JPS5993806A - Production of needle fe-co alloy - Google Patents

Production of needle fe-co alloy

Info

Publication number
JPS5993806A
JPS5993806A JP57201401A JP20140182A JPS5993806A JP S5993806 A JPS5993806 A JP S5993806A JP 57201401 A JP57201401 A JP 57201401A JP 20140182 A JP20140182 A JP 20140182A JP S5993806 A JPS5993806 A JP S5993806A
Authority
JP
Japan
Prior art keywords
substrate
reaction
alloy
heater
needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57201401A
Other languages
Japanese (ja)
Inventor
Masaki Aoki
正樹 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57201401A priority Critical patent/JPS5993806A/en
Publication of JPS5993806A publication Critical patent/JPS5993806A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a titled alloy having high satd. magnetization and high coercive force by flowing a gaseous mixture composed or iron chloride, cobalt chloride gasified under the reduced pressure and hydrogen over a substrate and depositing a needle Fe-Co alloy. CONSTITUTION:Iron chloride and cobalt chloride are put in a boat 5 in a furnace core tube 2 for reaction, etc. and the boat is put in the position of a heater 3. A substrate 6 for deposition made of Mo or the like placed in the position of a heater 4, and the air in the tube 2 is evacuated by using a rotary pump 7. The heater 3 is heated to 250-450 deg.C and the heater 4 to 550-1,150 deg.C, whereafter hydrogen is flowed at about 100-1,000cc/min rate from a hydrogen supply bomb 1 so that the reaction for decomposition and deposition of the needle Fe- Co is induced on the substrate 6. The inside of the tube is maintained in the reduced pressure condition of about 10-200 Torr during the reaction. The heaters 3, 4 are switched off upon ending of the reaction, then the substrate 6 is removed and the deposited needle Fe-Co is recovered from the substrate 6.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高密度記録可能な針状Fe−Co合金の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing an acicular Fe--Co alloy capable of high-density recording.

従来例の構成とその問題点 現在実用に供されている磁気テープ、磁気ディスク用の
磁性粉体はほとんどγ−Fe2O3(マグヘマイト)の
針状粒子を使用している。しかし近年、磁気記録再生用
機器の小型軽量化が進むにつれて記録媒体に対する高性
能化の要求が高まってきている。すなわち高密度記録、
高出力特性および周波数特性の向上が要求されている。
Conventional Structures and Problems Most magnetic powders for magnetic tapes and magnetic disks currently in practical use use acicular particles of γ-Fe2O3 (maghemite). However, in recent years, as magnetic recording and reproducing equipment has become smaller and lighter, demands for higher performance recording media have been increasing. In other words, high-density recording,
Improvements in high output characteristics and frequency characteristics are required.

磁気記録媒体において上記のような要求を満すために必
要な磁性UIIの特性は大きな飽和磁化と筒い保磁力を
有することである。ところで従来から磁気記録媒体に用
いられている磁性材料は上記したγ−Fe2O3(マグ
ヘマイト)の他に、マグネタイト(Fe304)、二酸
化クロム(CrO+)等の磁性粉末があるが、これらの
磁性粉末の飽和磁化(σ8)は、高々9Qemu/y。
In order to satisfy the above-mentioned requirements in a magnetic recording medium, the characteristics necessary for magnetic UII are to have large saturation magnetization and cylindrical coercive force. By the way, in addition to the above-mentioned γ-Fe2O3 (maghemite), magnetic materials conventionally used in magnetic recording media include magnetic powders such as magnetite (Fe304) and chromium dioxide (CrO+). Magnetization (σ8) is at most 9Qemu/y.

保磁力(Hc)’よ高々5000e (エールステッド
)であり、これらの磁性粉末を使用した磁気記録媒体で
は再生出力および記録密度に限界を与えてしまう。
The coercive force (Hc)' is at most 5000e (Oersted), which limits the reproduction output and recording density of magnetic recording media using these magnetic powders.

