JPS599518A - Ultrasonic wave current and flow meter - Google Patents

Ultrasonic wave current and flow meter

Info

Publication number
JPS599518A
JPS599518A JP57117922A JP11792282A JPS599518A JP S599518 A JPS599518 A JP S599518A JP 57117922 A JP57117922 A JP 57117922A JP 11792282 A JP11792282 A JP 11792282A JP S599518 A JPS599518 A JP S599518A
Authority
JP
Japan
Prior art keywords
ultrasonic
vibrator
ultrasonic transducer
ultrasonic wave
backing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57117922A
Other languages
Japanese (ja)
Other versions
JPH0311412B2 (en
Inventor
Ichiro Ogura
一郎 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57117922A priority Critical patent/JPS599518A/en
Publication of JPS599518A publication Critical patent/JPS599518A/en
Publication of JPH0311412B2 publication Critical patent/JPH0311412B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To make the leakage of an ultrasonic wave signal small and to perform highly accurate measurement even though fluid to be measured is a gas, by providing a gap between the side surface of an ultrasonic wave vibrator and the ultrasonic wave transducer-mounting surface of a measuring pipe. CONSTITUTION:An ultrasonic wave vibrator 11 is embedded and bonded in the tip of a packing material 12. The inner diameter of a case 14 is made to be larger than the outer diameter of the packing material 12 by about 1mm.. The base part side of the packing material 12 is bonded to the center of the bottom surface of the case 14. Therefore, a gap 17 is fomed between the side surface of the vibrator 11 and a transducer mounting surface and an element housing 2. Even though lateral vibration occurs in the vibrator 11, the lateral vibration is stopped by the gap 17, and only the small amount of it is propagated to the outside. The ultrasonic wave, which leaks to the housing 2 and a measuring pipe 1, is reduced to almost zero. Even though fluid to be measured is a gas, highly accurate measurement can be performed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、超音波を利用した流速流量計に係シ、特に
気体の流速や流量を測定するのに適した超音波流速流量
計に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a flowmeter using ultrasonic waves, and particularly to an ultrasonic flowmeter suitable for measuring the flow velocity and flow rate of gas.

〔発明の技術的背景とその間融点〕[Technical background of the invention and its melting point]

流体を超音波の伝搬媒質として、その伝搬時間より流体
の流速や流量を測定する超音波流速流量計は、従来より
広く利用されている。このような超音波流速流量計のト
ランスデユーサ部は通常、第1図に示すような構成とな
っている。
2. Description of the Related Art Ultrasonic flowmeters that use fluid as a propagation medium for ultrasonic waves and measure the flow rate and flow rate of the fluid based on the propagation time have been widely used. The transducer section of such an ultrasonic flowmeter usually has a configuration as shown in FIG.

即ち)測定管1に一体に設けられたニレ、メントノ・ウ
ノング2円に超音波トランスデユーサ364が配置され
、一方の超音波トランスデユーサ3よシ測定管1内を矢
印6のように通流する流体の中へ超音波信号が矢印6の
如く放射され、対向する他方の超音波トランスデユーサ
4で受信される。
That is, an ultrasonic transducer 364 is disposed at two points in the measurement tube 1, and one ultrasonic transducer 364 passes through the measurement tube 1 as shown by the arrow 6. An ultrasonic signal is emitted into the flowing fluid as indicated by the arrow 6, and is received by the other opposing ultrasonic transducer 4.

超音波トランスデユーサ3.4は第2図に示すように、
電歪圧電効果を有する水晶、ニオブ酸すチューム、ジル
コン酸鉛などの結晶やセラミックスからなる圧’itt
累子の両面に電極を被着した超音波振動子11を主体と
して構成される。
The ultrasonic transducer 3.4 is as shown in FIG.
It is made of crystals and ceramics such as quartz, niobium oxide, lead zirconate, etc. that have an electrostrictive piezoelectric effect.
It is mainly composed of an ultrasonic transducer 11 with electrodes attached to both sides of the transponder.

