JPS5978919A - Formation of amorphous silicon film - Google Patents

Formation of amorphous silicon film

Info

Publication number
JPS5978919A
JPS5978919A JP57186866A JP18686682A JPS5978919A JP S5978919 A JPS5978919 A JP S5978919A JP 57186866 A JP57186866 A JP 57186866A JP 18686682 A JP18686682 A JP 18686682A JP S5978919 A JPS5978919 A JP S5978919A
Authority
JP
Japan
Prior art keywords
film
ammonia
deriv
formula
silane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57186866A
Other languages
Japanese (ja)
Inventor
Yorihisa Kitagawa
北川 順久
Zenko Hirose
全孝 廣瀬
Kazuyoshi Isotani
磯谷 計嘉
Yoshinori Ashida
芦田 芳徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP57186866A priority Critical patent/JPS5978919A/en
Publication of JPS5978919A publication Critical patent/JPS5978919A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To increase the growing speed of an amorphous silicon (a-Si) film without deteriorating the characteristics of the film in the manufacture of an a- Si film by a chemical vapor deposition (CVD) method by adding a specified amount of ammonia (deriv.) to a gaseous starting material. CONSTITUTION:Ammonia (deriv.) represented by formula I and/or hydrazine (deriv.) represented by formula II is used. In the formulae each of R<1>-R<7> is H, alkyl or aryl. A substrate is placed in a decomposition furnace, silane of higher order represented by formula III (where n is >=2) such as disilane or trisilane is introduced into the furnace optionally together with an inert gas such as nitrogen, and the silane is thermally decomposed at about 250-600 deg.C to deposit an a-Si film on the substrate. At this time, said ammonia (deriv.) and/or hydrazine (deriv.) is added to the silane by an amount satisfying relation represented by formula IV [where N is the amount of nitrogen in the ammonia (deriv.) and/or hydrazine (deriv.), and Si is the amount of silicon in the gaseous silane].

Description

【発明の詳細な説明】 本発明は一般式5inHzn+2 (ここでnはn≧2
の整数を示す)であられされる高次シランガスを熱分解
し基板上に堆積せしめアモルファスシリコン膜(以下a
−8i膜と称す)を形成する方法に関し、より詳しくは
膜の特性を低下させることなくその形成速度(成長速度
)を高める方法に関する。
[Detailed description of the invention] The present invention is based on the general formula 5inHzn+2 (where n is n≧2
An amorphous silicon film (hereinafter referred to as a
The present invention relates to a method of forming a -8i film (referred to as a -8i film), and more specifically to a method of increasing its formation rate (growth rate) without deteriorating the film properties.

a −S i膜はすぐれた光電特性を有することから、
太陽電池、光感光体、薄膜トランジスタ、光センサー等
に使用される。しかして、a−8i膜の製法の一つに、
シランのごときガスを熱分解し、基板上に堆積せしめる
いわゆる化学気相蒸着法(01+cmical Vap
or Deposition以下OVDと略す)があシ
、a −S i膜の形成に広く使q]されている。しか
してこれを実用に供する場合は生産性が不足であり、生
産性向上のため、CvDにおいて、よシ高いエネルギー
を印加することが試みられている。しかしながら、a’
S+膜の形成過程においである一定以上のエネルギーを
印加した場合、膜形成速度は犬になるものの、得られた
膜の特性がしばしば著しく低下する欠点があった。
Since the a-Si film has excellent photoelectric properties,
Used in solar cells, photoreceptors, thin film transistors, optical sensors, etc. However, one of the methods for manufacturing the a-8i film is
The so-called chemical vapor deposition method (01+Cmical Vapor Deposition) involves thermally decomposing a gas such as silane and depositing it on a substrate.
OVD (hereinafter abbreviated as OVD) is widely used for forming a-Si films. However, when this is put into practical use, the productivity is insufficient, and attempts have been made to apply higher energy in CvD in order to improve productivity. However, a'
When energy above a certain level is applied in the process of forming an S+ film, the film formation rate is reduced, but the properties of the resulting film often deteriorate significantly.

