JPS5996246A - Steel wire for cold formed spring of extra high strength its production and cold formed spring of extra high strength obtained from said steel wire - Google Patents

Steel wire for cold formed spring of extra high strength its production and cold formed spring of extra high strength obtained from said steel wire

Info

Publication number
JPS5996246A
JPS5996246A JP20377582A JP20377582A JPS5996246A JP S5996246 A JPS5996246 A JP S5996246A JP 20377582 A JP20377582 A JP 20377582A JP 20377582 A JP20377582 A JP 20377582A JP S5996246 A JPS5996246 A JP S5996246A
Authority
JP
Japan
Prior art keywords
heating
temperature
ultra
steel wire
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20377582A
Other languages
Japanese (ja)
Other versions
JPH036981B2 (en
Inventor
Takao Ariga
有賀 隆雄
Yoshiki Seto
芳樹 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Koshuha Netsuren KK
Original Assignee
Neturen Co Ltd
Koshuha Netsuren KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd, Koshuha Netsuren KK filed Critical Neturen Co Ltd
Priority to JP20377582A priority Critical patent/JPS5996246A/en
Publication of JPS5996246A publication Critical patent/JPS5996246A/en
Publication of JPH036981B2 publication Critical patent/JPH036981B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To produce a titled steel wire having high toughness and high resistance to permanent set by subjecting a hot-rolled material incorporated with specific proportion of C, Si, N, Cr, V in Fe to hardening and tempering by quick heating and quick cooling thereby forming ultrafine crystal grains. CONSTITUTION:A hot-rolled material consisting, by weight, 50-0.60% C, 1.20- 1.60% Si, 0.60-0.80% Mn, 0.60-0.80% Cr, added with 0.10-0.50V, and consisting of the balance Fe and unavoidable impurities is heated, after drawing, at the prescribed heating temp. (higher by 50-100 deg.C than for a material contg. no V) at a heating rate of >=100 deg.C/sec and is then quickly cooled at a cooling rate of >=100 deg.C/sec. Said material is then heated to a prescribed tempering temp. at a heating rate of >=100 deg.C/sec and is quickly cooled. The steel wire for a cold formed extra high strength spring finished to >=180kgf/mm.<2> tensile strength is thus obtd.

Description

【発明の詳細な説明】 本発明は超高強度冷間成形はね用鋼線およびその製造方
法ならびに当該プ岡線によってイ々Iられる超高強度冷
間成形コイルばねに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultra-high-strength cold-formed spring steel wire, a method for manufacturing the same, and an ultra-high-strength cold-formed coil spring made from the Puoka wire.

6fM 利にバナジウムVを添加すると、■炭化物の析
出に伴う結晶核の数の増大およびこれら化合物による粒
成長抑制作用によって、結晶粒が微11期化する。しか
し当該■添加鋼材を熱処理する場合には、■を・含有し
ない鋼材に比べて炭化物等が固溶化し夕、ILくなるた
め、廃人れ加メ、、!璽:情度を6−モめにする必要が
あり、その程1工はV添加叶の増加に従う。ところか上
記焼入れ加熱61請度の上昇は所要加熱時]…と相俟っ
て結晶粒の粗大化を招くため、前記V絵加に伴うγ1i
Nj材の結晶粒微細化効果は熱処理における」1記、(
,1層’ll’1粒徂大化現象に相殺され、従来例では
、’Q−0,15〜0.20重量%添加した熱処理製品
では粒度番号8〜9の結晶粒となっているにすきない。
When vanadium V is added at a concentration of 6 fM, (1) the number of crystal nuclei increases due to the precipitation of carbides, and the grain growth suppressing action of these compounds causes the crystal grains to become fine 11-stage grains. However, when heat-treating steel materials containing ■, carbides and the like become solid solutions and become IL, compared to steel materials that do not contain ■. Seal: It is necessary to raise the passion level to 6-mome, and the degree of 1 kou will follow the increase of V-addition leaves. On the other hand, the above-mentioned increase in the degree of quenching heating 61 occurs at the time of required heating], which leads to coarsening of crystal grains.
The grain refining effect of Nj material is shown in “1.
, 1 layer 'll' This is offset by the phenomenon of one grain enlargement, and in the conventional example, 'Q-0,' heat-treated products with 15 to 0.20% by weight added have crystal grains with a grain size number of 8 to 9. I don't like it.

不元明者はコイルはねの高強度化が強く要請される今日
、超高強度であるにも拘らず高靭性・高1制へたり性?
有する冷間成形はね用麦1ilf線を得るためには結晶
粒の超微−5化が極めて有効であると思料し、従来のば
ね用鋼種である5AE9254相当材にvl添加すると
ともに、結晶粒の相大化を抑制した熱処理全力布して、
■添加の効果全十分に引出した超高強度冷]111成形
はね用i?::ll )腺およびその製造方法ならびに
当該、ε11・’j 1lii!によって得られる超高
強度(/l″iji:i)成形コイルばねを提供して上
紀要謂に応えるものである。
In today's world where there is a strong demand for high strength coil springs, Fugenmeisha has high toughness and high tenacity despite being ultra-high strength?
We believe that ultra-fine crystal grains are extremely effective in obtaining 1ilf wire for cold-formed springs, so we added vl to a material equivalent to 5AE9254, which is a conventional steel type for springs, and By applying full heat treatment to suppress the enlargement of
■Ultra-high-strength cold that fully brings out the effects of addition] 111 for molding spatter i? ::ll) Gland and its manufacturing method and the same, ε11・'j 1lii! The purpose of the present invention is to provide an ultra-high strength (/l''iji:i) formed coil spring obtained by the above method, thereby meeting the requirements of the above article.

本願第1発明の要旨は、重量成分比C;0、50〜0.
60%、   Sも ;   1. 2 0 〜1.6
0 % 。
The gist of the first invention of the present application is that the weight component ratio C: 0, 50 to 0.
60%, S too; 1. 2 0 ~ 1.6
0%.