超音波振動子11はバッキング材12に埋め込まれてお
シ、背面に放射される超音波はこのバッキング材12に
吸収されるようにする。また、超音波振動子11上には
流体中に効率よく超音波を放射させるべく音響マツチン
グをとることと、その表面を流体内に含まれる腐蝕性の
物質から保譲することを目的としたコーテイング材13
が被着されている。そして、トランス7′hユーサ全体
t:jケース14に収納され、ねじ15によってエレメ
ントハウジング2内に固定される。
The ultrasonic transducer 11 is embedded in a backing material 12 so that the ultrasonic waves radiated to the back surface are absorbed by the backing material 12. Additionally, a coating is provided on the ultrasonic transducer 11 for the purpose of acoustic matching to efficiently radiate ultrasonic waves into the fluid and to protect its surface from corrosive substances contained in the fluid. Material 13
is covered. The entire transformer 7'h user t:j is housed in a case 14 and fixed within the element housing 2 with screws 15.

ところで、超音波振動子11は厚み方向の振動が利用さ
れるが、実際にはこの厚み振動と同時にとれy直交する
方向(棟方向)にも振動をする。この横振動の程度は、
振動子に使用される材質によって異なるが、厚み振動に
対し10%〜1%程度である。第2図で振動子11がバ
ッキング材12に埋め込んであるのは、背面方向への超
音波を吸収すると同時にこの横振動を吸収し、ケース1
4を通じてニレメントノ・ウジング2、さらには測定管
1に超音波信号が漏洩するのを減らすためである。この
ような対策は良好寿測定を行なう上で重要である。超音
波信号が漏洩すると、ニレメントノ・ウノング2や測定
管1の内部でその漏洩成分が伝搬1反射をく如返し、一
方の超音波トランスデユーサ3よυ送信され流体内を伝
搬した超音波信号と共に他方の超音波トランデューサ4
にニレメントノ・ウジング2を通じて受信されてしまい
、流速、流量測定に際し雑音となるからである。
Incidentally, the ultrasonic vibrator 11 uses vibration in the thickness direction, but in reality, it also vibrates in a direction perpendicular to y (ridge direction) at the same time as this thickness vibration. The degree of this lateral vibration is
Although it varies depending on the material used for the vibrator, it is about 10% to 1% of the thickness vibration. The reason why the vibrator 11 is embedded in the backing material 12 in FIG.
This is to reduce the leakage of ultrasonic signals to the measuring tube 1 through the tube 4. Such measures are important in measuring longevity. When the ultrasonic signal leaks, the leaked component repeats the propagation and reflection inside the transducer 2 and the measuring tube 1, and the ultrasonic signal is transmitted to one ultrasonic transducer 3 and propagated in the fluid. together with the other ultrasonic transducer 4
This is because the signal is received through the Niremento Uzing 2 and becomes noise when measuring the flow velocity and flow rate.

従来、このよう々超音波流速流量計による測定で対象と
なる流体は主に液体であ如、被測定流体の音響インピー
ダンスは3〜1,5XlO’に9/ 8−m2でセラミ
、クスのそれ(約3X10’に9/8−m )の約”/
101a度である。また被測定流体内での超音波減衰量
も0.5 dB/crn程ルであシ、振動子よυ放射さ
れる超音波信号のレベルは大きいので、ケース14を通
じてのエレメントハウジング2への超音波信号の漏洩は
一40dB程度に抑えれば十分であった。
Conventionally, the fluid to be measured by such an ultrasonic flowmeter is mainly a liquid, and the acoustic impedance of the fluid to be measured is 3 to 1,5XlO', 9/8-m2, and that of ceramic or wood. (approximately 9/8-m to 3X10')/
It is 101a degrees. Furthermore, the amount of ultrasonic attenuation within the fluid to be measured is approximately 0.5 dB/crn, and the level of the ultrasonic signal radiated from the transducer is high, so the ultrasonic wave is transmitted to the element housing 2 through the case 14. It was sufficient to suppress the leakage of the sound wave signal to about -40 dB.