更にCoを含有したCod−・Fe2Q3磁性粉では保
磁力ClTc )は8000eと商いが、飽和イt′t
、化(a s )は60〜80emu/yと低いものに
なってしまい、これもまた再生出力および記録密度に限
界を与えてしまう。最近、高出力および高密度記録に適
する特性を有する磁性粒子粉末、すなわち大きな飽和磁
化と高い保磁力を有する磁性粉体の開発が盛んである。
Furthermore, in Cod-Fe2Q3 magnetic powder containing Co, the coercive force ClTc) is 8000e, but the saturation
, a s becomes as low as 60 to 80 emu/y, which also limits the reproduction output and recording density. Recently, there has been active development of magnetic particles having characteristics suitable for high output and high density recording, that is, magnetic powders having large saturation magnetization and high coercive force.

そのような特性を有するものとしてはFe−Coを主体
とする針状磁性粉末がある。Fe−Coのρ1状磁f/
l粉末では、C8は180emu/、、Hcは1200
Qe 程g カ(’J ラれ、高い再生出力と高い記録
密度を有する媒体の作成が可能である。Fe−Coの針
状粒子をイ(Iるために従来から行なオ)れている方法
としては。
As a material having such characteristics, there is an acicular magnetic powder mainly composed of Fe--Co. Fe-Co ρ1-like magnetic f/
For l powder, C8 is 180 emu/, Hc is 1200
It is possible to create a medium with high playback output and high recording density. As for the method.

■ 酸化鉄還元法、すなわち剣状のCo含有酸化鉄粉末
を迎元性ガス中で還元しF e −Co合金の粉末とす
る方法。
(2) Iron oxide reduction method, that is, a method in which sword-shaped Co-containing iron oxide powder is reduced in an elemental gas to form Fe--Co alloy powder.

■ ボロハイドライド法、すなわち水素化ホウ素ナトリ
ウムを還元剤として、水溶液中でFe、Coの塩0(例
えば硫酸第1鉄、硫酸コバルト)を還元する方法。
(2) Borohydride method, that is, a method in which salts of Fe and Co (eg, ferrous sulfate, cobalt sulfate) are reduced in an aqueous solution using sodium borohydride as a reducing agent.

等がある。これら■■の従来の方法から得られる磁性粉
末は次のような欠点を有している。これらの方法で得た
Fe−Co粒子はすべて酸化しゃすい。
etc. The magnetic powder obtained by these conventional methods has the following drawbacks. All Fe--Co particles obtained by these methods are oxidized.

特に反応後の粉末を空気中にいきなり取り出すと空気中
の酸素と反応し、発火したりする恐れがあるため、還元
あるいは析出後、ただちにアセトン等の有機溶剤中に入
れて空気中に取り出し、その後草気に仰ハれないように
して荀・I脂や正11級脂肪酸等とσ1九合分散させる
処理をしなければならない。またこのような方法で得ら
れたF e −Co粒子は酸化物の還元や水溶液中の析
出過程でいろいろな欠陥が導入され、Fe−Coの理論
的飽和磁化、C8−4285emtl/ccより低い1
80emu/cc程度にしかなっていないし。
In particular, if the powder after the reaction is suddenly taken out into the air, it may react with oxygen in the air and cause a fire. Therefore, after reduction or precipitation, immediately put it in an organic solvent such as acetone and take it out into the air. It is necessary to disperse σ19 with Xun-I fat, regular 11th class fatty acids, etc. without getting too excited. In addition, the Fe-Co particles obtained by this method have various defects introduced during the reduction of the oxide and the precipitation process in an aqueous solution, resulting in a 1 lower than the theoretical saturation magnetization of Fe-Co, C8-4285 emtl/cc.
It's only about 80emu/cc.

