
容易である。このようなロッドレンズアレイ301を用
いると、(J4に細長い線状の原画300を効・t−よ
く画像302として結像することができ、通常のJ)(
−の光学レンズを用いる場合に比べて横方向のンエーデ
ングも少く小型かつ安価に実現できるので、ファクシミ
+)送信機の走査光学系や複写機の結像光学系として利
用さノしている。
When such a glass is cut into a cylinder of an appropriate length and used, it exhibits an imaging effect as a rod-like rod lens as shown in Fig. The same size image 302 of the original picture 3o○ is located at the position of
Tie. This distributed index rod lens can obtain various focal lengths depending on the length of the lot, and the diameter can be made small. It is easy to use a rod lens array 301 of J) (
Compared to the case of using an optical lens, it can be realized in a smaller size and at a lower cost with less lateral bending, so it is used as a scanning optical system in a facsimile transmitter or as an imaging optical system in a copying machine.

本発明は以上のロッドレンズアレイを利用して、高解像
度の画像読Jflり走査光学系を実現するもので、第4
図はそのシ(、本構成を示す一実施例である3゜401
−1と401−2は、原画の走査幅にりnしい有効長を
もつ長尺型ロッドレンズアレイで、原画面406の垂線
に対して力4に角度θだけ傾斜して走査線400と平行
に置かれ、走査線400をそれぞれの方向に投影して像
402−1と402−2を結ぶ。長尺型ロッドアレイ4
01は一般にm本(mは複数)設けられる。403−1
と403−2は、受光向が像402−1と402−2に
−致するよう配置された、CODアレイセンサ群であり
、各センサ403−1.403−2は線状の走査線像の
一部分ずつを交互に分割して受光する。
The present invention utilizes the above rod lens array to realize a high-resolution image reading Jfl scanning optical system.
The figure shows the screen (3゜401, which is an example of this configuration).
-1 and 401-2 are long rod lens arrays with an effective length n equal to the scanning width of the original image, and are parallel to the scanning line 400 and are inclined by an angle θ to force 4 with respect to the perpendicular to the original image 406. , and projects a scanning line 400 in each direction to connect images 402-1 and 402-2. Long rod array 4
01 is generally provided in m pieces (m is plural). 403-1
and 403-2 are a COD array sensor group arranged so that the light receiving direction matches the images 402-1 and 402-2, and each sensor 403-1 and 403-2 corresponds to the linear scanning line image. It receives light by dividing it into sections alternately.

なお、原画面406は第4図には図示しない光源たとえ
ば第2図に示したような直管型の蛍光灯で照明されてい
る。各CODアレイセンサ403−1.4Q3−2は、
走査幅りをn等分した長さLAの区間を分担し、本実施
例ではn=4の場合が図示されている。ここで各COD
アレイセンサ403−1.403−2の素子長eは受光
面の有効長より長いだめl > L/nであるから、図
示のように各L/n区間をCODアレイセンサ群403
−1と403−2とが、交互に分担して受光する。
The original screen 406 is illuminated by a light source not shown in FIG. 4, such as a straight tube fluorescent lamp as shown in FIG. Each COD array sensor 403-1.4Q3-2 is
A section of length LA obtained by dividing the scanning width into n equal parts is shared, and in this embodiment, a case where n=4 is illustrated. Here each COD
Since the element length e of the array sensor 403-1 and 403-2 is longer than the effective length of the light receiving surface, l>L/n, each L/n section is connected to the COD array sensor group 403 as shown in the figure.
-1 and 403-2 alternately share and receive light.

すなわち、n分割された区間のうち、たとえばCCDア
レイセンナ403−1は奇数区間を、CCDアレイセン
ナ403−2は偶数区間を分担し、順次走査幅りを分割
走査することにより、連続的に接続された走査信号を得
ることができる。
That is, among the n-divided sections, for example, the CCD array sensor 403-1 is assigned to the odd-numbered sections, and the CCD array sensor 403-2 is assigned to the even-numbered sections. A scanning signal can be obtained.