Mn; 0.60〜0.80 % 、 Cr: 0.6
0〜0.80%を含イイし、これにV ; 0.10〜
0.50%を絵肌して残部がhおよび不可避的不純物か
らなる熱間圧延材に急速加熱および急速冷却による焼入
れ・続戻し熱処理を施して得られる線材の結晶粒が超微
細であること全特tりとする超17,5強度冷間成形は
ね用鋼線にある。
Mn: 0.60-0.80%, Cr: 0.6
Contains 0 to 0.80%, and V; 0.10 to
The crystal grains of the wire rod obtained by subjecting a hot-rolled material with 0.50% roughness and the remainder consisting of h and unavoidable impurities to quenching and subsequent reconditioning heat treatment by rapid heating and rapid cooling are ultra-fine. The special feature is super 17.5 strength cold-formed spring steel wire.

しかして本11.u1第1発明を天施するだめの本鳳”
を第2発明の、要旨は、 (1)重量成分比C; 0.50〜0.60係、 Si
 ;1、20〜1.60 % 、  Mフr  ;  
 0. 6 0 〜080 チ 。
However, book 11. U1 First Invention of God's Honho”
The gist of the second invention is as follows: (1) Weight component ratio C: 0.50 to 0.60, Si
; 1, 20-1.60%, Mfr;
0. 60-080 chi.

Cr; 0.60−0.80 %’f含有し、これに■
;0.10〜0.50%を添加して残部がhおよび不可
避的不純物からなる熱間圧延材を、(2)引抜きしたの
ち100℃/ sec以上の加熱7,11度をもって所
定のθ′ト入れWr’を度に加熱のうえ1 (3) 1−00℃/ sec以上の冷却速IMi ’
cもって急冷し、 (4)つづいて100℃/ sec以上の加熱速度をも
って所だの焼戻し温度まで加熱して届、冷し、 (5)引張り強さ180 Kgf / mm’以上に仕
上げた11石4m性・1′1肩U]へたり性を有するこ
とを特徴とする 超高・」Δ)度冷間成形ばね用鋼線の製造方法にある。
Cr; Contains 0.60-0.80%'f, and ■
; A hot-rolled material with 0.10 to 0.50% added and the remainder consisting of h and unavoidable impurities is (2) drawn out and then heated to 7.11 degrees at 100 degrees C/sec or more to a predetermined θ' Heating Wr' at a time 1 (3) Cooling rate IMi' of 1-00℃/sec or more
(4) Subsequently, the stones were heated at a heating rate of 100°C/sec or more to the tempering temperature in place, cooled, and (5) 11 stones finished with a tensile strength of 180 Kgf/mm' or more. The present invention provides a method for producing an ultra-high steel wire for cold-formed springs, which is characterized by having 4m strength and 1'1 shoulder U] settability.

′8j:/こ、」二1;己本九了1 a’ 1づ西明を
用いて得られる不I預りj名3発明の要旨は、 (1)重量成分比C;0.50〜0.6′18.、Sも
;1.20〜1.60%、廟: 0.60〜0,80係
'8j:/KO,'21;Kihonkuryo1 a' 1Zu Nishimei 3The gist of the invention is as follows: (1) Weight component ratio C; 0.50 to 0 .6'18. , S: 1.20-1.60%, Mausoleum: 0.60-0.80%.

Cr; 0.60〜0.80%全含有し、これにV;0
.10〜0.50係を添加して残部がhおよび不可避的
不純物からなる熱間圧延材に急速加熱および漕、速冷却
からなる熱処」」と冷間成形(il−施して得られるコ
イルばねが、(2)低温し1ム鈍軟化抵抗件にすぐれて
いて、(3)高]I旧久住・高IIII]へたり性全具
えていること金酌俄とする 超高強度冷間成形コイルはねにある。
Total content of Cr; 0.60 to 0.80%, and V; 0
.. Coil springs obtained by applying a heat treatment consisting of rapid heating, bathing, and rapid cooling to a hot-rolled material with the addition of 10 to 0.50% and the remainder consisting of h and unavoidable impurities. However, it is an ultra-high-strength cold-formed coil that (2) has excellent resistance to 1-μm dull softening at low temperatures, and (3) has all of the following: It's on the edge.

本発明を以下に詳述する。The invention will be described in detail below.

本発明のg 1の技術思想は、従来はね州外1種とされ
ている線材に比較的多量の■f添加し、当該Vの添加に
伴って必然的に高くなる焼入れ加熱温度、寸た高い加熱
温度にするために要する加熱時間の延長がもたらす結晶
粒の粗大化を急速加熱・急速冷却による焼入れによって
抑:l1llすることにある。即ち引抜きによって所定
の線径に調えられた■添加冷間成形ばね用高強度腺材の
素材全非V含有材の現入れ温度より50〜100℃高め
のオーステナイト化が十分達成可能な、例えば900〜
]、、 050℃の焼入れ加熱温度寸で100℃/ s
 e c以上の加熱速度をもって昇温せしめる。この場
合加ρ、11時間が]、b’sec以内、必要に応じて
線材中心部までオーステナイト化達成のために採られる
保持時間をも含めて3 Q see以内である如く、極
めて急速な加熱・高温帯域に7.1ilj留する時間が
極めて短かい短時間加熱が好寸しい。かくすることによ
って結晶粒の粗大化の時ti:ii を与えずに」二記
所足の現入れ加熱温度とし、当該温度に達した線材を1
00℃/s e c以上の冷却速度をもって直ちに急冷
して、当該急冷によってさらに結晶粒の粗大化防止と十
分な焼入れを・施す。
The technical idea of g1 of the present invention is to add a relatively large amount of ■f to the wire rod, which has conventionally been classified as non-resistance type 1, and to increase the quenching heating temperature, which inevitably increases due to the addition of V. The purpose is to suppress coarsening of crystal grains caused by the extension of the heating time required to reach a high heating temperature by quenching by rapid heating and rapid cooling. That is, the material of the high-strength gland material for additive cold-formed springs, which has been adjusted to a predetermined wire diameter by drawing, can be sufficiently austenitized at a temperature of 50 to 100° C. higher than the actual filling temperature of all non-V-containing materials, for example, 900. ~
],, 100℃/s at quenching heating temperature of 050℃
The temperature is raised at a heating rate of e c or higher. In this case, the heating time is extremely rapid, such that the heating time is within 3 Q see, including the holding time taken to achieve austenitization up to the center of the wire, if necessary. Short-time heating in which the time for residence in the high-temperature zone is extremely short is preferred. By doing this, the heating temperature is set at the same temperature as ``2'' without giving ti:ii when the crystal grains coarsen, and the wire rod that has reached that temperature is heated to 1.
It is immediately quenched at a cooling rate of 00° C./sec or higher, and the quenching further prevents coarsening of crystal grains and sufficiently hardens it.