しかし、被測定流体が呼吸ガスのような気体の場合、気
体の音響インピーダンスは約2X102kg/S−m!
でお如、超音波振動子と気体との音響的なマツチングが
悪くなりとともに、気体中での超音波減衰量も10 d
B/gn程度と大きいため、液体中に放射するのに比べ
て気体中での超音波放射のレベルは著しく減少し、液体
中のそれの約−40dB以下と力る。従って、第2図の
ように超音波振動子11をバッキング材12に埋め込む
場合、バッキング材1Bの振動子11の側5− 面を囲む部分を大きくしないと、漏洩[た超音波信号の
レベルが相対的に大きくなって、受信超音波信号のSA
が著しく減少し、測定が困難となる。このため超音波ト
ランスデユーサ3゜4ひいてはエレメントハウジング2
0口径の大型化を招く。しかしながら特に小口径の測定
管においては、エレメントハウジング20口径が大きく
なると、その開口部分7も大きく人るので、測定管1内
の流体の流れに乱れを生じさせ、測定娯差を生じる原因
となる。このように従来の超音波流速流量計では、被測
定流体が気体の場合、精度のよい測定は困難でありだ。
However, when the fluid to be measured is a gas such as breathing gas, the acoustic impedance of the gas is approximately 2×102 kg/S-m!
As you can see, as the acoustic matching between the ultrasonic transducer and the gas deteriorates, the amount of ultrasonic attenuation in the gas also decreases by 10 d.
Since the ultrasonic wave is as large as B/gn, the level of ultrasonic radiation in gas is significantly reduced compared to that in liquid, and is about −40 dB or less than that in liquid. Therefore, when the ultrasonic transducer 11 is embedded in the backing material 12 as shown in FIG. 2, the level of the leaked ultrasonic signal will increase unless the portion of the backing material 1B surrounding the side 5 of the transducer 11 is made large. The SA of the received ultrasonic signal becomes relatively large.
decreases significantly, making measurement difficult. Therefore, the ultrasonic transducer 3゜4 and the element housing 2
This will lead to an increase in the size of the 0 caliber. However, especially in small-diameter measuring tubes, as the diameter of the element housing 20 increases, the opening 7 of the element housing 20 also becomes larger, which causes turbulence in the fluid flow within the measuring tube 1 and causes measurement errors. . As described above, with conventional ultrasonic flowmeters, it is difficult to measure accurately when the fluid to be measured is gas.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、超音波トランスデユーサの大型化を
伴うことなく、被測定流体以外への超音波信号の漏洩を
少なくして、被測定流体が気体の場合でも高精度な測定
を行なうことができる超音波流速流量針を提供すること
でおる。
The purpose of this invention is to reduce the leakage of ultrasonic signals to other than the fluid to be measured, without increasing the size of the ultrasonic transducer, and to perform highly accurate measurements even when the fluid to be measured is gas. By providing a flow needle capable of ultrasonic flow rate.

〔発明の概要〕[Summary of the invention]

この発明は、超音波振動子の側面と測定管の6− 超音波トランスデユーサ装着面との間に空隙を設けるこ
とによシ、超音波振動子の厚み振動と同時に発生する横
振動が漏洩しないようにし、超音波振動子からは流速や
流量の測定に必要な超音波信号のみが放射されるように
したものである。すなわち、固体に比べて気体の音響イ
ンピーダンスは約10−4〜101であるので、振動子
の側面の周囲を気体にすれば、固体であるパ。
This invention prevents the leakage of transverse vibrations that occur simultaneously with thickness vibrations of the ultrasonic vibrator by providing a gap between the side surface of the ultrasonic vibrator and the ultrasonic transducer mounting surface of the measuring tube. The ultrasonic vibrator emits only the ultrasonic signals necessary for measuring flow velocity and flow rate. That is, since the acoustic impedance of a gas is about 10-4 to 101 compared to that of a solid, if the side surfaces of the vibrator are made of gas, the impedance of the solid is the same.

キング材が側面の周囲にある場合に比べて横振動は10
−4〜10−5程度も減少され、振動子の横振動はエレ
メントハウジングや測定管へ漏洩しなくなる。
The lateral vibration is 10% compared to when the king material is around the sides.
The transverse vibration of the vibrator is reduced by about -4 to 10-5, and the transverse vibration of the vibrator no longer leaks to the element housing or measurement tube.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、エレメントハウジングや測定管への
測定に寄与しない超音波信号の漏洩が効果的に抑えられ
るので、超音波振動子から直接流体中に放射される測定
に必要ガ超音波信号のみを流体中に伝搬できS/1’J
の向上を図ることができる。これは被測定流体が気体の
場合、特に有効である。また、この発明によればわずか
な空隙を設けるのみで超音波振動子の横振動の漏洩が防
止されるので、超音波トランスデユーサの寸法、エレメ
ントハウジングの口径が大きくならない。従って流体の
流れが乱れることがなく、測定精度が向上する。
According to this invention, leakage of ultrasonic signals that do not contribute to measurement into the element housing or measurement tube is effectively suppressed, so that only the ultrasonic signals necessary for measurement are emitted directly from the ultrasonic transducer into the fluid. can be propagated into the fluid S/1'J
It is possible to improve the This is particularly effective when the fluid to be measured is gas. Furthermore, according to the present invention, leakage of the transverse vibration of the ultrasonic transducer is prevented by providing only a small gap, so that the dimensions of the ultrasonic transducer and the diameter of the element housing do not become large. Therefore, the flow of fluid is not disturbed and measurement accuracy is improved.

