JPS5994744A - Whole solid-state electrochromic display element - Google Patents

Whole solid-state electrochromic display element

Info

Publication number
JPS5994744A
JPS5994744A JP20452182A JP20452182A JPS5994744A JP S5994744 A JPS5994744 A JP S5994744A JP 20452182 A JP20452182 A JP 20452182A JP 20452182 A JP20452182 A JP 20452182A JP S5994744 A JPS5994744 A JP S5994744A
Authority
JP
Japan
Prior art keywords
layer
electrochromic
short
solid
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20452182A
Other languages
Japanese (ja)
Other versions
JPH0449694B2 (en
Inventor
Masanori Sakamoto
正典 坂本
Yuko Nakajima
中嶋 祐子
Masataka Miyamura
雅隆 宮村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20452182A priority Critical patent/JPS5994744A/en
Publication of JPS5994744A publication Critical patent/JPS5994744A/en
Publication of JPH0449694B2 publication Critical patent/JPH0449694B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/1533Constructional details structural features not otherwise provided for

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

PURPOSE:To obtain the titled element hardly causing short circuit between electrodes by forming an electrically insulating film specified in thickness on a transparent electrode formed on a substrate. CONSTITUTION:The first <=50nm thick insulating layer 6 is deposited on a desirably patterned transparent electrode 2 formed on substrate 1. This layer 6 is coated with a photoresist 7 and exposed to form a photoresist layer 7 patterned only on the part in which an electrochromic layer is to be deposited. After the second >=50nm thick insulating 8 has been formed on the whole surface of the substrate 1, the photoresist layer 7 is removed, resulting in leaving the <=50nm thick insulating layer 6 in the part to be occupied by the electrochromic layer and the >=50nm thick insulating layer in the part not to be occupied by said layer. Then, at least one of the electrochromic layer 3 and at least one of a solid electrolyte layer 4 are laminated on said substrate 1, and an opposite electrode 5 is formed on the layer 4.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は全固体電気発色表示素子に関する。[Detailed description of the invention] [Technical field to which the invention pertains] This invention relates to an all-solid-state electrochromic display element.

〔従来技術とその問題点〕[Prior art and its problems]

WOsに代表される遷移金属酸化物を用いた眠気発色表
示素子はその優れた視認性から注目されてきている。
Drowsiness color display elements using transition metal oxides such as WOs have been attracting attention because of their excellent visibility.

全固体型電気発色表示素子では、in:M質に1体亀解
質を用いるためfn液亀解質を用いるものに比較して素
子の構造が簡単になる、釉液の問題がないなどの利点を
有している。全固体電気発色表示素子は一般に第1図に
ボした構造を持っている。
In the all-solid-state electrochromic display element, since a one-body turtle electrolyte is used in the in:M quality, the structure of the element is simpler than that using an fn liquid turtle electrolyte, and there are no problems with the glaze. It has advantages. All-solid-state electrochromic display elements generally have the structure shown in FIG.

すなわちガラス基板(1)上に形成さnた透明電極(2
)に遷移金属酸化物よりなる眠気発色層(3)を積層す
る。これに5ift eMyF、*NjOssiO等の
固体電解質層(4)を積層し対向也偽(5)を設けて成
る。
That is, a transparent electrode (2) formed on a glass substrate (1)
) is laminated with a drowsy coloring layer (3) made of a transition metal oxide. A solid electrolyte layer (4) such as 5ift eMyF or *NjOssiO is laminated thereon, and an opposing layer (5) is provided.

このように全固体型電気発色表示素子は形成が極めて容
易であるが、発明者らが実験を蒐ねた結果次のよう表問
題点かあることを見出した。すなわち、透明電極と対向
成極を高々1μの厚さの1・硫化物、フッ化物層をへだ
てて積層形成しているため、電極間の短絡が起こりやす
い。K!間に短絡が生じると、電気発色層、固体電解質
層に電場が印加されず、電気発色層へのイオンの注入が
起こらず、従って眠気発色が生じない不良品の原因とな
る。
Although the all-solid-state electrochromic display element is extremely easy to form as described above, the inventors have conducted experiments and found that there are some problems as described below. That is, since the transparent electrode and the opposing polarization are laminated with a layer of 1.sulfide or fluoride having a thickness of at most 1 μm separated, a short circuit between the electrodes is likely to occur. K! If a short circuit occurs between them, no electric field will be applied to the electrochromic layer and the solid electrolyte layer, and ion injection into the electrochromic layer will not occur, resulting in a defective product that does not develop drowsy coloring.