本発明のへ32の技術思想は、上記焼入れに引きわ゛ご
いて施きれる焼戻しにおいても、線材を加熱速度100
℃/、See以上で例えば300〜650℃の間の所定
焼戻し温度まで急速加熱し、100℃/ 3eC以上の
冷却速度で急冷することによって、マトリックス中にV
富化ゾーンを多発させ、これによりCr炭化物の凝集お
よび成長を抑制せしめるとともに、当該焼戻し後に施さ
れる冷間成形につづくひずみ収り低uur 焼鈍tl:
’14における析出硬化の可能性全もたぜる。こ力、は
多発した■を富化的に含む・頭域内のVが冷同コイリン
グ加工により増夕1αした転位のエネルギー′(il−
得て、■炭化物の生成をより容易とすることを・ねらう
ものである。
The technical idea of item 32 of the present invention is that even in the tempering that is applied after the above-mentioned quenching, the wire rod is heated at a heating rate of 100.
V in the matrix by rapidly heating to a predetermined tempering temperature, e.g., between 300 and 650°C, at a temperature of 100°C/3eC or more, and rapidly cooling at a cooling rate of 100°C/3eC or more.
Enriched zones are formed frequently, thereby suppressing the agglomeration and growth of Cr carbides, and reducing strain convergence following cold forming performed after the tempering.
'14 also eliminates the possibility of precipitation hardening. This force is enriched with the frequently occurring ■.The V in the head region is increased by 1α due to the cold coiling process, and the dislocation energy ′(il-
The aim is to make it easier to produce carbide.

すなわち、■とCと転位との相互作用により、その後に
実施されるひずみ取り全目的とした低i’A′!、焼鈍
において析出硬化が促進され、これが要因となって極め
て高い軟化抵抗性全発現しうろこととなる。本来ひずみ
取り低温焼鈍は処理温度が高い程コイルばねの耐久性の
安定化に効果的であるが、処理温度をあまり、りくとる
と、折角焼入れ焼戻し熱処理によって綴材を高強度化し
ても、当該焼鈍処理で強度低下をきたす。換言すれば焼
鈍処理温間が線材の高強度化を規制するので、1司い欧
化抵抗性があれば高い焼鈍処理温度で+Iil久住の安
だした?、25強度のコイルはね全得ることが可能とな
る。従って当該焼戻し処理により、線材には」1記冷間
コイリング後の低温焼鈍時の効果音も踏甘え、Cr  
炭化物の凝集および成長全抑制した結果として組織が微
細となって冷間成形性が確保され、この冷間成形性全背
景として引張り強さ1801(7f / nnn2以」
二、例えば200 i<yf / mm 2の如き超高
強度に仕上げることにある。
In other words, due to the interaction between ■, C, and dislocations, the subsequent strain relief is achieved with low i'A'! Precipitation hardening is promoted during annealing, and this becomes a factor that results in extremely high softening resistance. The higher the treatment temperature, the more effective low-temperature annealing for strain relief is in stabilizing the durability of coil springs. Strength decreases during annealing. In other words, the temperature of the annealing treatment controls the increase in strength of the wire, so if there is resistance to Europeanization, a high annealing temperature will result in a +Iil Kusumi price. , it becomes possible to obtain the full strength of a coil of 25 strength. Therefore, due to the tempering process, the wire rod is made of Cr.
As a result of completely suppressing the agglomeration and growth of carbides, the structure becomes fine and cold formability is ensured, and as a result of this cold formability, the tensile strength is 1801 (7f / nnn2 or more).
Second, to achieve ultra-high strength, for example, 200 i<yf/mm2.

以上第1および第2の技術思想の実施によって、はね線
材への■添加の効果が最大限に引き出されて結晶粒の超
微細化ならびに組織の微細化が達成され、高靭性・高耐
久性・高l1w上へたり性を有する冷間成形性に富んだ
超高強度はね用銅線を得るものである。
By implementing the above first and second technical ideas, the effect of adding ■ to the spring wire material is maximized, ultra-fine crystal grains and microstructures are achieved, and high toughness and high durability are achieved. - To obtain an ultra-high strength copper wire for springs that has high l1w and excellent cold formability.

木兄19]者は、上1己本発明のはね線材へのV添加と
、急速加熱・、急速冷却による焼入れとが如何に効果的
に相互作用し合うか、また急速加熱・急速冷却による焼
戻しが当該■添加急速焼入れ実施線材に対して如何に相
乗的な効果音もたらすかを確認するため下記実験1およ
び実1験2を行なった。
[19] The author of this paper first investigated how the addition of V to the spring wire of the present invention and the quenching by rapid heating and rapid cooling interact with each other, and how the addition of V to the spring wire of the present invention interacts with each other, and Experiment 1 and Experiment 1 and 2 below were conducted in order to confirm how tempering would produce a synergistic sound effect for the wire rod subjected to rapid quenching with the addition of (1).

実験1゜ (1)天1験方f去;はね;jjiijとして知られて
いる5AE9254相当制と当該相当材にv−2ぞれそ
れ0.12,0.24,0.37,0.53重量係つつ
;65加した第1表に示す5種類の熱1「4jEE延線
拐を・・供試体として使用し、これら供試体それぞれを
引抜きによって1. Q mmφに整寸し、それぞれに
急速加熱・思通冷却からなる焼入れ焼戻し熱処理全力布
し、得られた熱処理済GIWj線の結晶粒度を調へた。
Experiment 1゜(1) The 5AE9254 equivalent system, also known as jjiij, and the corresponding material were tested with v-2 of 0.12, 0.24, 0.37, and 0.0, respectively. Using the five types of heat 1"4jEE rolled wire shown in Table 1 with 53 weight and 65 added as specimens, each of these specimens was sized to 1.Q mmφ by drawing, and each A full quenching and tempering heat treatment consisting of rapid heating and through cooling was carried out, and the grain size of the obtained heat-treated GIWj wire was examined.