〔発明の実施例〕[Embodiments of the invention]

第3図にこの発明の一実施例に係る超音波トランスデユ
ーサ部の構成を示す。この例では超音波振動子11はバ
ッキング12に埋め込まれず、単にその背面がバッキン
グ材12の先端面上に接着されている。この振動子11
のバッキング材12と接する面以外の面にはコーテイン
グ材13が接着または成形される。このコーテイング材
13は通常、音響マツチングのため1/4波長の厚さに
される−このコーテイング材13の外径はバッキング材
12の外径に等しいか、まだ少し小さくなるようにしで
ある。そしてケース14の内径は・寸ツキング材12外
径よシ少し大きく(is程度)してアシ、このケース1
4の底面の中央にバッキング材120基部側(振動子1
1と反対側)の端面が接着固定されている。
FIG. 3 shows the configuration of an ultrasonic transducer section according to an embodiment of the present invention. In this example, the ultrasonic transducer 11 is not embedded in the backing 12, but simply has its back surface adhered onto the front end surface of the backing material 12. This vibrator 11
A coating material 13 is adhered or molded onto the surface other than the surface in contact with the backing material 12 . The coating 13 is typically 1/4 wavelength thick for acoustic matching purposes--so that the outer diameter of the coating 13 is equal to or slightly smaller than the outer diameter of the backing material 12. The inner diameter of the case 14 is slightly larger (about is) than the outer diameter of the measuring material 12.
A backing material 120 base side (vibrator 1
The end face (on the opposite side to 1) is fixed with adhesive.

従って、コーテイング材13の側面とケース14との間
、換言すれば振動子1ノの側面と測定管1の超音波トラ
ンスデユーサ装着面であるエレメントハウジング2の内
面との間には、空隙17が形成され、振動子11・が厚
み振動をするときに同時に横振動が発生しても、この横
振動は空隙11で阻止されて10〜108度しか伝搬し
ないことになp1ニレメントノ1ウジング2や測定管1
に漏洩する超音波はtlとんどなくなる。なお、送信用
の超音波トランスデユーサ3のみならず、超音波トラン
スデユーサ4についても同様の構造とすれば、ニレメン
トノ・ウジング2から振動子1ノへ伝搬していく超音波
振動も減少する。従って、結局、受信用超音波トランス
デユーサ4の振動子で受信される超音波信号では、送信
用超音波トランスデユーサSの振動子の表面から厚み振
動によシ放射され、被測定流体を媒質として伝搬してき
た超音波信号9− のみからなるIのよい信号を受信することができる。
Therefore, there is a gap 17 between the side surface of the coating material 13 and the case 14, in other words, between the side surface of the transducer 1 and the inner surface of the element housing 2, which is the ultrasonic transducer mounting surface of the measuring tube 1. is formed, and even if transverse vibration occurs simultaneously when the vibrator 11 performs thickness vibration, this transverse vibration is blocked by the gap 11 and propagates only 10 to 108 degrees. Measuring tube 1
Ultrasonic waves leaking to tl almost disappear. In addition, if not only the ultrasonic transducer 3 for transmission but also the ultrasonic transducer 4 has a similar structure, the ultrasonic vibrations propagating from the oscillator 2 to the transducer 1 will also be reduced. . Therefore, in the end, the ultrasonic signal received by the transducer of the receiving ultrasonic transducer 4 is radiated by the thickness vibration from the surface of the transducer of the transmitting ultrasonic transducer S, and the fluid to be measured is A signal with good I consisting only of the ultrasonic signal 9- propagated as a medium can be received.