本発明者らは上記の点にかんがみ鋭意検討した結果、C
VDにおける高次シランガス中にアンモニア(誘導体)
等を添加することによシ、膜の特性を低下させることな
く、少くとも2倍通常は5〜6倍も成長速度を高めるこ
とができることを見出し、本発明を完成した。
As a result of intensive study in view of the above points, the inventors found that C.
Ammonia (derivative) in higher silane gas in VD
The present inventors have discovered that the growth rate can be increased by at least 2 times, usually 5 to 6 times, without deteriorating the properties of the film, by adding the following, and have completed the present invention.

すなわち、本発明に従って、一般式S i n Hzn
+2(ここでnはn≧2の整数を示す)であられされる
高次シランガスを熱分解し基板上に堆積せしめるに当り
、該シランガス中に、 式(I) 1 I七3 (式において、R1、R2、allは水素原子、アルキ
ル基、またはアリール基を示す) であられされるアンモニア(誘導体)および/または 式(11) (式において、R4、R5、R6、R7は水素原子、ア
ルキル基、またはアリール基を示す)であられされるヒ
ドラジン(誘導体)を、0.01≦N/Si(グラム−
アトム比)<0.2(ここでNは熱分解系に持ちこまれ
るアンモニア(誘導体)および/またはヒドラジン(誘
導体)中の窒素量を示し、Slは高次シランガス中の硅
素量を示す) なるごとく存在せしめることを特徴とするアモルファス
7リコン膜の形成方法。
That is, according to the invention, the general formula S i n Hzn
+2 (where n represents an integer of n≧2), when thermally decomposing the high-order silane gas and depositing it on the substrate, the formula (I) 1 I73 (in the formula, R1, R2, all represent a hydrogen atom, an alkyl group, or an aryl group) Ammonia (derivative) and/or formula (11) , or an aryl group), with 0.01≦N/Si (gram-
Atom ratio) < 0.2 (Here, N indicates the amount of nitrogen in the ammonia (derivative) and/or hydrazine (derivative) brought into the thermal decomposition system, and Sl indicates the amount of silicon in the higher silane gas.) 1. A method for forming an amorphous 7-recon film, characterized in that the amorphous 7-recon film is made to exist.

が提供される。is provided.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明における高次シランは一般式5inl−1zr+
+z(ここでnけ11≧2の整数を示す)であられされ
るもので、たとえば、ジシラン(S12II6)、トリ
ジラフ (S i3 H8)、テトラシラン(Si*1
1+o) 、ペンタシラン(S 15Hu ) 、ヘキ
サシラン(S i6 H14)等であるが、取シ扱いの
容易さから、ジシラン、トリジラフ、テトラシランが好
ましい。これらは単独でまたは混合物として使用される
The higher order silane in the present invention has the general formula 5inl-1zr+
+z (where n represents an integer of 11≧2), such as disilane (S12II6), trisilane (S i3 H8), tetrasilane (Si*1
1+o), pentasilane (S 15Hu ), hexasilane (S i6 H14), etc., but disilane, tridilaf, and tetrasilane are preferred from the viewpoint of ease of handling. These may be used alone or in mixtures.

なお、高次シランを混合物として使用する場合は、小量
のモノ7ラン(5iH4)を含有していてもかまわない
ことはもちろんである。しかして高次シランの代りにモ
ノシランのみを用いた場合は、アンモニア(誘導体)等
を添加しても、膜の成長速度はほとんど増加せず、本発
明の目的を達成することができない。
In addition, when using a high-order silane as a mixture, it goes without saying that a small amount of mono-7 run (5iH4) may be contained. However, when only monosilane is used instead of higher-order silane, the film growth rate hardly increases even if ammonia (derivative) or the like is added, and the object of the present invention cannot be achieved.

