JPS5983023A - Semiconductor pressure difference detector - Google Patents

Semiconductor pressure difference detector

Info

Publication number
JPS5983023A
JPS5983023A JP19245482A JP19245482A JPS5983023A JP S5983023 A JPS5983023 A JP S5983023A JP 19245482 A JP19245482 A JP 19245482A JP 19245482 A JP19245482 A JP 19245482A JP S5983023 A JPS5983023 A JP S5983023A
Authority
JP
Japan
Prior art keywords
strain
parts
pressure
diaphragm
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19245482A
Other languages
Japanese (ja)
Other versions
JPH0419495B2 (en
Inventor
Michitaka Shimazoe
島添 道隆
Tsutomu Okayama
岡山 努
Yoshitaka Matsuoka
松岡 祥隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19245482A priority Critical patent/JPS5983023A/en
Publication of JPS5983023A publication Critical patent/JPS5983023A/en
Publication of JPH0419495B2 publication Critical patent/JPH0419495B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0042Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • G01L9/0052Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
    • G01L9/0054Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements integral with a semiconducting diaphragm

Abstract

PURPOSE:To make the relationship between pressure and output linear even at the measuring time for low pressure, by providing regions having different thicknesses in a strain yielding part, and forming strain sensitive elements on the thick strain yielding parts. CONSTITUTION:The diaphragm part of a semiconductor pressure difference detector comprises two stepped parts having different thicknesses, i.e., convex strain yielding parts 34 having a relatively thick size and diaphragm parts 36 having th thickness thinner than the part 34. The end parts of the convex strain yielding parts 34 are connected to a fixing part 30 and form a cross shape. Gage resistors 38 in a P shape are formed on the upper surfaces of the convex strain yielding parts 34 and take out full bridge outputs by pressure. In this constitution, the convex strain yielding parts 34 can yield large strain based on small forces, i.e., low pressures. Therefore, the relationship between the pressure and the output can be made linear even at the measuring time of the low pressure.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は圧力差圧検出器に係り、特に半導体自体をダイ
Vフラムとする圧力差圧検出器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a pressure differential pressure detector, and more particularly to a pressure differential pressure detector using a semiconductor itself as a die V-flamm.

〔従来技術〕[Prior art]

従来の81ダイヤフラム形圧力差圧検出器に用いられる
測定ダイヤフラムはSi単結晶よシなシ、肉薄の起歪部
およびそれを囲む肉厚の固定部を有し、該肉薄起歪部の
一生面側に複数のピエゾ抵抗素子が通常のICプロセス
により形成されている、。
The measurement diaphragm used in the conventional 81 diaphragm type pressure differential pressure detector is made of silicon single crystal and has a thin strain-generating portion and a thick fixing portion surrounding it, and the entire life of the thin strain-generating portion is A plurality of piezoresistive elements are formed on the side using a normal IC process.

このSiダイヤフラムの周囲肉厚部の裏面は、シリコン
と熱膨張係数の近似し、かつ中央に通気孔が形成された
7リコンあるいはカラスからなる支持体に結合されてい
る。
The back surface of the peripheral thick portion of this Si diaphragm is bonded to a support made of 7-recon or glass having a thermal expansion coefficient similar to that of silicon and having a vent hole formed in the center.

この81ダイヤフラム形圧力差圧検出器はIC技術を応
用できることがら計度性に優れ、かつSi単結晶が理想
的な弾性材料であるためヒステリシスがなくp+−m性
に優れている効果を有する。
This 81 diaphragm type pressure differential pressure detector has excellent measurement properties because it can apply IC technology, and since Si single crystal is an ideal elastic material, it has no hysteresis and has excellent p+-m characteristics.