(2)熱処]Jj条件 焼入れ加熱温度は供試体は)で900℃、供試体(■)
で1,050℃とし、それぞれVの添加量の増加に従っ
て供試体(L[) 、 (III)および(l〜つは上
記の温度の中間に設定した。
(2) Heat treatment] Jj condition quenching heating temperature is 900℃ for specimen (), specimen (■)
The temperature was set at 1,050°C, and the test specimens (L[), (III) and (l~) were set at an intermediate temperature between the above temperatures as the amount of V added increased.

各供試体それぞれの目標温度捷での昇温加熱時間ならび
に保持時間を含めて30 see以内で行ない、ILl
ぢに成分に応じた条件で急冷焼入れした。焼戻しの加熱
温度・加熱速度および冷却速度は全供試体音一定条件で
処理した。
The ILl
The material was rapidly cooled and quenched under conditions depending on the composition. The heating temperature, heating rate, and cooling rate for tempering were kept constant for all specimens.

ちなみに供試体(I■)における熱処理条件を下記する
Incidentally, the heat treatment conditions for the specimen (I) are shown below.

焼入れ;加熱温度;1,000℃ 加熱速度; 350℃/ SeC 保持時間;’17sec 冷却速度; 265℃/ see 焼戻し;加熱温度; 500℃ 加熱・保持時間;1!5sec 冷却速度; 165℃/ 5ec (3)組織の結晶粒間di11定 上記熱処理済各供試体についてJIS%j格に従つ/こ
測定方法により結晶粒度全測定した。II)11定結果
を第2表に粒度119号で表現した。
Quenching; Heating temperature; 1,000℃ Heating rate; 350℃/SeC Holding time; '17sec Cooling rate; 265℃/see Tempering; Heating temperature; 500℃ Heating/holding time; 1!5sec Cooling rate; 165℃/5ec (3) Intergrain di11 determination of structure All grain sizes were measured for each of the above heat-treated specimens using the measurement method according to the JIS %j rating. II) 11 The results are expressed in Table 2 using particle size No. 119.

第2表 伺、比較のためVの添加なしの供試体(I)およびV;
0.24%添加の供試体(ni)の結晶粒の顕微鏡写真
をそれぞれ第1図(a)および(b)として示す。倍率
はともに400倍である。
Table 2, specimen (I) without addition of V and V for comparison;
Microscopic photographs of the crystal grains of the specimen (ni) with 0.24% addition are shown in FIGS. 1(a) and 1(b), respectively. Both magnifications are 400x.

上記実験1の結果から、急速加熱・急速冷却からなる熱
処理は、従“来V ff 0.20%添加して結晶粒度
を8〜9程度とするのが限度であった常識全打破るとと
もに、同一条件の熱処理を施した非■添加材である供試
体(I)の測定結晶粒度奇岩10.0’iはるかに上廻
る結晶粒度番号12.0という超微細化が達成され、■
添加と急速加熱・急速冷却の効果的な相互作用が明イ1
イ(に確認された。
From the results of Experiment 1 above, heat treatment consisting of rapid heating and rapid cooling breaks the conventional wisdom that the limit was to add 0.20% V ff and make the grain size about 8 to 9. Measured crystal grain size of specimen (I), which is a non-additive material subjected to heat treatment under the same conditions, is 10.0'i. An ultra-fine grain size of 12.0, which far exceeds the
The effective interaction between addition and rapid heating/cooling is clear 1
Confirmed by

さらに本発明者は、本発明の上記実験結果を従来のV添
加熱処理材(電気炉加熱焼入れ・電気炉加熱焼戻し)の
結晶粒度と比較した。
Furthermore, the present inventor compared the above experimental results of the present invention with the crystal grain size of conventional V-added heat-treated materials (electric furnace heating quenching/electric furnace heating tempering).

これを第2(図に示す。第2図は横軸にVの添加量をと
り、縦軸に結晶の粒度番号をとった座標上に上記実験1
の測定結果をプロットし、実線全もって傾向特性曲線を
画いたものを、破線で示す従来の■添加熱処理材におけ
る■添加量に関する結晶粒度特性曲線と対比した線図で
ある。第2図によって、0.10%以上のV添加と急速
加熱・急速冷却による本発明の熱処理との相互作用が結
晶粒の超微細化に極めてフカ果的に発揮されているかが
明瞭看取さ7しる。
This is shown in Figure 2. In Figure 2, the amount of V added is plotted on the horizontal axis, and the grain size number of the crystal is plotted on the vertical axis.
FIG. 3 is a diagram in which the measurement results are plotted, and a trend characteristic curve is drawn using all the solid lines, and the plot is compared with the grain size characteristic curve regarding the amount of addition in the conventional (1) additive heat-treated material shown by the broken line. From Figure 2, it can be clearly seen that the interaction between the addition of V of 0.10% or more and the heat treatment of the present invention using rapid heating and cooling is extremely effective in making the crystal grains ultra-fine. 7 sign.

以上の結果から本発明の第1の技術思想の有効性は十分
に実証されたが、さらに本発明の第2の技術思想の有効
性として挙げた冷11」]コイリング後に行なわれる低
温焼鈍時の軟化抵抗性の上昇に急速加熱・急速冷却によ
る焼戻しが如何に効果的に寄与するか全実証するため、
次の実験を行なった。
From the above results, the effectiveness of the first technical idea of the present invention has been fully demonstrated. In order to fully demonstrate how tempering by rapid heating and rapid cooling effectively contributes to increasing softening resistance,
The following experiment was conducted.