本発明はかかる高次シランを原料として、それ自体公知
の熱分解法により基板上にアモルファスシリコン膜を形
成せしめるものであるが、その際、アンモニア(誘導体
)および/またはヒドラジン(誘導体)を熱分解反応系
に添加する。
The present invention uses such high-order silane as a raw material to form an amorphous silicon film on a substrate by a thermal decomposition method known per se. At this time, ammonia (derivative) and/or hydrazine (derivative) are thermally decomposed. Add to reaction system.

本発明で使用するアンモニア(誘導体)は式(1)であ
られされるものであシ、 t1 R,8 こt7. R1,1t2、n、”ハ水素;メチル、エチ
ル、−プロピル、n−プロピル、1−ブチル1sec−
ブチル、n  7”チル、ペンチル等のアルキル基;フ
ェニル、トリル、キシリル、ナフチル等のアリール基を
示す。式(1)のアンモニア(誘導体)の例としては、
アンモニア、メチルアミン、ジメチルアミン、トリメチ
ルアミン、エチルアミン、ジメチルエチルアミン、ジエ
チルアミン、トリエチルアミン、i−7’口ピルアミン
、n −7’口ビルアミン、アニリン、N−メチルアニ
リン、N、N−ジメチルアニリン、トルイジン、キシリ
ジン、ベンジルアミン、ジフェニルアミン、ナフチルア
ミン等があげられる。
The ammonia (derivative) used in the present invention is represented by the formula (1), t1 R,8 and t7. R1, 1t2, n, "Hydrogen; methyl, ethyl, -propyl, n-propyl, 1-butyl 1sec-
Alkyl groups such as butyl, n7” tyl, pentyl; aryl groups such as phenyl, tolyl, xylyl, naphthyl, etc. Examples of ammonia (derivatives) of formula (1) include:
Ammonia, methylamine, dimethylamine, trimethylamine, ethylamine, dimethylethylamine, diethylamine, triethylamine, i-7'-pyramine, n-7'-pyramine, aniline, N-methylaniline, N,N-dimethylaniline, toluidine, xylidine , benzylamine, diphenylamine, naphthylamine, etc.

また、ヒドラジン(誘導体)は式(II)であられされ
るものであり、 1、・/   \□・ とのR4、n、f′、R6、R7は水素;メチル、エチ
ル、i−プロピル、 n −7’ロピル、i−7’チル
、5ec−ブチル、n−ブチル、ペンチル等のアルキル
基;フェニル、トリル、キシリル、ナフチル等のアリー
ル基を示す。
In addition, hydrazine (derivative) is represented by the formula (II), and R4, n, f', R6, and R7 in 1, . / \□. are hydrogen; methyl, ethyl, i-propyl, n Alkyl groups such as -7'lopyl, i-7'thyl, 5ec-butyl, n-butyl, and pentyl; aryl groups such as phenyl, tolyl, xylyl, and naphthyl.

式(n)のヒドラジン誘導体の例としては、ヒドラジン
、メチルヒドラジン、エチルヒドラジン、i−プロピル
ヒドラジン、フェニルヒドラジン、ベンジルヒドラジン
、ナフチルヒドラジン、N、N’−ジメチルヒドラジン
、N 、 N’−ジエチルヒドラジン、N−メチル−N
′−フェニルヒドラジン、N、N’−ジフェニルヒドラ
ジン等があげられる。
Examples of hydrazine derivatives of formula (n) include hydrazine, methylhydrazine, ethylhydrazine, i-propylhydrazine, phenylhydrazine, benzylhydrazine, naphthylhydrazine, N,N'-dimethylhydrazine, N,N'-diethylhydrazine, N-methyl-N
'-phenylhydrazine, N,N'-diphenylhydrazine, and the like.

なお、これらの中で、取扱の容易性およびその作用効果
の点からみてアンモニアが最も好ましい。
Among these, ammonia is most preferred in terms of ease of handling and its effects.