Hcも12000e  程度で低く、耐候性も良くない
(耐湿テストによるC5の減少、主に部・化による。)
という欠点を持っている。
Hc is also low at around 12,000e, and weather resistance is not good (reduction in C5 due to moisture resistance test, mainly due to parts/chemicals).
It has the disadvantage of

発明の目的 本発明は十記従来の欠点を解消するもので1粒子の形状
が針状であり、しかも高い飽和磁化と高い保磁力を有し
、さらに欠陥が少なく耐候性に富んで空気中でも容易に
扱かえる磁性粉体の製造方法を提供することを目的とす
る。
Purpose of the Invention The present invention solves ten disadvantages of the conventional technology.The present invention has a needle-like shape, has high saturation magnetization and high coercive force, has few defects, is highly weather resistant, and can be easily used in the air. The purpose of the present invention is to provide a method for producing magnetic powder that can be used in different ways.

発明の構成 上記目的を達成するため1本発明の針状Fe −C。Composition of the invention In order to achieve the above object, one aspect of the present invention is acicular Fe-C.

合金の製造方法は、減圧中で250℃〜450℃で加熱
し気化せしめた塩化鉄と塩化コバルトと水素の混合ガス
を550℃〜1150℃に加熱された基体上に流して針
状のFe−Co合金を析出させた後、基体よりFe−C
o合金をし1収するものである。
The alloy is manufactured by flowing a mixed gas of iron chloride, cobalt chloride, and hydrogen, which has been heated and vaporized at 250°C to 450°C under reduced pressure, onto a substrate heated to 550°C to 1150°C to form acicular Fe- After depositing the Co alloy, Fe-C is deposited from the substrate.
o alloy and yields 1 yield.

実施例の説明 以下1本発明の実施例について2図面に基づいて説明す
る。本発明は気相法によって針状のFe−Co粉末を得
ようとするものである。すなわちFe −Coの針状結
晶(ホイスカー)を下記の化学反応によって、基体上に
析出させ、その後そのF e −Coの針状結晶を回収
して磁性粉体とするものである。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below based on two drawings. The present invention aims to obtain acicular Fe--Co powder by a gas phase method. That is, needle-like crystals (whiskers) of Fe--Co are precipitated on a substrate by the chemical reaction described below, and then the needle-like crystals of Fe--Co are collected to form magnetic powder.

FeCes 4− CoCe3 +”/2 Hz →F
 e−Co +8HCg −■ここでF e CC3は
塩化鉄、 CoCe3は塩化コバルト。
FeCes 4- CoCe3 +”/2 Hz →F
e-Co +8HCg -■Here, Fe CC3 is iron chloride, and CoCe3 is cobalt chloride.

Hzは水素、 llCeは塩化水素である。tこだし塩
化鉄。
Hz is hydrogen and llCe is hydrogen chloride. t Kodashi iron chloride.

塩化コバルトはFeCe2. CoC(12の形でも良
い。この反応は通常常圧で500℃以上の温度で起こり
Cobalt chloride is FeCe2. It may also be in the form of CoC (12). This reaction usually occurs at normal pressure and at temperatures above 500°C.

FeCe3 、 CoCe5およびHzの流量、あるい
は反応炉内の気圧および基体の湿度等により挿々の結晶
の形態および合金比率のものが得られるが、一般に0式
で示される反応は塩化物の還元析出反応であり。
Depending on the flow rate of FeCe3, CoCe5 and Hz, or the atmospheric pressure in the reactor and the humidity of the substrate, various crystal forms and alloy ratios can be obtained, but the reaction represented by equation 0 is generally a chloride reduction-precipitation reaction. Yes.

原理的に高純度でしかも欠陥の少ない結晶が得られる。In principle, crystals with high purity and few defects can be obtained.