電極間の短絡0、原因は、通常、亀気発色層、固体電解
質層、ビンホ〜ル9割れに帰せられる。従って短絡を防
止するには、ピンホールの原因トする作業室中の塵を減
らすこと、具体的にはクリーンルーム中での作業が有効
と考えら扛1割れを防ぐには、PIL気発気層色固体電
解質層を緻密に形成することが必要である。
The cause of 0 short circuits between electrodes is usually attributed to the glaze coloring layer, solid electrolyte layer, and cracks in the bottle holes. Therefore, in order to prevent short circuits, it is considered effective to reduce the dust in the work room that causes pinholes, and specifically, to work in a clean room. It is necessary to form a colored solid electrolyte layer densely.

しかしながらこれらの対策は次のような問題点を持って
いる。まずクリーンルーム作業は、設備に多大な役員を
必要とし、かつこれを充分機能させるためにはその維持
管理にも労力と経費がかさみ何よりも作業性が低下して
しまう。まfc眠気発色表示素子の発色原理が、電気発
色層と固体電解質層との間のイオンの拡散に基いている
ため、電気発色層、固体酸解質層を緻密に形成すること
自体が、これらの薄膜中でのイオンの拡散を阻害するこ
とになりia電気発色特性劣化すなわち、表示コントラ
ストの低下、応答速度の低下を惹起する。
However, these measures have the following problems. First of all, clean room work requires a large number of personnel to maintain the equipment, and in order to keep the equipment fully functional, maintenance and management of the equipment requires a lot of effort and expense, and above all, work efficiency is reduced. The coloring principle of the MFC drowsiness color display element is based on the diffusion of ions between the electrochromic layer and the solid electrolyte layer, so the dense formation of the electrochromic layer and the solid acid electrolyte layer itself This inhibits the diffusion of ions in the thin film, resulting in deterioration of the ia electrochromic properties, that is, a decrease in display contrast and a decrease in response speed.

従ってVIL極短絡の問題は、全固体形ECDの製造上
、極めて大きな制約として存在していた。かつまた、現
実の文字バタンを表示する素子においては電気発色層が
形成されていない透明亀他部分が、大きな面積を占める
が、かがる透明屯)似部分も固体電解質層をはさんで対
向l(−に対向するので。
Therefore, the problem of VIL short circuit has been an extremely important constraint in the production of all-solid-state ECDs. Furthermore, in an actual device that displays character stamps, the transparent part on which the electrochromic layer is not formed occupies a large area, but the transparent part on which the electrochromic layer is not formed also occupies a large area. Since it is opposite to l(-.

固体醒解質層に生じた欠陥は直に短絡に結びつき素子の
動作を阻害する。このように薄膜積層型全固体電気発色
素子は形成容易かっ、素子厚みも薄く極めて有望な素子
ながら現実に製造する上では大きな困難を有していた。
Defects generated in the solid solute layer directly lead to short circuits and impede the operation of the device. As described above, the thin film laminated type all-solid-state electroluminescent element is easy to form and has a thin element thickness, and although it is an extremely promising element, it has been very difficult to actually manufacture it.

〔発明の目的〕[Purpose of the invention]

この発明は、上述した全固体型眠気発色素子の欠点ない
しは問題点を解消すべ(なされたもので、電極間短絡の
生じにくい構造の全固体型眠気発色素子を提供しようと
するものである。
The present invention has been made to solve the drawbacks or problems of the all-solid-state drowsiness coloring element described above, and it is an object of the present invention to provide an all-solid-state drowsiness coloring element having a structure in which short circuits between electrodes are less likely to occur.