なお、その他、エチレンジアミン、エタノールアミン、
ジェタノールアミン、トリエタノールアミン、フエニ1
/ンジアミン、ニトロアニリン等の窒素化合物も使用可
能である。
In addition, ethylenediamine, ethanolamine,
Jetanolamine, triethanolamine, Feni 1
Nitrogen compounds such as diamine, nitroaniline, etc. can also be used.

熱分解系に添加するアンモニア(誘導体)および/また
はヒドラジン(誘導体)中の窒素量N(ダラムーアトム
)と原料高次シランガス中の硅素量Si (グラム−ア
トム)は 0.01≦N / Si (0,2 なる関係を満足することが必要である。N / S i
が0.01未満であると、膜の成長速度が十分大きくな
らない。また、N / S iが0.2以上であると、
膜の生長速度はアンモニア等を添加しないブランクの値
と同程度か場合によってはむしろこれよシ低下する。
The amount of nitrogen N (Daramoor atom) in ammonia (derivative) and/or hydrazine (derivative) added to the thermal decomposition system and the amount of silicon Si (gram-atom) in the raw material higher order silane gas are 0.01≦N / Si (0 , 2. It is necessary to satisfy the following relationship.N/S i
is less than 0.01, the growth rate of the film will not be sufficiently high. Moreover, when N/S i is 0.2 or more,
The growth rate of the film is on the same level as that of a blank without addition of ammonia or the like, or in some cases is even lower.

本発明において熱分解圧力は減圧、常圧、大気圧のいか
なる圧力を採用することもできる。
In the present invention, the pyrolysis pressure may be any pressure including reduced pressure, normal pressure, and atmospheric pressure.

なお、大気圧以上の圧力で熱分解を行えば膜の成長速度
がもともと大であシ好都合であるが、その場合、2 K
g/cnl G以下の範囲で十分本発明の目的を達する
ことができる。もちろんこれ以上の加圧下で操作するこ
とはなんらさしつかえない。
Note that it is advantageous that the film growth rate is originally high if thermal decomposition is performed at a pressure higher than atmospheric pressure, but in that case, 2 K
The object of the present invention can be sufficiently achieved within the range of g/cnl G or less. Of course, there is nothing wrong with operating under pressure greater than this.

また、本発明における熱分解温度は250Cな基板を必
要とするとともに、a−8i膜に水素がとシ込まれにり
く、十分な特性を得ることがてきない。そして十分な特
性を得るためには水素をとり込ませる後処理が必要であ
る。壕だ、これが250C未満であると、高次シランの
分解速度が遅くなシ、a −S i膜の成長速度が実用
′に適さないほど低くなる。
Further, the thermal decomposition temperature in the present invention requires a substrate of 250 C, and hydrogen is difficult to be injected into the a-8i film, making it impossible to obtain sufficient characteristics. In order to obtain sufficient properties, post-treatment to incorporate hydrogen is necessary. However, if the temperature is less than 250C, the decomposition rate of higher-order silane is slow, and the growth rate of the a-Si film becomes unsuitable for practical use.

本発明を実施するための装置としては、たとえば第1図
に示したようなものが使用できる。
As an apparatus for carrying out the present invention, for example, the apparatus shown in FIG. 1 can be used.

ガラス管である。これは管でなく角型(ダクト)でもよ
い。反応管は外周囲にハロゲンランプのごとき加熱器2
0を備えている。加熱器に対応する管内の部分が分解ゾ
ーンであり、シリコン製サセプター30(支持台)およ
び該サセプター上に石英ガラス、シリコン、す・ファイ
ア、SUS等の基板40がセットされている。分解ゾー
ンの温度は熱電対45によシ測定される。
It is a glass tube. This may be a rectangular shape (duct) instead of a pipe. The reaction tube has a heater 2 such as a halogen lamp around the outside.
0. The part inside the tube corresponding to the heater is a decomposition zone, and a silicon susceptor 30 (supporting stand) and a substrate 40 made of quartz glass, silicon, S/F, SUS, etc. are set on the susceptor. The temperature in the decomposition zone is measured by a thermocouple 45.