実験2゜ (1)実験方法;第1表に供試体116 (IV)とし
て示される線材を実験1で実施したと同様の焼入れ条件
により焼入れしたのち、当該焼入れ済線材’iA’−,
B2つの供試体群に分け、A供試体群には本発明にかか
る急速加熱・急速冷却による焼戻し全、またB供試体群
には電気炉を用いた通常の焼戻し全それぞれ施して、A
−B両供試体群それぞれ全引張シ強さ200に9f 7
mm2に仕上げ、ついで低温焼鈍全想定した種々の温度
条件(300−J500℃)での40分間のiJf気炉
加熱を施した後、各供試体ごとの引張り強さを測定した
Experiment 2゜(1) Experimental method; After quenching the wire rod shown as specimen 116 (IV) in Table 1 under the same quenching conditions as in Experiment 1, the quenched wire rod 'iA'-,
B The test specimens were divided into two groups, and the test specimen group A was fully tempered by rapid heating and rapid cooling according to the present invention, and the test specimen group B was fully tempered using an electric furnace.
-B Both specimen groups each have a total tensile strength of 200 and 9f 7
mm2, and then subjected to iJf air furnace heating for 40 minutes under various temperature conditions (300-J500°C) assumed for low-temperature annealing, and then the tensile strength of each specimen was measured.

(2)実験結果:第3図に示すとおりであった。(2) Experimental results: As shown in FIG.

菓3図は横軸に低温焼鈍相当温度をとシ、縦軸に引張り
強さをとった座標上にA供試体群の測定値から求めた特
性曲線を実aAで、寸たB供試体群の測定値から求めた
特性III目k) を破線Bで示した温度に対する引張
り強さの変化を表わす関係図である。
In Figure 3, the horizontal axis shows the temperature equivalent to low-temperature annealing, and the vertical axis shows the tensile strength. FIG. 3 is a relationship diagram showing the change in tensile strength with respect to temperature, with the broken line B indicating the characteristic III k) obtained from the measured values of .

上記実(荻結果から、本発明の第2の技術思想における
急速加熱・急速冷却による焼戻しのもたらす低温焼鈍軟
化抵抗性向上の効果は、へ″6入れ焼戻しによって与え
られた引張り強さ200 Kgf /7nm2f保持す
る限界の温度を示す本発明実施供試体の温度(TA>が
従来電気炉加熱焼戻し実施供試体の温度(TB)よりほ
ぼ50℃高いことから証明され、これにより、より高強
度な鋼線を製造しても冷間コイリング後のひずみ取り全
十分性なうことが可能となるので、超高強度鋼線のもつ
性能全十分に引き出しイ0ることか確認された。
From the above results, the effect of improving low temperature annealing softening resistance brought about by tempering by rapid heating and rapid cooling in the second technical concept of the present invention is that the tensile strength 200 Kgf / This is evidenced by the fact that the temperature (TA>) of the present invention specimen, which indicates the limit temperature for maintaining 7 nm2f, is approximately 50°C higher than the temperature (TB) of the conventional electric furnace heated and tempered specimen. Even if the wire is manufactured, it is possible to fully remove the strain after cold coiling, so it has been confirmed that the full performance of ultra-high strength steel wire can be brought out.

f^J上記実験は冷11」jコイリング後の使用線材に
ついて行なえば本発明急速焼戻しのもたらす〕′〔の効
果全実証しうるものであるが、冷間コイリング後の使用
線拐を引張り強さ測定のため直線状にするのは極めて困
離であるので、冷間コイリングを施さない供試体で測定
した。
If the above experiment is conducted on the wire used after cold coiling, it will be possible to fully demonstrate the effects of the rapid tempering of the present invention. Since it is extremely difficult to form a straight line for measurement, measurements were made using a specimen that was not subjected to cold coiling.

それ故、上記実験は冷間成形時の転位エネルギーの■と
Cとに及ぼす相互作用効果を直接立証するものではない
が、当該相互作用効果を欠いた実験においても上記の如
く軟化抵抗性の向」二が顕著であることが確認されてい
るので、冷間コイリング金族すことによって更に大きな
効果のもたらされることが当然期待され、後述のコイル
ばね確性試験結果によって証明されるところである。
Therefore, although the above experiment does not directly prove the interaction effect of dislocation energy on ① and C during cold forming, even in experiments lacking this interaction effect, the softening resistance is improved as described above. 2 has been confirmed to be significant, so it is naturally expected that cold coiling metals will bring about even greater effects, and this will be proven by the results of the coil spring reliability test described below.

本発明者は」二連の本発明にか\る超微細結晶粒であっ
て、高強度に仕上げた高靭性・高齢へたシ性を有する鋼
線を冷開成形して荷た圧縮コイルばねが、所期の性能を
示すや否や確性試験を行なった。多数の実験の中から一
例を下記に示す。
The present inventor has developed a compression coil spring loaded by cold-opening a steel wire having ultra-fine crystal grains, high strength, high toughness, and aging resistance according to the present invention. However, as soon as it showed the expected performance, it was tested for accuracy. One example from a large number of experiments is shown below.

実験3゜ (1)使用線材 化学成分;実験1の供試体(ill )と同一(V;0
.24係含有) 結晶粒度番号;11.8 線   径; 10. Oにφ 引張り強さ;204.OKりf/am2絞      
9 ; 45係 (2)冷間コイル成形 上記線材を下記のコイルばねに冷開成形し、成形による
ひずみ取りのため電気炉で処理温度全400℃として4
0分間低温規焼鈍て仕上げた。
Experiment 3゜(1) Chemical composition of the wire rod used; Same as the specimen (ill) of Experiment 1 (V; 0
.. 24) Grain size number: 11.8 Wire diameter: 10. O to φ Tensile strength; 204. OK f/am2 aperture
9; Section 45 (2) Cold coil forming The above wire rod was cold-opened into the following coil spring, and in order to remove the strain caused by forming, the treatment temperature was 400°C in total in an electric furnace.
It was finished by low-temperature annealing for 0 minutes.