しかしながら、かかる構成の測定タイヤフラムは、極め
て低い圧力を611定する場合において、圧力と出力の
面側性が悪くなる欠点紮有する。この理由は、低圧領威
の測定のためには、測ボタイヤフラムの起全部肉厚を薄
くする必要があるため、これにより圧力を印加したとき
のたわみが太きくなシ、測定タイヤフラム全体が伸ひる
という・・ル□−ン幼果が生じるためである。
However, a measuring tire flam having such a configuration has a drawback that when an extremely low pressure is to be determined, the surface characteristics of pressure and output are poor. The reason for this is that in order to measure the low-pressure force, it is necessary to reduce the wall thickness at the beginning of the measuring tire flam. This is because young fruits called hiru appear.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した従来波jllの欠点を・なく
シ、低圧測定時でも圧力と出力の直線関係に曖れた半導
体圧力差圧センサを提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor pressure differential pressure sensor that eliminates the drawbacks of the conventional wave jll described above and that does not maintain a linear relationship between pressure and output even when measuring low pressures.

〔発明の概要〕[Summary of the invention]

上記目的を達成させるため、本発明においては、起歪部
内に厚さの異なった領域を設け、その9ちの肉厚起歪部
に歪感応素子を形成したものである。
In order to achieve the above object, in the present invention, regions having different thicknesses are provided in the strain-generating portion, and strain-sensitive elements are formed in nine of the thick strain-generating portions.

〔発明の実施例〕[Embodiments of the invention]

以ド、実施例を用いて本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail using examples.

第1図は差圧検出器の全体構成を示す断面図で、輌結晶
S1からなる測定ダイヤフラムlOがあり、この測定ダ
イヤフラム10は中空の第]の支持部月12、中空の第
2の支持部材14を介してノ・ウジング16に取り付け
られている。第1の支持部材12は測定ダイヤフラム1
00ノ・ウノング16からの電気的絶縁および測定タイ
ヤフラム10との熱歪を考慮し、Slと熱膨張係数の近
似した、たとえば硼珪酸ガラスが使用されている。また
、第2の支持部材14は、3iと熱膨張係数の近似た、
たとえばFe−Ni合釜が使用されている。
FIG. 1 is a cross-sectional view showing the overall configuration of a differential pressure detector, in which there is a measuring diaphragm 10 made of a crystal S1, a hollow first supporting member 12, a hollow second supporting member. 14 to the nozzle 16. The first support member 12 is the measuring diaphragm 1
In consideration of electrical insulation from the 00-no-unong 16 and thermal distortion with the measuring tire flam 10, borosilicate glass, for example, which has a thermal expansion coefficient similar to that of Sl, is used. Further, the second support member 14 has a thermal expansion coefficient similar to 3i.
For example, a Fe--Ni kettle is used.

ここで測定タイヤフラムlOと第1の支持部材12、及
び第1の支持部材12と第2の支持部材14間はたとえ
ば陽極結合法で接合されている。
Here, the measurement tire flamm lO and the first support member 12, and the first support member 12 and the second support member 14 are joined by, for example, an anodic bonding method.

測定タイヤフラム10からの電気的出力は、リード線1
8及びハウ?ング16にノ・−7チソクシールされた端
子20を介して外部に取9出されている。
The electrical output from the measuring tire flam 10 is connected to the lead wire 1
8 and how? It is taken out to the outside via a terminal 20 sealed to the ring 16.

第2図は、iis記測短タイヤフクム10ケ主教面すな
わちゲージ抵抗形成面側から見た平面図、第3図は第2
図のIII −In ’線における断面図であるっ測定
ダイヤフラム10は、たとえば(+00)D¥Iのn形
単結晶3iで、外周を厚内の固定部30で囲−まれた肉
薄のダイヤフラム部を有する。このダイヤフラム部は二
段の異なった厚さに形成され、比較的肉厚の起歪はシ部
34とそれより肉薄の隔膜部36を有し、前記起歪は・
シ部34は端1部をniJ記固足固足部30続された十
字形をなしている。
Figure 2 is a plan view of the 10 IIS recording short tires viewed from the main surface, that is, the gauge resistance formation side, and Figure 3 is a plan view of the 2
The measurement diaphragm 10 is, for example, an n-type single crystal 3i of (+00)D\I, and is a thin diaphragm part surrounded by a fixed part 30 within the thickness. has. This diaphragm part is formed to have two different thicknesses, and has a relatively thick wall part 34 and a thinner diaphragm part 36, and the strain is...
The cross section 34 has a cross shape with one end connected to the fixed foot section 30.