反応管の一端部は原料ガスの供給部5oであり、シラン
ガス60、キャリヤガス7oおよびアンモニア(誘導体
)等ガス80配管部に結合されている。61.71.8
1はバルブであシ、63.73,83はガス流量計であ
る。また、反応管の他端部は排出ガスの出口部90であ
る。
One end of the reaction tube is a source gas supply section 5o, which is connected to a piping section for gases 80 such as silane gas 60, carrier gas 7o, and ammonia (derivative). 61.71.8
1 is a valve, and 63, 73, 83 are gas flow meters. Further, the other end of the reaction tube is an outlet section 90 for exhaust gas.

当然のことながら加熱器20は、ランプ加熱式でなく、
反応管全体を加熱する抵抗加熱式でもかまわない。
Naturally, the heater 20 is not a lamp heating type,
A resistance heating type that heats the entire reaction tube may also be used.

なお、アンモニア(誘導体)等は、常温でアンモニア、
メチルアミン等のごときガス状のものまたは容易にガス
化しうるものの場合は、ガスとして7ランガスと同様に
単独でも配管を通じて供給できるが、ヒドラジンやアニ
リンのごときやや高沸点の液状のものはこれにN2、N
e等のキャリヤガスをバブリングせしめて(図示せず)
放散操作を行い、キャリヤガスに同伴せしめて熱分解系
に供給するのが好ましい。
In addition, ammonia (derivatives) etc. are ammonia,
In the case of gaseous substances such as methylamine or substances that can be easily gasified, they can be supplied as a gas alone through piping in the same way as 7 run gas, but liquid substances with a slightly higher boiling point such as hydrazine and aniline can be supplied with N2. , N
Bubbling carrier gas such as e (not shown)
It is preferable to carry out a dissipation operation and to entrain the carrier gas and supply it to the pyrolysis system.

次に分解操作について説明するに、分解炉を分解温度以
上に昇温し、窒素ガスを流してベーキング操作を行った
後、分解温度まで降温し250〜500Cで温度安定化
させる。しかる後、高次/ラン100%のもの、または
0.1〜20%程度に窒素、ヘリウム、アルゴン、水素
等の不活性ガスで希釈したものおよびアンモニア(誘導
体)等を、そのまま、または、上記不活性ガスのキャリ
ヤガスと共に250〜600Cの分解温度にセットした
分解炉に供給し、高次シランガスの熱分解を行い基板上
にa−8i膜を堆積せしめる。
Next, to explain the decomposition operation, the temperature of the decomposition furnace is raised to above the decomposition temperature, nitrogen gas is flowed to perform the baking operation, and then the temperature is lowered to the decomposition temperature and the temperature is stabilized at 250 to 500C. After that, the high order/run 100%, or the one diluted with an inert gas such as nitrogen, helium, argon, hydrogen, etc. to about 0.1 to 20%, and ammonia (derivative), etc., are used as they are, or the above The high-order silane gas is supplied together with an inert carrier gas to a decomposition furnace set at a decomposition temperature of 250 to 600 C, and the high-order silane gas is thermally decomposed to deposit an a-8i film on the substrate.

以下実施例により本発明を具体的に説明する。The present invention will be specifically explained below using Examples.

以下の実施例において得られたa −S i膜は次のご
とくして分析ないし評価した。
The a-Si films obtained in the following examples were analyzed and evaluated as follows.

(1)暗、光伝導度 測定に先立って被測定a −S i膜上にゲート電極を
真空蒸着によって付け、オーミック特性をとった。電圧
−電流特性は日本分光■製回折格子分光器0 ’J) 
−50により測定した。
(1) Dark: Prior to photoconductivity measurement, a gate electrode was attached to the a-Si film to be measured by vacuum deposition to obtain ohmic characteristics. The voltage-current characteristics were measured using a diffraction grating spectrometer manufactured by JASCO ■0'J)
-50.