〔発明の概要〕[Summary of the invention]

本発明の全固体眠気発色素子に1.緻密な膜を形成する
ことが容易な絶縁体層を、電気発色層が積層される透明
電極上に厚さ500X以下の膜厚で(以下第1短絡防止
層という)、かつ眠気発色ILが積層されない透明電極
上に厚さ500 A以上の膜厚でc以下第2短絡防止層
というン、送#14庖愼と対向fli極の間に設けこr
しによシtfi間の短絡を防止するものである。
The all-solid drowsiness coloring element of the present invention contains 1. An insulating layer that is easy to form a dense film is laminated on the transparent electrode on which the electrochromic layer is laminated with a thickness of 500X or less (hereinafter referred to as the first short-circuit prevention layer), and the drowsy coloring IL is laminated. A second short-circuit prevention layer with a thickness of 500 A or more and less than C is provided between the feed electrode and the opposing fli electrode on the transparent electrode that is not exposed.
This prevents short circuits between TFIs.

本発明の電気絶縁体は、異なる膜ノ早の部分を有する一
枚の膜で構成してもよいし、また第3ないし5図に示し
たように複数の膜で構成することもできる。複数膜で形
成した方が一般的に1って作−Jは容易である。透uA
曳他と対向電極間に短絡防止層を設けることは鴫気色邑
層と固体用解質との間のイオン交換を阻害し、電気発色
特性を悪化させるように推測されるが、上記第1短絡防
止層が薄く、かつ高訪電率の物質を用いることにより、
予測に反して実用上電気発色特性に殆んど影響を与えな
い。
The electrical insulator of the present invention may be composed of a single film having different film thicknesses, or may be composed of a plurality of films as shown in FIGS. 3 to 5. In general, it is easier to fabricate one film if it is formed from multiple films. transparent uA
It is presumed that providing a short-circuit prevention layer between the Hikita and the counter electrode inhibits ion exchange between the Shikiiromura layer and the solid electrolyte and deteriorates the electrochromic properties. By using a material with a thin prevention layer and high contact rate,
Contrary to predictions, it has virtually no effect on electrochromic properties in practice.

〔発明の実施例〕[Embodiments of the invention]

以下、実施例に基づいて本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail based on Examples.

実施例1 第2図は、本発明の全固体眠気発色素子の製造工程を示
す図であり、図を用いて説明する。ガラス基板(1)上
に形成され所望のパタンにバタン化さtL、 Ic透明
電極(2)上に、スパッタ法を用いて第1短絡防止層(
6)を500λ以下の膜厚で全面に堆積させる(第2図
B)。次にかかる第1短絡防止層上にフォトレジスト(
7)を塗布露光し透明−極上心気発色層を堆積させる部
分のみにフォトレジストIn (7)を残すべくバタン
化する(第2図C)。(呼びスパッタ法を用いてかがる
基板上に8132短絡防止層(8)を500^以上の膜
厚に全面形成する。しかるのち。
Example 1 FIG. 2 is a diagram showing the manufacturing process of the all-solid drowsiness coloring element of the present invention, and will be explained using the drawings. A first short-circuit prevention layer (1) is formed on a glass substrate (1) and patterned into a desired pattern on a transparent electrode (2) using a sputtering method.
6) is deposited on the entire surface with a film thickness of 500λ or less (FIG. 2B). Next, a photoresist (
7) is coated and exposed to light, and the photoresist In (7) is left on only the portion where the transparent-extreme coloring layer is to be deposited (FIG. 2C). (An 8132 short-circuit prevention layer (8) is formed on the entire surface of the substrate to have a thickness of 500^ or more using a sputtering method. Then.