持にホイスカーの場合は無欠陥に近いものが得られると
されている。欠にF e −Coの針状粉末を作成する
装置の原理的な構造の例について図面を用いて説明する
。図において(1)は水素供給ボンベ、(2)は反応用
炉芯管(石英H7) 、 (31はFeC11!3゜C
oCe3の蒸発用ヒータ、(4)はFe−Coの針状結
晶析出反応用のヒータ、(5)はFeCe3. CoC
e3を入れておくポート(Fe製) 、 (61は針状
F e −Co析出用基体。
It is said that whiskers can be obtained with almost no defects. An example of the basic structure of an apparatus for producing acicular powder of Fe-Co will be explained with reference to the drawings. In the figure, (1) is the hydrogen supply cylinder, (2) is the reaction furnace core tube (quartz H7), (31 is FeC11!3°C
oCe3 evaporation heater, (4) is a heater for Fe-Co needle crystal precipitation reaction, (5) is FeCe3. CoC
A port (made of Fe) for putting e3 in (61 is a needle-shaped base for Fe-Co precipitation.

(7)は排気用兼圧力調整用のロータリーポンプ、(8
)はバルブである。先ず反応用炉芯管(2)内のボート
(5)にFeCe3、CoCf/3を入れ、それをヒー
タ(3)の所に14<。次にモリブデン製の析出用基体
(6)をヒータ(4〕の所に置きロータリーポンプ(7
)を使用して反応用炉芯管(2)内の空気を排出し、ヒ
ータ(3)を250℃〜450℃に、ヒータ(4)を5
50℃〜1150℃に夫々加熱して、水素供給ボンベ(
1)のバルブ(8)を開き水素を100CC/分〜1e
/分の量で流して針状F e −Coの析出分解反応を
基体(6)上で起こさせる。反応中は。
(7) is a rotary pump for exhaust and pressure adjustment, (8
) is a valve. First, FeCe3 and CoCf/3 are put into the boat (5) in the reactor core tube (2), and placed at the heater (3). Next, place the molybdenum deposition substrate (6) on the heater (4) and the rotary pump (7).
) to exhaust the air in the reaction furnace core tube (2), heat the heater (3) to 250°C to 450°C, and set the heater (4) to 500°C.
Heat the hydrogen supply cylinders (
Open the valve (8) of 1) and supply hydrogen at 100CC/min to 1e.
/min to cause a precipitation and decomposition reaction of acicular Fe-Co on the substrate (6). During the reaction.

ロータリーポンプ(7)のバルブ(8)を調整し、  
10Torr〜200’rorrにしておく。反応終了
後ヒータ(31(4)を切り、炉の温度が低下してから
基体(6)を取り出し。
Adjust the valve (8) of the rotary pump (7),
Keep it at 10 Torr to 200'rorr. After the reaction was completed, the heater (31 (4)) was turned off and the substrate (6) was taken out after the temperature of the furnace had decreased.

析出した針状Fe−Coを基体(6)から回収し、磁気
的特性を測定する。ここでヒータ(3ンの温度を250
℃〜450℃にしたのは、250℃以下ではFeCe3
. CoCe3の蒸気圧が低く、従ってFeCe3. 
CoCe3のがt量が少なく、基体(6)上でFe−C
oが析出しにくいためである。また450℃以下にした
のは、450℃以上になると特にCoC(I3の蒸発量
が多くなり過ぎて基体(6)−J二で針状の°任意のF
e−Co合金結晶がイqにくくなるためである。すなわ
ちFe−Co合金の組成をコントロールするのが困難で
組成ずれを起こすためである。水素の液量を100CC
勺〜100OCC/分にしたのハエ0000フ分以下で
はFe−Coの析出速度が退iいためで、  1000
cc、/分以上では良質の針状結晶が得られにくいため
である(粉状のFe−Coになりゃすい)。
The precipitated acicular Fe--Co is recovered from the substrate (6) and its magnetic properties are measured. Here, heat the heater (temperature of 3 to 250
℃ to 450℃ because below 250℃ FeCe3
.. The vapor pressure of CoCe3 is low, so FeCe3.
CoCe3 has a small amount of t, and Fe-C on the substrate (6)
This is because o is difficult to precipitate. The temperature was set at 450°C or lower because at temperatures above 450°C, the amount of evaporation of CoC (I3) becomes too large, resulting in needle-shaped
This is because e-Co alloy crystals become difficult to q. That is, this is because it is difficult to control the composition of the Fe--Co alloy and composition deviations occur. The liquid amount of hydrogen is 100CC
This is because the precipitation rate of Fe-Co slows down below 1000 OCC/min when the flow rate is set to 100 OCC/min.
This is because it is difficult to obtain high-quality needle-shaped crystals at a speed of more than cc./min (it is easy to obtain powdered Fe--Co).