暗伝導度は光を遮断した場合、光伝導度は2e■、3 
X 1014光子の光をサンプルに垂直に照射した場合
である。
Dark conductivity is when light is blocked, photo conductivity is 2e■, 3
This is a case where the sample is irradiated with light of 1014 photons perpendicularly.

(2)水素含有量及び赤外吸収 赤外吸収係数の積分強度によシ求めた。使用した赤外分
光器は日本分光■H−202型である。
(2) Hydrogen content and infrared absorption It was determined based on the integrated intensity of the infrared absorption coefficient. The infrared spectrometer used was JASCO Model H-202.

同時に赤外吸収スペクトルから5i−H及びSi −N
2  の伸縮振動の赤外吸収を求めた。
At the same time, from the infrared absorption spectrum, 5i-H and Si-N
The infrared absorption of the stretching vibration of 2 was determined.

(3)  耐熱性 第1図に示した装置を使ってa −S i膜をN2,1
12等のキャリヤガスを流しながらlB@間熱アニール
し水素の離脱速度が元の水素含有量の10係を越える温
度で表示する。
(3) Heat resistance The a-Si film was exposed to N2,1 using the equipment shown in Figure 1.
Thermal annealing is carried out for 1 B@ while flowing a carrier gas such as No. 12, and the hydrogen desorption rate is displayed at a temperature exceeding 10 times the original hydrogen content.

(4)膜厚み 膜厚みに応じて、重量法、表面荒さ計による方法、透過
率による干渉から求める方法を併用して求めた。この膜
厚みと熱分解時間から膜成長速度(X/#n)を算出す
る。
(4) Film Thickness Depending on the film thickness, the thickness was determined using a combination of gravimetric method, method using surface roughness meter, and method determined from interference using transmittance. The film growth rate (X/#n) is calculated from this film thickness and thermal decomposition time.

(5)  伝導度の活性化エネルギー 暗伝導度を室温から20Orまで加熱した範囲で測定し
、アレニウスの式に従って求めた。
(5) Activation energy of conductivity Dark conductivity was measured in a heated range from room temperature to 20 Or, and was determined according to the Arrhenius formula.

(6)  光学的バンドギャップ 日本分光0T−50回折格子分光器により測定した。透
過率から吸収係数を求め、吸収係数曲線の直線部を延長
して光子エネルギーと交わる点を光学的バンドギャップ
とした。
(6) Optical bandgap Measured using a Japan Spectroscopy 0T-50 diffraction grating spectrometer. The absorption coefficient was determined from the transmittance, and the point where the linear part of the absorption coefficient curve was extended and intersected with the photon energy was defined as the optical band gap.

実施例1 実験装置として第1図にしめした装置を使用した(反応
管:40mmσ×600朝t)。
Example 1 The apparatus shown in FIG. 1 was used as an experimental apparatus (reaction tube: 40 mmσ x 600 mt).

N2ガスで希釈した5%の5iJI6を含む原料ガス5
00 cc/” K 142で希釈した10%のアンモ
ニアを含むガス10 cC/min (N/ 5i=0
.02)を加え、N2ガスをキャリヤガスとして用い(
流量1ooocc/=)、圧力1.0Kg/crd −
Gで分解炉に流して400t:’で熱分解を30分行っ
た。結果を第1表に示す。
Raw material gas 5 containing 5% 5iJI6 diluted with N2 gas
00 cc/” Gas containing 10% ammonia diluted with K 142 10 cC/min (N/5i=0
.. 02) and using N2 gas as a carrier gas (
Flow rate 1ooocc/=), pressure 1.0Kg/crd −
The mixture was poured into a decomposition furnace at 400 t:' for 30 minutes. The results are shown in Table 1.

実施例2〜実施例7 第1表に示した条件で、実施例1と同様の実験を行った
。結果を第1表にまとめて示す。
Examples 2 to 7 Experiments similar to those in Example 1 were conducted under the conditions shown in Table 1. The results are summarized in Table 1.