レジストを除去する(いわゆるリフトオフ工程)と第2
図りの如き透明電極上で電気発色層が形成さnる部分t
′1500 A以下膜厚の艶縁111がが、形成さnな
い部分には500^以上の膜厚の絶縁膜が夫々形成され
た基板が得られる。かかる基板上に例えばWOsよフな
る電気発色層をマスク蒸Xi法あるいはフォトエツチン
グ法でバタン化し、その上にたとればZ r O,より
なる固体)Lf、ivc質ハ′否と金(Au)よ〕なる
対対向極を蒸着あるいはスパッタ形成して本発明にかか
る電気発色素子が得られる。それを第3図に断面的に示
す。このようにして得られた全固体電気発色表示素子の
特性を表1に示した。
When the resist is removed (so-called lift-off process), the second
The part where the electrochromic layer is formed on the transparent electrode as shown in the figure.
A substrate is obtained in which a glossy edge 111 with a thickness of 1500 Å or less is formed, but an insulating film with a thickness of 500 Å or more is formed in the areas where it is not formed. For example, an electrochromic layer such as WOs is formed on such a substrate by a mask evaporation method or a photoetching method, and then a solid consisting of ZrO, Lf, IVC, and gold (Au) is deposited on the substrate. ) The electroluminescent element according to the present invention can be obtained by vapor-depositing or sputtering opposing electrodes. It is shown in cross section in FIG. Table 1 shows the characteristics of the all-solid-state electrochromic display element thus obtained.

比較例として第1及び第2短絡防止層をもlヒない従来
型の4気発色表示素子をっり911−η性を比較し1こ
。表に示されたように短絡防止層を設けると電極間の短
絡を著しく低減することが可能となる。
As a comparative example, the 911-η properties of a conventional four-color display element without the first and second short-circuit prevention layers were compared. Providing a short-circuit prevention layer as shown in the table makes it possible to significantly reduce short-circuits between electrodes.

眠気発色層と固体電解質J−の間に第1及び第2短絡防
止層を設けた本実施例においては、特に第1知絡防止層
の膜厚が大であると屯気色Il!!、特性を劣化させる
。これ&−i、第1短絡防止JVがイオンの拡散路1i
lIを阻害した結果と考えられる。
In this example in which the first and second short-circuit prevention layers are provided between the drowsiness coloring layer and the solid electrolyte J-, if the thickness of the first short-circuit prevention layer is particularly large, the drowsiness color Il! ! , deteriorating the characteristics. This &-i, the first short circuit prevention JV is the ion diffusion path 1i
This is considered to be the result of inhibiting lI.

表1に示した第1短絡防止層の誘電率は、スパッタ形成
した膜厚5000Aの薄膜の周波数IR4Hzにおける
値である。いずれの試料においても短絡防止1慢の効果
が明白に認められる。表よシ、第1短路防止層の誘電率
は大であり第2短絡防止層の誘電率は小である方が電気
発色特性におよほす影響は少ないことがわかる。こru
st、短絡防止層の眠気容lが犬になり分極電荷によっ
て眠気発色層と電解質層の間のイオンのやりと9による
電流を吸収できるからである。逆に第2短絡防止層の誘
電率が大であると素子自体の靜阻容量が大になり着消色
速度が低下してしまう。
The dielectric constant of the first short-circuit prevention layer shown in Table 1 is a value at a frequency of IR4Hz of a 5000A thin film formed by sputtering. In all samples, the short-circuit prevention effect is clearly recognized. As can be seen from the table, it can be seen that the higher the dielectric constant of the first short-circuit prevention layer and the lower the dielectric constant of the second short-circuit prevention layer, the less influence it has on the electrochromic properties. Koru
This is because the drowsiness capacity l of the short-circuit prevention layer becomes large and can absorb the current caused by the ion spear 9 between the drowsiness coloring layer and the electrolyte layer due to the polarized charge. On the other hand, if the dielectric constant of the second short-circuit prevention layer is large, the blocking capacity of the element itself becomes large, and the coloring/fading speed decreases.

実施例2 上述の実施例では第1短絡防止層が透明電極上全面に設
けられていたが、第1短絡防止層をバタン化工程して第
4図に断面的に示した構造すなわち電気発色層を積層す
る部分に限定して設けることもできる。バタン化工程が
増すが酊気的にはこれが最も好しい。
Example 2 In the above-mentioned example, the first short-circuit prevention layer was provided on the entire surface of the transparent electrode, but the first short-circuit prevention layer was subjected to a battening process to form the structure shown cross-sectionally in FIG. 4, that is, an electrochromic layer. It can also be provided only in the part where it is laminated. Although the slamming process increases, this is the most preferable in terms of drunkenness.

また第5図に示したように先に第2短絡防止JvJを形
成した後に第1短絡防止層を形成することも可能である
Further, as shown in FIG. 5, it is also possible to form the first short circuit prevention layer after first forming the second short circuit prevention layer JvJ.