実施例D/d=6 (3)コイルばねの性能 a、τmax= 12 QKgf /=2での応力条件
で20万回以上の耐久性能あり す、上記条件でのへたりγ<3X10″上記実験例から
本発明を実施して得られる鋼線は結晶粒が超微細化して
いるため、超高強度に仕上げであるにも拘らず高靭性・
高1(l人件・高齢へたり性を有するので高強度全要求
される冷間成形コイルばね用鋼線として極めて優れてい
ることが、これを用いて冷間成形して得たコイルばねの
性能によって証明された。
Example D/d = 6 (3) Coil spring performance a, τmax = 12 QKgf / = 2 stress condition, durability of 200,000 times or more, set in the above conditions γ<3X10'' Above experimental example Since the steel wire obtained by carrying out the present invention has ultra-fine crystal grains, it has high toughness and high strength despite being finished with ultra-high strength.
High 1 (1) The steel wire is extremely excellent as a steel wire for cold-formed coil springs, which requires high strength due to its tendency to deteriorate due to labor and aging, and the performance of coil springs obtained by cold-forming using this steel wire proved by.

本発明における急速加熱手段としては誘導加熱あるいは
直接通電加熱が最適である。
Induction heating or direct current heating is most suitable as the rapid heating means in the present invention.

また本発明では焼入れ加熱において高温帯域に滞留する
時間を極端に短時間とする900〜1.100℃範囲の
高温域への急速加熱の要請、および焼戻し加熱における
Cr  炭化物の凝集および成長抑制と低温焼鈍軟化抵
抗性を高めるための急速加熱の要請に応するためには、
少なくとも加熱速度は100℃/ sec以上である必
要があり、また急速加熱効果を十分発現させるために要
請される冷却速度も100℃/ 、sec以上であるこ
とが必要であり、上記加熱速度・冷却速度それぞれ以下
ではV添加の効果を十分引き出し得ないことを本発明者
の行なった他の多数の実験から判明している。
In addition, the present invention requires rapid heating to a high temperature range of 900 to 1.100°C to extremely shorten the residence time in the high temperature zone during quenching heating, and suppression of agglomeration and growth of Cr carbide during tempering heating and low temperature. In order to meet the demand for rapid heating to increase annealing softening resistance,
At least the heating rate needs to be 100°C/sec or more, and the cooling rate required to sufficiently express the rapid heating effect also needs to be 100°C/sec or more. It has been found from numerous other experiments conducted by the present inventors that the effects of V addition cannot be fully exploited at lower speeds.

さらにVの添加量が0.50%以上となると焼入れ温度
・高温域滞留時間の関係から、急速加熱・急速冷却によ
る焼入れにも限界が生じ、実験1における第2表でも明
らかなとおり、■の添加による効果かやヌ低くなる傾向
となるので、本発明ではV添加量−t C+、 5o%
以内におさえた。
Furthermore, when the amount of V added exceeds 0.50%, there is a limit to quenching by rapid heating and rapid cooling due to the relationship between the quenching temperature and residence time in the high temperature region, and as is clear from Table 2 in Experiment 1, Since the effect of addition tends to be slightly lower, in the present invention, the amount of V added -t C+, 5o%
I kept it within.

本発明はばね鋼材として最適の5AE 9254相尚材にVffiO,10〜0.50%範囲内
で添加した熱間圧延材を、急速加熱・急速冷却による焼
入れ奮励して粒度番号が12.0であるような超微細結
晶としたうえで、急速加熱・急速冷却による焼戻しを施
して組絨が微細な冷間成形性の極めて高い、かつ冷間成
形後のひずみ取シ低温焼鈍時に高い軟化抵抗性を示す鋼
線全得るものである。これを引張り強さ180 Kgf
/rnm2に仕上げても冷開成形性にすぐれており、か
くして成形された高強度コイルばねは超微細化された結
晶粒がもたらす高靭性・高齢へたり性が十分に生がされ
ることとなり、本発明はばね特性の顕著な超高強度のば
ねを工業界へ提供すること全可能とする冷間成形はね用
鋼線およびその製造方法ならびに当該鋼線によって得ら
れる超高強度冷間成形コイルばねとして貢献するところ
多大である。
In the present invention, a hot-rolled material containing 5AE 9254 phase material, which is most suitable for spring steel material, and VffiO added in a range of 10 to 0.50% is hardened by rapid heating and rapid cooling to achieve a grain size number of 12.0. After forming ultra-fine crystals, it is tempered by rapid heating and rapid cooling to create extremely fine micro-crystalline cold formability, as well as high softening resistance during low-temperature annealing and strain relief after cold forming. The steel wire shown is what you get. This has a tensile strength of 180 Kgf
/rnm2, it has excellent cold-opening formability, and the high-strength coil springs formed in this way take full advantage of the high toughness and aging resistance brought about by the ultra-fine crystal grains. The present invention provides a cold-formed spring steel wire that makes it possible to provide an ultra-high strength spring with outstanding spring characteristics to the industry, a method for manufacturing the same, and an ultra-high strength cold-formed coil obtained using the steel wire. It makes a huge contribution as a spring.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)および(b)はそれぞれ実験1における供
試体(I)および(III)の結晶粒の顕微鏡写真(4
00倍)、第2図は本発明と従来技術と全比較するため
のVの添加量と結晶粒度との関係を示す傾向特性曲線図
、第3図は本発明の焼戻し効果の1つである冷間成形後
のひずみ取り低温焼鈍時の軟化抵抗性を従来電気炉焼戻
し線材と比較する曲線図である。 特許出願人 高周波熱錬株式会社 代理人弁理士 小 林  博 第 1  図  co) 蹟試娘(1)×40゜ S状体i)      x 400 第 2 図 鍔 3 閾 (x40min)
Figures 1 (a) and (b) are micrographs (4) of crystal grains of specimens (I) and (III) in Experiment 1, respectively.
00 times), Figure 2 is a trend characteristic curve diagram showing the relationship between the amount of V added and the grain size for a complete comparison between the present invention and the prior art, and Figure 3 is one of the tempering effects of the present invention. It is a curve diagram comparing the softening resistance during low-temperature annealing for strain relief after cold forming with that of a conventional electric furnace tempered wire. Patent applicant Hiroshi Kobayashi, Patent attorney representing Koshuha Netsuren Co., Ltd. Fig. 1 co) Sekisa Musume (1) x 40° S-shaped body i) x 400 Fig. 2 Tsuba 3 Threshold (x40min)