ヒータ(4)の温度を550℃〜1150℃にしたのは
The temperature of the heater (4) was set at 550°C to 1150°C.

550℃以下では針状Fe−Coの析出が起こらず。At temperatures below 550°C, precipitation of acicular Fe-Co does not occur.

1150℃以上では基体と析出Fe−Coが反応を起こ
し。
At temperatures above 1150°C, a reaction occurs between the substrate and the precipitated Fe-Co.

磁気特性の良好なものが得られないためである。This is because a product with good magnetic properties cannot be obtained.

さらに反応中の圧力を10To r r〜200Tor
r  にしたのは、10To r r  以下(10m
mI(2以下)では気体分子の数が少なく析出速度が遅
いためで、 200Torr以」二では熱力学的に過飽
和度が低くなり針状よりも粒状や粉末状のF e −C
oが析出しゃすいためである(常圧では過飽和度が低く
剣状になりlこくぃ)。
Furthermore, the pressure during the reaction was adjusted to 10 Torr~200 Torr.
r is less than 10To r r (10 m
This is because at mI (2 or less), the number of gas molecules is small and the precipitation rate is slow, and at mI (200 Torr or higher), the degree of supersaturation is thermodynamically lower, resulting in granular or powdery Fe-C rather than acicular.
This is because o tends to precipitate (at normal pressure, the degree of supersaturation is low and it becomes sword-shaped).

またFeC63とCoC113(7)混合重量比ヲ1:
0.01〜1:0.7にしており、この理出は1’: 
0.01  より比率が下るとCOの添加効果がなく、
従って高いC5が得られない。また1:0.7以上では
Coの量が多くなり3116ぎてC8がFe単独の場合
より低下してしまうためである。
Also, the mixed weight ratio of FeC63 and CoC113 (7) is 1:
The ratio is 0.01 to 1:0.7, and this reasoning is 1':
When the ratio is lower than 0.01, there is no effect of adding CO;
Therefore, high C5 cannot be obtained. Moreover, if the ratio is 1:0.7 or more, the amount of Co will increase to 3116 and C8 will be lower than in the case of Fe alone.

以下に具体実施例について説明する。先ず幅8cm、長
さ20cm、J!JJさ8mmのモリブデン板(糸体2
を炉芯管の中の反応ゾーンに置き1次にFeCe310
0Ir、 CoCe31fr 8Fe製のボートに載せ
、蒸発ゾーンに置いた。次いでロータリーポンプで空気
を排出し、蒸発ゾーン(FeC11sを置いた所)を2
50℃、反応ゾーン(モリブデン板を置いた所)を55
0℃にして、水素(H2)を100CC/eの割り合い
で流し。
Specific examples will be described below. First, width 8cm, length 20cm, J! JJ size 8mm molybdenum plate (thread body 2
was placed in the reaction zone in the furnace core tube and the primary FeCe310
It was placed on a boat made of 0Ir, CoCe31fr 8Fe, and placed in the evaporation zone. Next, the air was pumped out using a rotary pump, and the evaporation zone (where FeC11s was placed) was
50℃, reaction zone (place where molybdenum plate was placed)
At 0°C, hydrogen (H2) was flowed at a rate of 100 CC/e.