以上実施例において説明したように本発明にかかる全固
体眠気発色表示素子は形成も容易で製造歩留も高(実用
上大きな利点を有するといえる。
As explained in the examples above, the all-solid-state drowsiness color display element according to the present invention is easy to form and has a high manufacturing yield (which can be said to have great practical advantages).

〔発明の効果〕〔Effect of the invention〕

本発明によれば、緻密で均一な薄膜よりなる短絡防止層
で透明電極と対向電極との間を絶縁するため電極短絡が
生じにくい素子が得られる。
According to the present invention, since the short-circuit prevention layer made of a dense and uniform thin film insulates the transparent electrode and the counter electrode, an element is obtained in which electrode short-circuits are less likely to occur.

ニス千輩白Varnish thousand years white

【図面の簡単な説明】[Brief explanation of drawings]

第1図は全固体電気発色表示素子の従来例の断は本発明
にかかる全固体電気発色表示素子の断面模式図である。 (1)・・・ガラス基板、(2)・・・透明電極、(3
)・・・眠気発色層、(4)・・・固体電解質、(5)
・・・対向電極、(6)・・・第1短絡防止層、(7)
・・・フォトレジストバタン、(8)・・・第2短絡防
止層。 代理人弁理士 則 近 憲 佑(ほか1名)第1図 <C)        (/り/ 第8図 第4図 第511
FIG. 1 is a schematic cross-sectional view of an all-solid-state electrochromic display element according to the present invention, showing a conventional example of an all-solid-state electrochromic display element. (1)...Glass substrate, (2)...Transparent electrode, (3
)...Drowsy coloring layer, (4)...Solid electrolyte, (5)
... Counter electrode, (6) ... First short circuit prevention layer, (7)
... Photoresist button, (8) ... Second short circuit prevention layer. Representative Patent Attorney Kensuke Chika (and 1 other person) Figure 1 <C) (/ri/ Figure 8 Figure 4 Figure 511

Claims (1)

【特許請求の範囲】[Claims] 透明電極を所定の形にバタンニングした基板上に少くと
も一層の眠気発色層と少くとも一層の固体電解質層を積
層形成した上に対向電極を設けてなる全固体眠気発色表
示素子において、透明眠極上の電気発色層が積層される
部分の膜厚500X以下であってかつ電気発色層が積層
されない部分の膜厚が500X以上である電気絶縁性の
膜を該透明!極上に形成したことを特徴とする全固体電
気発色表示素子。
In an all-solid-state drowsiness coloring display element, which is formed by stacking at least one drowsiness coloring layer and at least one solid electrolyte layer on a substrate with a transparent electrode stamped into a predetermined shape, and then providing a counter electrode, An electrically insulating film having a film thickness of 500X or less in the part where the finest electrochromic layer is laminated and a film thickness of 500X or more in the part where the electrochromic layer is not laminated is the transparent! An all-solid-state electrochromic display element characterized by being formed with the highest quality.
JP20452182A 1982-11-24 1982-11-24 Whole solid-state electrochromic display element Granted JPS5994744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20452182A JPS5994744A (en) 1982-11-24 1982-11-24 Whole solid-state electrochromic display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20452182A JPS5994744A (en) 1982-11-24 1982-11-24 Whole solid-state electrochromic display element

Publications (2)

Publication Number Publication Date
JPS5994744A true JPS5994744A (en) 1984-05-31
JPH0449694B2 JPH0449694B2 (en) 1992-08-12

Family

ID=16491905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20452182A Granted JPS5994744A (en) 1982-11-24 1982-11-24 Whole solid-state electrochromic display element

Country Status (1)