Claims (1)

【特許請求の範囲】 ■、)重量成分比C; 0.50〜0.60チ、S4.
;1、20〜1.60 % 、  Mフr  ;  0
. 6 0 〜 o、sos。 Cr ;’0160〜0.80%を含有し、これに■;
0.10〜0.50.%’に添加して残部がhおよび不
可避的不純物からなる熱間圧延材に急速加熱および急速
冷却による焼入れ焼戻し熱処理を施して得られる線42
の結晶粒が超微細であること全特徴とする超1情強度冷
向成形はね用鋼線。 2、)線材の結晶粒度が10以上であること全特徴とす
る特許請求の範囲第1項記載の超高強度冷+ti1成形
はね用鋼線。 3、)爪i1.成分比C; 0.50〜0.60チ、 
SL ;1.20〜1.60係、 M++ ; 0.6
0〜0,80チ。 Cr; 0.60〜0.80 %に含有し、これにV;
0.10〜0.50%全添加して残部がhおよび不可避
的不純物からなる熱間圧延材を、引抜きしたのち100
℃、/’s’ec以上の加熱速度をもって所定の焼入れ
温度に加熱のうえ、100℃/ sec以上の冷却速度
をもって急冷し、つづいて100℃/ sec以上の加
熱速度をもって所定の焼戻し温度まで加熱して島、冷し
、引張り強さ180 I(gf /rnm2以上に仕上
げた高靭性・高齢へ/″iC,!2性を有することを特
徴とする超高強度冷間成形ばね用鋼機の製造方法。 4)所定の境入れ温度を非■含有材の焼入れ温度より5
0〜100℃高温に設定しであること全特徴とする特許
請求の範囲第2項記載の超高強度冷間成形はね用鋼線の
製造方法。 5、)100℃/ 3ec以上の加熱連間で加熱する時
間がjOsec以内であって、必要に応じて採られる保
持時間を含めた焼入れ加熱時1.11か30sec以内
であることt ’l’=T故とするql、1/「品求の
・阻囲第2項記載の超高強度冷間成形はね用j1111
1線の製造方法。 、3.)  、、、R、l、、−f成分比C;0.50
〜060係2Sむ;1.20〜1.60係、 M++ 
; 0.60〜0,80チ。 Cr; 0.60〜0.80 %’;f:含イ了し、こ
れに■;0.10〜0.50%を添加して残−′ijs
がhおよび不可避的不純物からなる熱間圧延材に急速加
熱およびm、速冷却からなる熱処理と冷間成形を施して
得られるコイルばねが、低6I請焼鈍軟化抵抗性にすぐ
ムでいて、高1嗣久性・高齢へたり1生を具えていると
とk *’j 03とする超高強度冷間成形コイルばね
[Claims] ■,) Weight component ratio C: 0.50 to 0.60 inches, S4.
; 1, 20-1.60%, Mfr; 0
.. 6 0 ~ o, sos. Contains Cr;'0160 to 0.80%, and ■;
0.10-0.50. %' and the remainder is h and unavoidable impurities.Wire 42 obtained by subjecting a hot rolled material to quenching and tempering heat treatment by rapid heating and rapid cooling.
A super-strength cold-formed spring steel wire characterized by ultra-fine crystal grains. 2.) The ultra-high-strength cold +ti1 formed splinter steel wire according to claim 1, characterized in that the wire rod has a crystal grain size of 10 or more. 3.) Nail i1. Component ratio C; 0.50 to 0.60 chi,
SL: 1.20-1.60, M++: 0.6
0 to 0,80 chi. Cr; Contains 0.60 to 0.80%, and V;
A hot-rolled material with total addition of 0.10 to 0.50% and the remainder consisting of h and unavoidable impurities is drawn out and then
Heating to a predetermined quenching temperature at a heating rate of 100°C/sec or more, rapidly cooling at a cooling rate of 100°C/sec or more, and then heating to a predetermined tempering temperature at a heating rate of 100°C/sec or more. An ultra-high-strength cold-formed spring steel machine characterized by high toughness and aging properties with a tensile strength of 180 I (gf/rnm2 or more) when cooled and cooled. Manufacturing method. 4) Set the predetermined temperature to 55% higher than the quenching temperature of the non-containing material.
The method for producing an ultra-high strength cold-formed spring steel wire according to claim 2, characterized in that the temperature is set at a high temperature of 0 to 100°C. 5.) The heating time for continuous heating at 100℃/3ec or more is within jOsec, and the quenching heating time including the holding time taken as necessary is within 1.11 or 30sec. = T due to ql, 1/"Quality and barrier j1111 for ultra-high strength cold-formed springs described in item 2
1 line manufacturing method. , 3. ) , , R, l, , -f component ratio C; 0.50
~060 section 2S; 1.20-1.60 section, M++
; 0.60 to 0.80 chi. Cr; 0.60 to 0.80%';
A coil spring obtained by subjecting a hot-rolled material consisting of H and unavoidable impurities to heat treatment consisting of rapid heating and rapid cooling, and cold forming, quickly loses its low 6I annealing softening resistance and has a high Ultra-high strength cold-formed coil spring with 1 durability and 1 life after aging.
JP20377582A 1982-11-22 1982-11-22 Steel wire for cold formed spring of extra high strength its production and cold formed spring of extra high strength obtained from said steel wire Granted JPS5996246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20377582A JPS5996246A (en) 1982-11-22 1982-11-22 Steel wire for cold formed spring of extra high strength its production and cold formed spring of extra high strength obtained from said steel wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20377582A JPS5996246A (en) 1982-11-22 1982-11-22 Steel wire for cold formed spring of extra high strength its production and cold formed spring of extra high strength obtained from said steel wire

Publications (2)

Publication Number Publication Date
JPS5996246A true JPS5996246A (en) 1984-06-02
JPH036981B2 JPH036981B2 (en) 1991-01-31