炉内の圧力を10To r r  となるようバルブを
調整し約80分反応させた。次に、各ゾーンのヒータを
切り温度が100℃以下になるまで水素を流し続け。
The valve was adjusted so that the pressure in the furnace was 10 Torr, and the reaction was carried out for about 80 minutes. Next, turn off the heaters in each zone and continue to flow hydrogen until the temperature drops below 100°C.

100℃以下になったとき空気を入れてモリブデン基体
を取り出し、この上に析出した針状F e −Coの結
晶を払い落して回収する。この粉末を電子順徽鏡で観察
したところ、軸比(長軸/短軸)は約45で長軸の長さ
は1.0μmであった。次にこの針状粉末の飽和磁化σ
8と保磁力Hcを測定した結果、C5−5−190e/
((、)Ic−12800e であった。次に耐候テス
トとしてこの針状粉末を60℃、90%の相対湿度(I
<H)中に7日間放置した後、C5を測定したところそ
の変化が一24%の減少であった。結果は次表の試料番
号1に示す。
When the temperature drops below 100° C., air is introduced into the molybdenum substrate, the molybdenum substrate is taken out, and the acicular Fe—Co crystals deposited thereon are brushed off and recovered. When this powder was observed with an electronic mirror, the axial ratio (major axis/minor axis) was about 45 and the length of the major axis was 1.0 μm. Next, the saturation magnetization σ of this acicular powder is
As a result of measuring 8 and coercive force Hc, C5-5-190e/
(I
<H) After being left for 7 days, C5 was measured and the change was 124% decrease. The results are shown in sample number 1 in the following table.

以下、上記具体実施例と同様にしてモリブデン基体上に
Fe−Coを析出させた。そのときの蒸発ゾーンの温度
1反応ゾーンの温度、 FeCl13とCoCe3の重
量比、水素の流量、析出結晶の形態、σ3+Hc+耐湿
特性(60℃90%RH中7日間放置後のσSの変化率
)を試料番号2〜12に示す。上記温度条件。
Thereafter, Fe--Co was deposited on the molybdenum substrate in the same manner as in the above specific example. Temperature of the evaporation zone at that time 1 Temperature of the reaction zone, weight ratio of FeCl13 and CoCe3, flow rate of hydrogen, form of precipitated crystals, σ3 + Hc + moisture resistance properties (rate of change in σS after standing for 7 days at 60°C and 90% RH) Shown in sample numbers 2-12. Above temperature conditions.

圧力条件、およびFeCe3とCoCe3 の重量比の
条件を本発明の範囲外とした試料番号13〜22および
他の針状Fe−Co粉末の製造方法との比較例(試料番
号28〜24)も合わせて示している。
Comparative examples (sample numbers 28 to 24) with sample numbers 13 to 22 and other acicular Fe-Co powder production methods in which the pressure conditions and the weight ratio of FeCe3 and CoCe3 conditions were outside the scope of the present invention were also included. It shows.

発明の効果 以上のように本発明によれば次の効果を得ることができ
る。前記表の実施例(試料番号1〜12)と比較例(試
料番号18〜24)とを対比して分かるように、針状F
e−Coを作成する過程において気相反応を用いて作成
した針状Fe−Co粉末はa%い飽和磁化と高い保磁力
が得られ、且つ耐候性(耐況持性)に優れている。特に
FeCe3 、 CoCe3の蒸発温度が250℃〜4
50℃、分解析出反応の温度が550℃〜1150℃で
、 FeCe3とCoCe5の重量比が17o01〜1
10.7の間で水素の流量が100cc/分〜1000
cc/分の間にあり、しかも炉の気圧が10〜200T
orrの維囲ニある場合はより優れた特性が得られる。
Effects of the Invention As described above, according to the present invention, the following effects can be obtained. As can be seen by comparing the examples (sample numbers 1 to 12) and comparative examples (sample numbers 18 to 24) in the table above, needle-like F
The acicular Fe--Co powder created using a gas phase reaction in the process of creating e--Co has a low saturation magnetization of a% and a high coercive force, and has excellent weather resistance (sustainability). In particular, the evaporation temperature of FeCe3 and CoCe3 is 250℃~4
50℃, the temperature of the fractional precipitation reaction is 550℃~1150℃, and the weight ratio of FeCe3 and CoCe5 is 17o01~1.
10.7, the hydrogen flow rate is between 100cc/min and 1000cc/min.
It is between cc/min and the furnace pressure is 10-200T.
Better characteristics can be obtained if there is a range of orr.