比較例1〜比較例6 第2表に示した条件で、実施例1と同様な実験を行った
。結果を第2表にまとめて示す。
Comparative Examples 1 to 6 Experiments similar to those in Example 1 were conducted under the conditions shown in Table 2. The results are summarized in Table 2.

Claims (1)

【特許請求の範囲】 1一般式S団H2n + 2 (ここで11は11≧2
の整数を示す)であられされる高次7ランガスを熱分解
し基板上に堆積せしめるに当シ、該シランガス中に、 式(1) (式において、几1、R2、R3は水素原子、アルキル
基、寸だけアリール基を示す) であられされるアンモニア(誘導体)および/または /   \□7 5 (式において、几4、R5、几6、几7は水素原子、ア
ルキル基、またはアリール基を示す)であられされるヒ
ドラジン(誘導体)を、0.01≦N/Si(グラム−
アトム比) (0,2(ここでNは熱分解系に持ちこま
れるアンモニア(誘導体)および/またはヒドラジン(
誘導体)中の窒素量を示し、Siは高次シランガス中の
硅素量を示す) なるごとく存在せしめることを特徴とするアモルファス
シリコン膜の形成方法。
[Claims] 1 General formula S group H2n + 2 (here, 11 is 11≧2
In order to thermally decompose the high-order 7-lane gas produced by the formula (1) (indicating an integer of ammonia (derivative) and/or / \□7 5 (in the formula, 几4, R5, 几6, 几7 represent a hydrogen atom, an alkyl group, or an aryl group) 0.01≦N/Si (gram-
atom ratio) (0,2 (where N is ammonia (derivative) and/or hydrazine (
1. A method for forming an amorphous silicon film, characterized in that Si indicates the amount of nitrogen in the derivative), and Si indicates the amount of silicon in the higher-order silane gas.
JP57186866A 1982-10-26 1982-10-26 Formation of amorphous silicon film Pending JPS5978919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57186866A JPS5978919A (en) 1982-10-26 1982-10-26 Formation of amorphous silicon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57186866A JPS5978919A (en) 1982-10-26 1982-10-26 Formation of amorphous silicon film

Publications (1)

Publication Number Publication Date
JPS5978919A true JPS5978919A (en) 1984-05-08

Family

ID=16196033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57186866A Pending JPS5978919A (en) 1982-10-26 1982-10-26 Formation of amorphous silicon film

Country Status (1)

Country Link
JP (1) JPS5978919A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633463A (en) * 1986-06-24 1988-01-08 Agency Of Ind Science & Technol Manufacture of thin film transistor
US6716751B2 (en) 2001-02-12 2004-04-06 Asm America, Inc. Dopant precursors and processes
US7026219B2 (en) 2001-02-12 2006-04-11 Asm America, Inc. Integration of high k gate dielectric
US7092287B2 (en) 2002-12-18 2006-08-15 Asm International N.V. Method of fabricating silicon nitride nanodots
US7186630B2 (en) 2002-08-14 2007-03-06 Asm America, Inc. Deposition of amorphous silicon-containing films
US7294582B2 (en) 2002-07-19 2007-11-13 Asm International, N.V. Low temperature silicon compound deposition
US7297641B2 (en) 2002-07-19 2007-11-20 Asm America, Inc. Method to form ultra high quality silicon-containing compound layers
US7427571B2 (en) 2004-10-15 2008-09-23 Asm International, N.V. Reactor design for reduced particulate generation
US7553516B2 (en) 2005-12-16 2009-06-30 Asm International N.V. System and method of reducing particle contamination of semiconductor substrates
US7629270B2 (en) 2004-08-27 2009-12-08 Asm America, Inc. Remote plasma activated nitridation
US7674726B2 (en) 2004-10-15 2010-03-09 Asm International N.V. Parts for deposition reactors
US7674728B2 (en) 2004-09-03 2010-03-09 Asm America, Inc. Deposition from liquid sources
US7691757B2 (en) 2006-06-22 2010-04-06 Asm International N.V. Deposition of complex nitride films
US7732350B2 (en) 2004-09-22 2010-06-08 Asm International N.V. Chemical vapor deposition of TiN films in a batch reactor
US7833906B2 (en) 2008-12-11 2010-11-16 Asm International N.V. Titanium silicon nitride deposition
US7851307B2 (en) 2007-08-17 2010-12-14 Micron Technology, Inc. Method of forming complex oxide nanodots for a charge trap