ロッドレンズアレイがn本、CCDアレイがn個のとき
は1つのCCDアレイが走査線長の1/mnを受けもて
ばよい。」X発明の構成において(rL、「]ッラドレ
ンズアレイ4011と401−21よ、走19400の
像を倍率1でCCDアレイセンナ403−1,4o3.
−2の受光面に投:;;ニする1、1−たがって、原画
406に対する分解能(dl、CODアレイセンサ40
Cl−1,403−2の分角イを正とほぼ等しくでき、
たとえば素J′−間ピノ−ブづ4 It m 。
When there are n rod lens arrays and n CCD arrays, one CCD array only needs to receive 1/mn of the scanning line length. '' In the configuration of the invention (rL, ``] Rad lens arrays 4011 and 401-21, the image of 19400 is scanned at a magnification of 1 by the CCD array sensor 403-1, 4o3.
1, 1- Therefore, the resolution (dl, COD array sensor 40
The minute angle i of Cl-1,403-2 can be made almost equal to positive,
For example, between the elementary J' and the pinots 4 It m.

素子数2048のCCDを用いれば、n−8てL=23
0M(A 4’l′l、l)を16,384画素に分解
できる。実際上は、ロッドレンズアレイ401−1゜4
01−2のN偉力がCCDの素子間ピッチより劣るので
、全体の分解能はロッドレンズアレイ401−1,40
1−2の11−能て決するが、こ711を考慮しても主
50μm程度の高分解能を得ることは容易である。この
」:つな高分解能C2、たとえば印刷における電子製版
用のメカニカルスキヤツ−に相当するものであり、しか
も十分な走査線長を確保でき、固体平面走査で実現でき
るという利、占が得られる。
If a CCD with 2048 elements is used, L=23 with n-8
0M(A 4'l'l,l) can be decomposed into 16,384 pixels. Actually, the rod lens array 401-1°4
Since the N power of 01-2 is inferior to the pitch between elements of CCD, the overall resolution is
1-2, but even if this 711 is considered, it is easy to obtain a high resolution of approximately 50 μm. This "high-resolution C2" corresponds to, for example, mechanical scanning for electronic plate making in printing, and has the advantage of being able to secure a sufficient scanning line length and being able to achieve solid-state plane scanning. .

第5図(fL] 、 (b+ u第4図の構成をカラー
原画の読取りに適用した場合の一実施例である。6oO
9501−1,5CM −2,503−1,503−2
はそれぞれ第4図の走査線400.ロッドレンズアレイ
401−1,401−2ICCDアレイセンサ403−
1.403−2に対応している。
FIG. 5(fL), (b+uThis is an example in which the configuration shown in FIG. 4 is applied to reading a color original image.6oO
9501-1,5CM-2,503-1,503-2
are respectively scan lines 400. of FIG. Rod lens array 401-1, 401-2 ICCD array sensor 403-
1.403-2.

604は直管型の照明光源で、(2L)の構成では一本
の光源を取り囲んで円筒状の3色分解フィルター505
が被せてあり、フィルターは赤(R)、緑(G)。
604 is a straight tube type illumination light source, and in the (2L) configuration, a cylindrical three-color separation filter 505 surrounds one light source.
is covered, and the filters are red (R) and green (G).

=tB+が円周上に等分割きれておシ、回転によって位
置が切替えられ直下の走査線をR,G、Bのいずれかの
フィルター色光で照明する。フィルターの切替えは、一
走査毎に線順次式に行われるか、または−画面走査毎に
面順次式に行われる。一方第6図(b)の構成では、照
明光源504を3本用怠し、それぞれにR,G、Bの色
フィルター605−1.505−2.505−3を被せ
て、いずれか一本を選択的に点灯することにより色分解
を行う。光源に蛍光灯を用いれば、電気的に高速度で切
替えることができるので、一走査毎に色選択を行う線順
次式でも十分に対応できる。
=tB+ is divided equally on the circumference, and the position is switched by rotation, and the scanning line immediately below is illuminated with R, G, or B filter color light. Filter switching is performed line-sequentially for each scan, or field-sequentially for each screen scan. On the other hand, in the configuration shown in FIG. 6(b), three illumination light sources 504 are used, each is covered with R, G, and B color filters 605-1.505-2.505-3, and only one of them is used. Color separation is performed by selectively lighting up the . If a fluorescent lamp is used as a light source, it can be electrically switched at high speed, so a line sequential method in which color selection is performed for each scan can be used satisfactorily.