【図面の簡単な説明】[Brief explanation of the drawing]

内面は針状鉄を作成する装置の原理的な構造を示す説明
図である。 (1) °°・水素供給ボンベ、(2戸°・反応用炉芯
慎’、(31・・・蒸発用ヒータ、(4)・・・析出反
応用ヒータ、(5)・・・ボー)、(61・・・析出用
基体、(7)・・・ロータリーポンプ、(8)・・・バ
ルブ 代理人 森本義弘
The inner surface is an explanatory diagram showing the basic structure of an apparatus for producing needle iron. (1) °°・Hydrogen supply cylinder, (2 doors°・Reaction furnace core, (31...evaporation heater, (4)...precipitation reaction heater, (5)...bo) , (61... Substrate for precipitation, (7)... Rotary pump, (8)... Valve agent Yoshihiro Morimoto

Claims (1)

【特許請求の範囲】 1、減圧中で250℃〜450℃で加熱し気化せしめた
塩化鉄と塩化コバルトと水素の混合ガスを550℃〜1
150℃に加熱された基体上に流して針状のF e −
Co合金を析出させた後、基体よりFe −Co合金を
回収する針状F e −Co合金の製造方法。 2、 水素の流量が100CC/分〜100OCC/分
でらる特許請求の範囲第1項記載の針状F e −Co
合金の製造方法。 3、減圧状態が10Torr〜200Torr  であ
る特許請求の範囲第1項記載の針状F e −Co合金
の製造方法。 4、  FeC(I3とCoCea  の混合重量比が
1:0.01〜1 : 0.7である特許請求の範囲第
1項記載の針状Fe−Co合金の製造方法。
[Claims] 1. A mixed gas of iron chloride, cobalt chloride, and hydrogen heated and vaporized at 250°C to 450°C under reduced pressure at 550°C to 1
The needle-shaped Fe −
A method for producing an acicular Fe-Co alloy, in which the Fe-Co alloy is recovered from a substrate after the Co alloy is precipitated. 2. The acicular Fe-Co according to claim 1, wherein the hydrogen flow rate is 100 CC/min to 100 OCC/min.
Alloy manufacturing method. 3. The method for producing an acicular Fe-Co alloy according to claim 1, wherein the reduced pressure is 10 Torr to 200 Torr. 4. The method for producing an acicular Fe-Co alloy according to claim 1, wherein the mixing weight ratio of FeC (I3 and CoCea) is 1:0.01 to 1:0.7.
JP57201401A 1982-11-16 1982-11-16 Production of needle fe-co alloy Pending JPS5993806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57201401A JPS5993806A (en) 1982-11-16 1982-11-16 Production of needle fe-co alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57201401A JPS5993806A (en) 1982-11-16 1982-11-16 Production of needle fe-co alloy

Publications (1)

Publication Number Publication Date
JPS5993806A true JPS5993806A (en) 1984-05-30

Family

ID=16440472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57201401A Pending JPS5993806A (en) 1982-11-16 1982-11-16 Production of needle fe-co alloy

Country Status (1)

Country Link
JP (1) JPS5993806A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7799112B2 (en) 2003-11-05 2010-09-21 Ishihara Chemical Co., Ltd. Production method of pure metal/alloy super-micro powder