この起歪はり部34の上面にはp形のゲージ抵抗38が
4個<110>軸方向に、たとえば拡散法ヤイオンイン
7”う/チージョン法により形成されている。これらの
ゲージ抵抗38は起歪はり部34の固定端近傍に形成さ
れ、そのうちの2本は径方向に、他の2本は径と直角方
向に配置され、圧力によりフルブリッジ出力を取り出せ
るようになっている。測定ダイヤフラム100表面には
図示しないゲージ抵抗38を保護する酸化膜およびゲー
ジ抵抗38の出力を敗り出すアルミ配線がそれぞれ設け
られている。
Four p-type gauge resistors 38 are formed on the upper surface of the strain beam 34 in the direction of the <110> axis, for example, by a diffusion method. It is formed near the fixed end of the beam part 34, two of which are arranged in the radial direction and the other two in the direction perpendicular to the diameter, so that a full bridge output can be obtained by pressure.Measurement diaphragm 100 surface An oxide film that protects the gauge resistor 38 (not shown) and aluminum wiring that outputs the output of the gauge resistor 38 are provided, respectively.

このような構成において、測だダイヤフラム10に圧力
Pを印加すると、起歪はり34がたわみ、この際、隔膜
部36は起歪はシ34に比べ薄く、軟かくなっているた
め単なる気密膜として働き、受圧■積SX圧力Pの大半
の力は起歪はシ34をたわます力として作用する。しだ
がって、起歪Cj:す34は小さな力、すなわち低い圧
力で大きな歪を発生することができるようになる。
In such a configuration, when a pressure P is applied to the measuring diaphragm 10, the strain beam 34 bends, and at this time, the strain beam 36 of the diaphragm 36 is thinner and softer than the beam 34, so it acts as a mere airtight membrane. Most of the force of the acting and received pressure product SX pressure P acts as a force that deflects the strain force 34. Therefore, the strain Cj: 34 can generate a large strain with a small force, that is, a low pressure.

第4図は本発明の第2の実施例を示す。第2図と異なる
点はダイヤフラムの中央に起歪はり部38と同一の厚さ
の幅広領域を設けたことにある。
FIG. 4 shows a second embodiment of the invention. The difference from FIG. 2 is that a wide region with the same thickness as the strain-generating beam 38 is provided at the center of the diaphragm.

このようにするとダイヤフラムの中央部が比較的f朗く
なるので、圧力を加えた際に起歪はり部34に発生する
ひずみはゲージ抵抗38の配置領域に集中する。このた
め第2図と比較しさらに低い圧力領域まで楕匿良く測定
することができるようになる。
In this way, the central portion of the diaphragm becomes relatively stiff, so that the strain generated in the strain beam 34 when pressure is applied is concentrated in the region where the gauge resistor 38 is arranged. Therefore, compared to FIG. 2, it becomes possible to measure even lower pressure areas with good elliptical accuracy.

第5図は本発明の第3の実施例を7廖す。ig2図と異
なる点は起歪はり部34を一端を固定部30に接続され
た片持ばり状としたことにある。かかる構成では、起歪
はり部が片持はシであるため、第2図と比較し、さらに
低い圧力領域凍で梢1及良く測定することができるよう
になる。
FIG. 5 shows a third embodiment of the present invention. The difference from Fig. ig2 is that the strain-generating beam 34 has a cantilever shape with one end connected to the fixed part 30. In this configuration, since the strain beam is cantilevered, treetops can be measured even more effectively in a lower pressure range than in FIG. 2.

第6図は本発明の第4の実施例を示す。第2図と異なる
点はタイヤフラム部中の起歪に9部34と隔膜部36の
分離にあって、測定ダイヤフラム10の裏面からのエツ
チング全採用したことにある。この形状では、ゲージ抵
抗面側は起歪部、固友部ともすべで平坦で表面が810
2で覆われているため、測定ダイヤフラム上の金鵡配線
引きまわしの自由度が増加する利点ヲ個する。J:うに
なる。
FIG. 6 shows a fourth embodiment of the invention. The difference from FIG. 2 lies in the separation of the 9 part 34 and the diaphragm part 36 in order to generate strain in the tire flam part, and in that etching from the back surface of the measuring diaphragm 10 is completely adopted. In this shape, both the strain-generating part and the fixed part on the gauge resistance side are flat, and the surface is 810 mm.
2, it has the advantage of increasing the degree of freedom in routing the gold wire on the measurement diaphragm. J: I'm going to growl.