Country Link
JP (1) JPS5994744A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188738U (en) * 1986-05-21 1987-12-01
US5176604A (en) * 1991-03-29 1993-01-05 K. K. Sakamurakikai Seisakusho Tool replacement for a multi-stage press machine
US10295880B2 (en) 2011-12-12 2019-05-21 View, Inc. Narrow pre-deposition laser deletion
US10409130B2 (en) 2010-11-08 2019-09-10 View, Inc. Electrochromic window fabrication methods
US10551711B2 (en) 2009-03-31 2020-02-04 View, Inc. Fabrication of low defectivity electrochromic devices
TWI689771B (en) * 2014-07-03 2020-04-01 美商唯景公司 Laser patterning electrochromic devices
US10795232B2 (en) 2011-12-12 2020-10-06 View, Inc. Thin-film devices and fabrication
US10802371B2 (en) 2011-12-12 2020-10-13 View, Inc. Thin-film devices and fabrication
US11426979B2 (en) 2011-12-12 2022-08-30 View, Inc. Thin-film devices and fabrication
US11865632B2 (en) 2011-12-12 2024-01-09 View, Inc. Thin-film devices and fabrication

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0522917Y2 (en) * 1986-05-21 1993-06-11
JPS62188738U (en) * 1986-05-21 1987-12-01
US5176604A (en) * 1991-03-29 1993-01-05 K. K. Sakamurakikai Seisakusho Tool replacement for a multi-stage press machine
US10551711B2 (en) 2009-03-31 2020-02-04 View, Inc. Fabrication of low defectivity electrochromic devices
US11065845B2 (en) 2010-11-08 2021-07-20 View, Inc. Electrochromic window fabrication methods
US10409130B2 (en) 2010-11-08 2019-09-10 View, Inc. Electrochromic window fabrication methods
US10295880B2 (en) 2011-12-12 2019-05-21 View, Inc. Narrow pre-deposition laser deletion
US10795232B2 (en) 2011-12-12 2020-10-06 View, Inc. Thin-film devices and fabrication
US10802371B2 (en) 2011-12-12 2020-10-13 View, Inc. Thin-film devices and fabrication
US11086182B2 (en) 2011-12-12 2021-08-10 View, Inc. Narrow pre-deposition laser deletion
US11426979B2 (en) 2011-12-12 2022-08-30 View, Inc. Thin-film devices and fabrication
US11559852B2 (en) 2011-12-12 2023-01-24 View, Inc. Thin-film devices and fabrication
US11865632B2 (en) 2011-12-12 2024-01-09 View, Inc. Thin-film devices and fabrication
TWI689771B (en) * 2014-07-03 2020-04-01 美商唯景公司 Laser patterning electrochromic devices
TWI741514B (en) * 2014-07-03 2021-10-01 美商唯景公司 Laser patterning electrochromic devices

Also Published As

Publication number Publication date
JPH0449694B2 (en) 1992-08-12

Similar Documents

Publication Publication Date Title
JPS5994744A (en) Whole solid-state electrochromic display element
US10593807B2 (en) Array substrate and fabricating method thereof
US3671819A (en) Metal-insulator structures and method for forming
JPH03190141A (en) Thin-film transistor for plate display and manufacture thereof
JP3076483B2 (en) Method for manufacturing metal wiring board and method for manufacturing thin film diode array
JP2570607B2 (en) Method for manufacturing capacitor
JPH07336118A (en) Manufacture of thin film laminated electrode
JPS60185395A (en) Thin film el element
JP2796099B2 (en) Superconducting element
JPH028400Y2 (en)
KR100661161B1 (en) Organic electro luminescent emitting device and the method for manufacturing the same
JPH01271728A (en) Liquid crystal display device
JPS60208873A (en) Manufacture of josephson junction element
JPH11112045A (en) Method for forming fine pattern and fabrication of electronic device utilizing it
JP4513166B2 (en) Inductance element manufacturing method
JPH08227743A (en) Metal electrode for oxide superconductor
JPS58102975A (en) Manufacture of display panel electrode substrate
KR100218250B1 (en) Ferroelectric capacitor decreased ohme resistor by metal contact and manufacturing method thereof
JPS60169888A (en) Manufacture of electronic thin film unit
JPH02239663A (en) Electronic element using organic semiconductor and manufacture thereof
JP2976904B2 (en) Superconducting field effect element and method for producing the same
JPS6310000Y2 (en)
JPH07159815A (en) Electrochromic element
JPH0935991A (en) Capacitor with fuse function and manufacture thereof
JPH0466919A (en) Production of liquid crystal display device