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545554A (en) * 1991-08-21 1993-02-23 Canon Inc Lens controller
JPH06169423A (en) * 1992-11-30 1994-06-14 Hitachi Ltd Control method for autofocus device
JPH0886953A (en) * 1994-09-14 1996-04-02 Fuji Photo Optical Co Ltd Automatic focus matching device
JP2005055746A (en) * 2003-08-06 2005-03-03 Minolta Co Ltd Imaging apparatus, focusing control method and program
JP2006023339A (en) * 2004-07-06 2006-01-26 Konica Minolta Photo Imaging Inc Imaging apparatus
JP2010122301A (en) * 2008-11-17 2010-06-03 Hitachi Ltd Focus control device and focus control method
JP2012128314A (en) * 2010-12-17 2012-07-05 Hitachi Ltd Imaging apparatus, imaging apparatus control method and program
JP2013140297A (en) * 2012-01-06 2013-07-18 Hitachi Ltd Image signal processor
JP2013160919A (en) * 2012-02-06 2013-08-19 Hitachi Ltd Image signal processing device and image signal processing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545554A (en) * 1991-08-21 1993-02-23 Canon Inc Lens controller
JPH06169423A (en) * 1992-11-30 1994-06-14 Hitachi Ltd Control method for autofocus device
JPH0886953A (en) * 1994-09-14 1996-04-02 Fuji Photo Optical Co Ltd Automatic focus matching device
JP2005055746A (en) * 2003-08-06 2005-03-03 Minolta Co Ltd Imaging apparatus, focusing control method and program
JP2006023339A (en) * 2004-07-06 2006-01-26 Konica Minolta Photo Imaging Inc Imaging apparatus
JP2010122301A (en) * 2008-11-17 2010-06-03 Hitachi Ltd Focus control device and focus control method
JP2012128314A (en) * 2010-12-17 2012-07-05 Hitachi Ltd Imaging apparatus, imaging apparatus control method and program
JP2013140297A (en) * 2012-01-06 2013-07-18 Hitachi Ltd Image signal processor
JP2013160919A (en) * 2012-02-06 2013-08-19 Hitachi Ltd Image signal processing device and image signal processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7799112B2 (en) 2003-11-05 2010-09-21 Ishihara Chemical Co., Ltd. Production method of pure metal/alloy super-micro powder

Similar Documents

Publication Publication Date Title
US5585032A (en) Ferromagnetic fine powder for magnetic recording
JPH02167810A (en) Superfine magnetic particles of epsilon&#39; iron carbide and its production
US4396596A (en) Method of preparing gamma ferric hydroxyoxide powder
JPS5993806A (en) Production of needle fe-co alloy
JPH0118961B2 (en)
JPS5993867A (en) Production of needle iron
JPS61111921A (en) Production of acicular particle containing iron carbide
JPS6018609B2 (en) Ferromagnetic powder and its manufacturing method
JPS5927505A (en) Ferromagnetic metal powder
JPH0122968B2 (en)
JPS6052564B2 (en) Ferromagnetic powder products and magnetic recording media
JPS60195737A (en) Magnetic recording body and its manufacture
JPS5813008B2 (en) Manufacturing method of magnetic iron powder
JPS6227576A (en) Production of thin ferrite film
EP0310682B1 (en) Fine ferromagnetic powder for magnetic recording
JPS5921363B2 (en) Method for producing acicular crystal metal iron magnetic particle powder
JPH09147342A (en) Magnetic recorder, magnetic recording medium and its production
JPH0120201B2 (en)
JPS62298919A (en) Magnetic recording medium
JPH02165447A (en) Magneto-optical recording medium and production thereof
JPS607105A (en) Manufacture of magnetic powder
JPH0532421A (en) Production of needlelike magnetic iron oxide grain powder
JPS61229305A (en) Manufacture of magnetic metal powder
JPH0766512B2 (en) Magnetic recording medium
JPS6173303A (en) Manufacture of ferromagnetic acicular iron powder