以上、述べた実施例では、タイヤフラム部上に起歪は9
部をたとえば十字形にする等、2個形成する場合を説明
したものであるが、起歪tより稀の数は1個でも良く、
さらに3個以上でも良いことはもちろんである。
In the embodiments described above, the strain on the tire flam is 9.
This example describes the case where two parts are formed, such as in the shape of a cross, but the number rarer than the strain t may be one,
Of course, it is also possible to use three or more.

〔発明の効果〕〔Effect of the invention〕

以上述べたことから明らかなよりに、本発明による半導
体圧力差圧検出器によれば、低圧測定時であっても、圧
力と出力との関係を直線的にすることができるようにな
る。
As is clear from the above description, according to the semiconductor pressure differential pressure detector according to the present invention, the relationship between pressure and output can be made linear even when measuring low pressure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が適用される圧力差圧検出器の全体償成
を示す断面図、第2図および第3図ンよ本発明の圧力差
圧検出器の一実施例を示す構成図で、第2図は平面図、
第3図は第2図のIII −II ’にお&−する断面
図、第4図ないし第6図はそれぞれ本発明fCよる圧力
差圧検出器の他の実施例を示ず構成図である。 10・・・測定タイヤフフム、30・・・固定部、32
・・ダイヤフラム部、34・・・起φは9部、36・・
・隔膜部、38・・・ゲージ抵抗。 代理人 弁理士 旨橋明夫− 、キー9・′・、、、、:J、、、。 第 1  口 第 2 口 第 3 阻 第 4 図 第 5 凶 −一〒〒〒〒〒G
FIG. 1 is a sectional view showing the overall configuration of a differential pressure detector to which the present invention is applied, and FIGS. 2 and 3 are configuration diagrams showing an embodiment of the differential pressure detector of the present invention. , Figure 2 is a plan view,
FIG. 3 is a cross-sectional view taken along lines III-II' in FIG. . 10...Measurement tire hum, 30...Fixing part, 32
...Diaphragm part, 34...Original φ is 9 parts, 36...
・Diaphragm part, 38... Gauge resistance. Agent: Patent Attorney Akio Umahashi, Key 9・'・,,,:J,,,. 1st part 2nd part 3rd part 4th part 5th part 5

Claims (1)

【特許請求の範囲】[Claims] 1、周辺部に厚肉の固定部と、その内側に薄肉のダイヤ
フラム部とを有する半導体基板の前記ダイヤフラム部面
に歪感応素子を形成した半導体圧力差圧検出器において
、前記ダイヤフラム部は歪感応素子が形成された領域部
においてそれ以外の領域部よシも肉厚を厚くしたはり部
が前記固定部と接続させた状態にて形成されていること
を特徴とする半導体圧力差圧検出器。
1. In a semiconductor pressure differential pressure detector in which a strain sensitive element is formed on the surface of the diaphragm part of a semiconductor substrate having a thick fixing part on the periphery and a thin diaphragm part inside the fixed part, the diaphragm part is strain sensitive. 1. A semiconductor pressure differential pressure detector, characterized in that a beam part is formed in a region where an element is formed to be thicker than in other regions and is connected to the fixed part.
JP19245482A 1982-11-04 1982-11-04 Semiconductor pressure difference detector Granted JPS5983023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19245482A JPS5983023A (en) 1982-11-04 1982-11-04 Semiconductor pressure difference detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19245482A JPS5983023A (en) 1982-11-04 1982-11-04 Semiconductor pressure difference detector

Publications (2)

Publication Number Publication Date
JPS5983023A true JPS5983023A (en) 1984-05-14
JPH0419495B2 JPH0419495B2 (en) 1992-03-30