第4図はこの発明の他の実施例を示すものである。この
実施例では第3図に示した実施例のようにケース14の
底面まで空隙17を形成せず、バッキング材12の基部
12aをケース14の内径に等しい外径をもつ鍔状に形
成し、この鍔状基部12mを除くバッキング材12の周
面とケース14との間に空隙17を形成している。
FIG. 4 shows another embodiment of the invention. In this embodiment, unlike the embodiment shown in FIG. 3, the gap 17 is not formed down to the bottom of the case 14, but the base 12a of the backing material 12 is formed into a flange shape having an outer diameter equal to the inner diameter of the case 14. A gap 17 is formed between the case 14 and the circumferential surface of the backing material 12 excluding the flanged base 12m.

コノ場合、ケース14の底面附近ではバッキング材12
中に放射された超音波振動も充分減衰しているので、バ
ッキング材12の側面(鍔状基部12aの局面)がケー
ス14と接着されても振動子1ノの振動がケース14を
通してエレメントハウジング2に伝わることはない。こ
の実施例によれば、バッキング材12の鍔状基部12a
をケース14に保持することによシ、振動子11はケー
ス14の中央に位置するように正しく位置決めされるた
め、振動子11の周囲に空隙17が均等の厚さに形成さ
れ、空隙1710− による振動子1ノの横振動阻止効果をさらに上げること
ができる。
In this case, the backing material 12 near the bottom of the case 14
Since the ultrasonic vibrations radiated inside are sufficiently attenuated, even if the side surface of the backing material 12 (the surface of the flanged base 12a) is adhered to the case 14, the vibration of the vibrator 1 passes through the case 14 and is transmitted to the element housing 2. It will not be communicated to. According to this embodiment, the flanged base 12a of the backing material 12
By holding the vibrator 17 in the case 14, the vibrator 11 is correctly positioned at the center of the case 14, so that a gap 17 with a uniform thickness is formed around the vibrator 11, and a gap 1710- Therefore, the effect of inhibiting transverse vibration of the vibrator 1 can be further increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は超音波流速流量針の概要を示す断面図、第2図
は従来の超音波流速流量針における超音波トランスデユ
ー9部の構成を示す断面図、第3図および第4図はこの
発明の実施例を示す超音波トランスデユーサ部の断面図
である。 1・・・測定管、2・・・エレメントハウジング(超音
波トランスデユーサ装着部)、3e4・・・超音波トラ
ンスデユーサ、11・・・超音波振動子、12・・・バ
ッキング材、13・・・コーテイング材、14・・・ケ
ース、17・・中空隙。 出願人代理人 弁理士 鈴 江 武 彦11− 第1図 第2図 6
Fig. 1 is a cross-sectional view showing an outline of an ultrasonic flow rate needle, Fig. 2 is a cross-sectional view showing the configuration of the ultrasonic transducer 9 section in a conventional ultrasonic flow rate needle, and Figures 3 and 4 are FIG. 2 is a sectional view of an ultrasonic transducer section showing an embodiment of the invention. DESCRIPTION OF SYMBOLS 1... Measuring tube, 2... Element housing (ultrasonic transducer installation part), 3e4... Ultrasonic transducer, 11... Ultrasonic vibrator, 12... Backing material, 13 ...Coating material, 14...Case, 17...Hollow gap. Applicant's agent Patent attorney Takehiko Suzue 11- Figure 1 Figure 2 Figure 6

Claims (4)