第6図はさらに他の一実施例で、R、C,、Bに対応し
たロッドレンズアレイ601 、色フイルタ−605、
CCDアレイセンナ603をそれぞれ2組ずつ放射状に
対称に配置し、3色信号を並列同時に読取る構成である
。この場合、照明光源は白色でよく、反射原稿の場合は
照明光源604により、透過原稿の場合には裏面に置い
た照面光11jj606により照明する。
FIG. 6 shows yet another embodiment, including a rod lens array 601 corresponding to R, C, B, a color filter 605,
Two sets of CCD array sensors 603 are arranged radially symmetrically, and three color signals are read simultaneously in parallel. In this case, the illumination light source may be white; a reflective original is illuminated by an illumination light source 604, and a transparent original is illuminated by illumination light 11jj 606 placed on the back side.

発明の効果 以上のように、本発明は原i+!+i +r+i上の走
査線長と同等の有効開口幅を有する複数の自己集束性の
ロッドレンズアレイにより複数本の走査線像を結像し、
各走査線像上に複数個の一次元イメー7セ/サアレイを
離間して配列し、各イメージセンサアレイが走査線像を
分割して受光走査するようにした平面走査光学装置で、
原画面の線状の像を複数のc c、pイメージセンサア
レイ」二に分;U して、イS率1対1で投影でき、従
来の複数のレンズを用いた投影方式に比べてレンズ位置
の個々の調整の必要がなく、小型・簡便かつ安価に高分
解能をノー現できる。ロッドレンズアレイは、大判の紙
面サイズに対応できる長尺とすることが容易であり、画
面サイズによらずCODの素子間ピッチまでの高分解能
を確保でき、高精度を必要とする機械図面や半導体マス
ク図面などの読取りに効果的である。
Effects of the Invention As described above, the present invention is based on the original i+! A plurality of scanning line images are formed by a plurality of self-focusing rod lens arrays having an effective aperture width equivalent to the scanning line length on +i +r+i,
A plane scanning optical device in which a plurality of one-dimensional image sensor arrays are arranged spaced apart on each scanning line image, and each image sensor array divides the scanning line image and receives and scans the light.
The linear image of the original screen can be divided into two parts by multiple C, P image sensor arrays, and can be projected at a 1:1 ratio. There is no need for individual position adjustments, and high resolution can be achieved in a compact, simple, and inexpensive manner. Rod lens arrays can easily be made long enough to accommodate large paper sizes, and can ensure high resolution down to the pitch between COD elements regardless of the screen size, and can be used for mechanical drawings and semiconductors that require high precision. Effective for reading mask drawings, etc.

また、カラー化も容易であシ、とくにカラー写真原画衣
ど、従来はメカニカルスキャナで取扱っていた製版や医
学用のフィルムスキャナとしても利用できる。
In addition, it is easy to convert to color, and can also be used as a film scanner for plate making and medical applications, which were conventionally handled with mechanical scanners, especially for color photographic originals.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の単一レンズを用いた固体平面走査光学系
の基本構成図、第2図は複数個の単一レンズと複数個の
イメージセンサを用いて走査線幅の大きい図面を読取る
固体平面走査光学系の従来例を示す概念図、第3図ta
+〜(C)は、本発明に用いられる光集束性ロッドレン
ズおよびロッドレンズアレイの説明図、第4図は、本発
明による平面走査光学装置の実施例を示す斜視図、第5
図f2L) 、 (b)および第6図は各々本発明によ
る平面走査光学装置の他の実施例を示す側面図である。 400.500.600・ ・走査線、4011 .4
01−2,501−1 .501−2,601・・・・
・・ロッドレンズアレイ、402−1.402−2 ・
・・・像、403−1.403−2.603−1 。 503−2 、e()3・、、、、QcD7vイセンサ
、406°゛・・原稿、504.604.606・ 照
明光源、605,505−1.605−2.605・・
・色フイルタ−。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名し一
一一、−一口 3 図 (α) (b) 30/
Figure 1 is a basic configuration diagram of a conventional solid-state plane scanning optical system using a single lens, and Figure 2 is a solid-state plane scanning optical system that uses multiple single lenses and multiple image sensors to read drawings with a large scanning line width. Conceptual diagram showing a conventional example of a plane scanning optical system, Fig. 3
+ to (C) are explanatory diagrams of the light-focusing rod lens and rod lens array used in the present invention, FIG. 4 is a perspective view showing an embodiment of the plane scanning optical device according to the present invention, and FIG.
Figures f2L), (b) and Figure 6 are side views showing other embodiments of the plane scanning optical device according to the present invention. 400.500.600...Scanning line, 4011. 4
01-2, 501-1. 501-2,601...
・・Rod lens array, 402-1.402-2 ・
...Statue, 403-1.403-2.603-1. 503-2, e()3..., QcD7v processor, 406°...manuscript, 504.604.606, illumination light source, 605,505-1.605-2.605...
・Color filter. Name of agent: Patent attorney Toshio Nakao and one other person, 111, -3 Figure (α) (b) 30/