Family

ID=16291565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19245482A Granted JPS5983023A (en) 1982-11-04 1982-11-04 Semiconductor pressure difference detector

Country Status (1)

Country Link
JP (1) JPS5983023A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2532806A (en) * 2014-11-25 2016-06-01 Continental Automotive Systems Us Inc Piezoresistive pressure sensor device
US20170328797A1 (en) * 2016-05-12 2017-11-16 Continental Automotive Systems, Inc. Pressure sensor device with anchors for die shrinkage and high sensitivity
WO2023037832A1 (en) * 2021-09-08 2023-03-16 ミネベアミツミ株式会社 Pulse wave sensor
WO2023106197A1 (en) * 2021-12-09 2023-06-15 ミネベアミツミ株式会社 Pulse wave measurement device
WO2023167172A1 (en) * 2022-03-04 2023-09-07 ミネベアミツミ株式会社 Pulse wave sensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2532806A (en) * 2014-11-25 2016-06-01 Continental Automotive Systems Us Inc Piezoresistive pressure sensor device
US9764947B2 (en) 2014-11-25 2017-09-19 Continental Automotive Systems, Inc. Piezoresistive pressure sensor device
US20170328797A1 (en) * 2016-05-12 2017-11-16 Continental Automotive Systems, Inc. Pressure sensor device with anchors for die shrinkage and high sensitivity
CN107421663A (en) * 2016-05-12 2017-12-01 大陆汽车系统公司 Shunk and the highly sensitive pressure sensor apparatus with anchor log for mould
US9964458B2 (en) 2016-05-12 2018-05-08 Continental Automotive Systems, Inc. Pressure sensor device with anchors for die shrinkage and high sensitivity
GB2555768A (en) * 2016-05-12 2018-05-16 Continental automotive systems inc Pressure sensor device with anchors for die shrinkage and high sensitivity
WO2023037832A1 (en) * 2021-09-08 2023-03-16 ミネベアミツミ株式会社 Pulse wave sensor
WO2023106197A1 (en) * 2021-12-09 2023-06-15 ミネベアミツミ株式会社 Pulse wave measurement device
WO2023167172A1 (en) * 2022-03-04 2023-09-07 ミネベアミツミ株式会社 Pulse wave sensor

Also Published As

Publication number Publication date
JPH0419495B2 (en) 1992-03-30

Similar Documents

Publication Publication Date Title
USRE31459E (en) Solid state force transducer and method of making same
US4016644A (en) Methods of fabricating low pressure silicon transducers
US7444879B2 (en) Displacement transducer
US4236137A (en) Semiconductor transducers employing flexure frames
US4050049A (en) Solid state force transducer, support and method of making same
US7290453B2 (en) Composite MEMS pressure sensor configuration
JP2503290B2 (en) Semiconductor pressure / differential pressure measurement diaphragm
US4025942A (en) Low pressure transducers employing large silicon diaphragms having non-critical electrical properties
JP3873454B2 (en) Semiconductor pressure sensor
JPS5983023A (en) Semiconductor pressure difference detector
JP2009265012A (en) Semiconductor sensor
JPH0269630A (en) Semiconductor pressure sensor
JP2864700B2 (en) Semiconductor pressure sensor and method of manufacturing the same
JP3596199B2 (en) Semiconductor type pressure sensor
JP2512220B2 (en) Multi-function sensor
JPH10142086A (en) Semiconductor pressure sensor, its manufacturing method, and differential pressure transmitter using the same
JPS6155264B2 (en)
JPS59217374A (en) Semiconductor strain converter
JPH0688762A (en) Semiconductor pressure sensor
JP3120388B2 (en) Semiconductor pressure transducer
Whittier High performance miniaturized piezoresistive pressure transducers
CN115285929A (en) Micro-differential pressure type MEMS pressure sensor pressure-sensitive chip and preparation method thereof
JP2611330B2 (en) Semiconductor pressure sensor
JPH10242479A (en) Semiconductor pressure sensor
JPS5862534A (en) Semiconductor measuring diaphragm