Family

ID=16479582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20377582A Granted JPS5996246A (en) 1982-11-22 1982-11-22 Steel wire for cold formed spring of extra high strength its production and cold formed spring of extra high strength obtained from said steel wire

Country Status (1)

Country Link
JP (1) JPS5996246A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4938811A (en) * 1988-07-15 1990-07-03 Sumitomo Electric Industries, Ltd. Steel wire for a spring and method for the production thereof
US5904787A (en) * 1995-09-01 1999-05-18 Sumitomo Electric Industries, Ltd. Oil-tempered wire and method of manufacturing the same
US6458226B1 (en) * 1998-07-20 2002-10-01 Muhr Und Bender Process for the thermomechanical treatment of steel
US7407555B2 (en) * 2001-06-07 2008-08-05 Chuo Hatsujo Kabushiki Kaisha Oil tempered wire for cold forming coil springs
JP2008261055A (en) * 2008-05-26 2008-10-30 Kobe Steel Ltd High-toughness martensitic steel
JP2016191098A (en) * 2015-03-31 2016-11-10 株式会社神戸製鋼所 Method for producing heat-treated steel wire excellent in workability
CN109252103A (en) * 2018-11-02 2019-01-22 太仓卡兰平汽车零部件有限公司 A kind of spring highly resistance steel wire and its processing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531110A (en) * 1978-08-25 1980-03-05 High Frequency Heattreat Co Ltd Workable steel product with high tensile strength, very high elongation, reduction of area, and so on for cold plastic working and manufacture thereof
JPS5687630A (en) * 1979-12-14 1981-07-16 Shinko Kosen Kogyo Kk Production of high toughness steel wire and its device
JPS57188651A (en) * 1981-05-16 1982-11-19 Aichi Steel Works Ltd Spring steel with superior hardenability and wear resistance
JPS5842754A (en) * 1981-09-04 1983-03-12 Kobe Steel Ltd Spring steel with superior heat resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531110A (en) * 1978-08-25 1980-03-05 High Frequency Heattreat Co Ltd Workable steel product with high tensile strength, very high elongation, reduction of area, and so on for cold plastic working and manufacture thereof
JPS5687630A (en) * 1979-12-14 1981-07-16 Shinko Kosen Kogyo Kk Production of high toughness steel wire and its device
JPS57188651A (en) * 1981-05-16 1982-11-19 Aichi Steel Works Ltd Spring steel with superior hardenability and wear resistance
JPS5842754A (en) * 1981-09-04 1983-03-12 Kobe Steel Ltd Spring steel with superior heat resistance

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4938811A (en) * 1988-07-15 1990-07-03 Sumitomo Electric Industries, Ltd. Steel wire for a spring and method for the production thereof
US5904787A (en) * 1995-09-01 1999-05-18 Sumitomo Electric Industries, Ltd. Oil-tempered wire and method of manufacturing the same
US6458226B1 (en) * 1998-07-20 2002-10-01 Muhr Und Bender Process for the thermomechanical treatment of steel
US6939418B2 (en) 1998-07-20 2005-09-06 Muhr Und Bender Process for the thermomechanical treatment of steel
US7407555B2 (en) * 2001-06-07 2008-08-05 Chuo Hatsujo Kabushiki Kaisha Oil tempered wire for cold forming coil springs
JP2008261055A (en) * 2008-05-26 2008-10-30 Kobe Steel Ltd High-toughness martensitic steel
JP2016191098A (en) * 2015-03-31 2016-11-10 株式会社神戸製鋼所 Method for producing heat-treated steel wire excellent in workability
CN109252103A (en) * 2018-11-02 2019-01-22 太仓卡兰平汽车零部件有限公司 A kind of spring highly resistance steel wire and its processing method

Also Published As

Publication number Publication date
JPH036981B2 (en) 1991-01-31

Similar Documents

Publication Publication Date Title
JP2001511479A (en) Method for producing weldable super-strength steel with excellent toughness
TWI696709B (en) High-strength steel with high minimum yield strength and method of producing such a steel
MXPA97008775A (en) Process to produce steel pipe without seams of great strength having excellent resistance to the fissure by tensions by sulf
EP2238271A1 (en) Wire rods having superior strength and ductility for drawing and method for manufacturing the same
WO2008013300A1 (en) Process for producing pearlitic rail excellent in wearing resistance and ductility
JPH01230713A (en) Production of high-strength and high-toughness steel having excellent stress corrosion cracking resistance
JP5089224B2 (en) Manufacturing method of on-line cooling type high strength steel sheet
JPS63241114A (en) Manufacture of high toughness and high tension steel having superior resistance to stress corrosion cracking
JPH0156124B2 (en)
JPS5996246A (en) Steel wire for cold formed spring of extra high strength its production and cold formed spring of extra high strength obtained from said steel wire
JPH1180903A (en) High strength steel member excellent in delayed fracture characteristic, and its production
JP3499705B2 (en) 950N / mm2 class tempered high-strength steel sheet having excellent homogeneity in thickness direction and low anisotropy of toughness, and method for producing the same
JPS58123858A (en) Steel for electric welded steel pipe for hollow stabilizer
JPS5952687B2 (en) Manufacturing method of tempered high-strength steel plate with excellent low-temperature toughness
JPS6320414A (en) Production of high-toughness high-tensile steel plate
JPH0233769B2 (en) YOSETSUSEINISUGURETAGOKUATSU50KIROKONOSEIZOHOHO
JPH0576522B2 (en)
JPS6358906B2 (en)
JPH06104864B2 (en) Manufacturing method of steel material for non-heat treated bolts with excellent toughness
JPS60131950A (en) High-strength steel plate for line pipe having low yield ratio and excellent resistance to hydrogen sulfide cracking and its production
JPH02133521A (en) Production of tempered high tensile steel plate having excellent toughness
JPH0967620A (en) Production of heat treated type high tensile strength steel plate excellent in brittle crack arrest property
JPS61284553A (en) Steel material for unnormalized bolt or the like having excellent toughness
JPH0121847B2 (en)
JPH0143006B2 (en)