Claims (3)

【特許請求の範囲】[Claims] (1)原画面上の1本の走査線を、走査線長と同等の有
効開口幅を有するm個の自己集束性の長尺型ロッドレン
ズアレイによりm本の走査線像として結像投影し、この
m本の各走査線像上に、それぞれn個ずつの1次元イメ
ージセンサアレイが等間隔ずつ離間して1列に並べられ
、各イメージセンサアレイの各々が原画面の走査線長の
1/mnずつの分割区間を受光走査することを特徴とす
る平面走査光学装置。
(1) One scanning line on the original screen is imaged and projected as m scanning line images by m self-focusing elongated rod lens arrays having an effective aperture width equivalent to the scanning line length. , n one-dimensional image sensor arrays are arranged in a row at equal intervals on each of these m scanning line images, and each image sensor array has a length of one scanning line of the original screen. 1. A plane scanning optical device characterized by receiving and scanning light in divided sections of /mn.
(2)m個の長尺型ロッドレンズアレイは、各々のロッ
ドレンズの光軸が原画面の走査線上で一線に交わり、原
画面に対して相互に適当な角度ずつ傾斜して配置されて
いることを特徴とする特許請求の範囲第1項記載の平面
走査光学装置。
(2) The m long rod lens arrays are arranged such that the optical axes of each rod lens intersect in a line on the scanning line of the original screen, and are tilted at appropriate angles to each other with respect to the original screen. A plane scanning optical device according to claim 1, characterized in that:
(3)原画面上の走査線と投影されるm本の走査線像と
け等倍であることを特徴とする特許請求の範囲第1項記
載の平面走査光学装置。 (411次元イメー・/センザアレイは固体COD素子
であることを特徴とする特許請求の範囲第1項記載の平
面走査光学装置。
(3) The plane scanning optical device according to claim 1, wherein the scanning line on the original screen and the image of the m scanning lines projected are the same size. (The plane scanning optical device according to claim 1, wherein the 411-dimensional image/sensor array is a solid-state COD element.
JP21010583A 1983-11-09 1983-11-09 Plane scanning optical device Pending JPS60102611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21010583A JPS60102611A (en) 1983-11-09 1983-11-09 Plane scanning optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21010583A JPS60102611A (en) 1983-11-09 1983-11-09 Plane scanning optical device

Publications (1)

Publication Number Publication Date
JPS60102611A true JPS60102611A (en) 1985-06-06

Family

ID=16583891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21010583A Pending JPS60102611A (en) 1983-11-09 1983-11-09 Plane scanning optical device

Country Status (1)

Country Link
JP (1) JPS60102611A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011147049A1 (en) * 2010-05-27 2011-12-01 Colortrac Limited Document scanner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011147049A1 (en) * 2010-05-27 2011-12-01 Colortrac Limited Document scanner

Similar Documents

Publication Publication Date Title
US6005682A (en) Resolution enhancement by multiple scanning with a low-resolution, two-dimensional sensor array
CN1236357C (en) Line exposing image forming device
JPH03113961A (en) Picture reader
US4415934A (en) Image reading apparatus
JPS60102611A (en) Plane scanning optical device
JPS6320953A (en) Image pickup device
US6593559B2 (en) Image readout apparatus and image readout method using the same
JPH07193690A (en) Image reader
JPH0224660A (en) Image reading method
JPS60134556A (en) Color original reader
JPH04326655A (en) Nonmagnification reader
JPH03129965A (en) Illuminator for picture reader
JP2815392B2 (en) Image reading device
JPH06209399A (en) Picture reader
JPS59143466A (en) Photoelectric conversion device
JP4230232B2 (en) Image reading device
JPS60124169A (en) Reader
JP2892593B2 (en) Image input device
JPH0686018A (en) Color image reader
JPH02260761A (en) Image scanner
JPH10308844A (en) Magnification image reader
JPS642312B2 (en)
JPS6318863A (en) Image reader
JPH11215323A (en) Image reader
JPH08242332A (en) Picture reader