【特許請求の範囲】[Claims] (1)  測定管に超音波振動子とこの振動子の背面を
支持するバッキング材とを含む一対の超音波トランスデ
ユーサを相対向させて装着し、これらのトランスデユー
サ間で超音波信号を送受して測定管内を通流する流体の
流速または流量を測定する装置において、前記超音波振
動子の側面と測定管の超音波トランスデユーサ装着面と
の間に空隙を設けたことを特徴とする超音波流速流量計
(1) A pair of ultrasonic transducers including an ultrasonic transducer and a backing material that supports the back surface of the transducer are mounted facing each other in the measurement tube, and ultrasonic signals are transmitted between these transducers. A device for measuring the flow velocity or flow rate of a fluid flowing through a measuring tube by transmitting and receiving, characterized in that a gap is provided between a side surface of the ultrasonic vibrator and an ultrasonic transducer mounting surface of the measuring tube. Ultrasonic flow meter.
(2)超音波振動子は厚み方向と直交する方向の寸法が
バッキング材の超音波振動子支持面の寸法以下に形成さ
れ、バッキング材は基部側のみ測定管の超音波トランス
デユーサ装着面に保持されていることを特徴とする特許
請求の範囲第1項記載の超音波流速流量計。
(2) The dimension of the ultrasonic transducer in the direction perpendicular to the thickness direction is smaller than the dimension of the ultrasonic transducer support surface of the backing material, and the backing material is attached only to the ultrasonic transducer mounting surface of the measurement tube on the base side. The ultrasonic flow rate meter according to claim 1, wherein the ultrasonic flow rate meter is held.
(3)  バッキング材は基部側端面のみ測定管の超音
波トランスデユーサ装着面に保持されていることを特徴
とする特許請求の範囲第2項記載の超音波流速流量計。
(3) The ultrasonic flow meter according to claim 2, wherein the backing material is held only on the end surface of the base side on the ultrasonic transducer mounting surface of the measuring tube.
(4)  バッキング材別は基部側が鍔状に形成され、
この鍔状基部の端面および周面が測定管の超音波トラン
スデー−サ装着面に保持されていることを特徴とする特
許請求の範囲第2項記載の超音波流速流量計。
(4) The base side of each backing material is formed into a brim shape,
3. The ultrasonic flowmeter according to claim 2, wherein the end surface and peripheral surface of the flanged base are held on the ultrasonic transducer mounting surface of the measuring tube.
JP57117922A 1982-07-07 1982-07-07 Ultrasonic wave current and flow meter Granted JPS599518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57117922A JPS599518A (en) 1982-07-07 1982-07-07 Ultrasonic wave current and flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57117922A JPS599518A (en) 1982-07-07 1982-07-07 Ultrasonic wave current and flow meter

Publications (2)

Publication Number Publication Date
JPS599518A true JPS599518A (en) 1984-01-18
JPH0311412B2 JPH0311412B2 (en) 1991-02-15

Family

ID=14723500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57117922A Granted JPS599518A (en) 1982-07-07 1982-07-07 Ultrasonic wave current and flow meter

Country Status (1)

Country Link
JP (1) JPS599518A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005338055A (en) * 2004-04-27 2005-12-08 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4213449B2 (en) * 2002-10-16 2009-01-21 愛知時計電機株式会社 Ultrasonic flow meter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005338055A (en) * 2004-04-27 2005-12-08 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
JP4707088B2 (en) * 2004-04-27 2011-06-22 愛知時計電機株式会社 Ultrasonic flow meter

Also Published As

Publication number Publication date
JPH0311412B2 (en) 1991-02-15

Similar Documents

Publication Publication Date Title
US8047081B2 (en) Flow monitoring apparatus having an ultrasonic sensor with a coupling adapter having securing mechanism
JP3104956B2 (en) Apparatus and method for acoustic analysis of mixed gas
US6983654B2 (en) Liquid level measuring device
US11137275B2 (en) Ultrasonic flow meter with lens combination
JP2003075219A (en) Clamp-on ultrasonic flowmeter
JPS6128821A (en) Ultrasonic flow meter
CN114111927B (en) High-frequency ultrasonic sensor suitable for gas flow detection
CN114111928A (en) High-frequency ultrasonic sensor suitable for gas flow detection
JP2011050758A (en) Pulse detecting device and ultrasound diagnostic apparatus
JP2012028961A (en) Method for attaching ultrasonic transducer and ultrasonic flowmeter using the same
JPS599518A (en) Ultrasonic wave current and flow meter
JPH0449948B2 (en)
JPH11230799A (en) Ultrasonic flowmeter
JP2008252202A (en) Ultrasonic transmitter-receiver, and ultrasonic flowmeter using the same
JPS61132822A (en) Ultrasonic flowmeter
JP2000304581A (en) Ultrasonic flowmeter
JP5533332B2 (en) Ultrasonic flow meter
JP2006030142A (en) Ultrasonic flowmeter
JP3144177B2 (en) Vortex flow meter
JP6393074B2 (en) Ultrasonic absorber pasting method and ultrasonic flow meter
JP2005180988A (en) Ultrasonic flowmeter
JPH11118550A (en) Ultrasonic vibrator and ultrasonic flowmeter using the same
JP7233795B1 (en) flow meter sensor
JPS61133821A (en) Ultrasonic flowmeter
JP2003139591A (en) Ultrasonic flowmeter