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633463A (en) * 1986-06-24 1988-01-08 Agency Of Ind Science & Technol Manufacture of thin film transistor
US6716751B2 (en) 2001-02-12 2004-04-06 Asm America, Inc. Dopant precursors and processes
US6716713B2 (en) 2001-02-12 2004-04-06 Asm America, Inc. Dopant precursors and ion implantation processes
US6743738B2 (en) 2001-02-12 2004-06-01 Asm America, Inc. Dopant precursors and processes
US6821825B2 (en) 2001-02-12 2004-11-23 Asm America, Inc. Process for deposition of semiconductor films
US6900115B2 (en) 2001-02-12 2005-05-31 Asm America, Inc. Deposition over mixed substrates
US6958253B2 (en) 2001-02-12 2005-10-25 Asm America, Inc. Process for deposition of semiconductor films
US6962859B2 (en) 2001-02-12 2005-11-08 Asm America, Inc. Thin films and method of making them
US7026219B2 (en) 2001-02-12 2006-04-11 Asm America, Inc. Integration of high k gate dielectric
US7790556B2 (en) 2001-02-12 2010-09-07 Asm America, Inc. Integration of high k gate dielectric
US7585752B2 (en) 2001-02-12 2009-09-08 Asm America, Inc. Process for deposition of semiconductor films
US7186582B2 (en) 2001-02-12 2007-03-06 Asm America, Inc. Process for deposition of semiconductor films
US7273799B2 (en) 2001-02-12 2007-09-25 Asm America, Inc. Deposition over mixed substrates
US7285500B2 (en) 2001-02-12 2007-10-23 Asm America, Inc. Thin films and methods of making them
US7294582B2 (en) 2002-07-19 2007-11-13 Asm International, N.V. Low temperature silicon compound deposition
US7297641B2 (en) 2002-07-19 2007-11-20 Asm America, Inc. Method to form ultra high quality silicon-containing compound layers
US8921205B2 (en) 2002-08-14 2014-12-30 Asm America, Inc. Deposition of amorphous silicon-containing films
US7186630B2 (en) 2002-08-14 2007-03-06 Asm America, Inc. Deposition of amorphous silicon-containing films
US7092287B2 (en) 2002-12-18 2006-08-15 Asm International N.V. Method of fabricating silicon nitride nanodots
US7629270B2 (en) 2004-08-27 2009-12-08 Asm America, Inc. Remote plasma activated nitridation
US7921805B2 (en) 2004-09-03 2011-04-12 Asm America, Inc. Deposition from liquid sources
US7674728B2 (en) 2004-09-03 2010-03-09 Asm America, Inc. Deposition from liquid sources
US7732350B2 (en) 2004-09-22 2010-06-08 Asm International N.V. Chemical vapor deposition of TiN films in a batch reactor
US7966969B2 (en) 2004-09-22 2011-06-28 Asm International N.V. Deposition of TiN films in a batch reactor
US7674726B2 (en) 2004-10-15 2010-03-09 Asm International N.V. Parts for deposition reactors
US7427571B2 (en) 2004-10-15 2008-09-23 Asm International, N.V. Reactor design for reduced particulate generation
US7553516B2 (en) 2005-12-16 2009-06-30 Asm International N.V. System and method of reducing particle contamination of semiconductor substrates
US7691757B2 (en) 2006-06-22 2010-04-06 Asm International N.V. Deposition of complex nitride films
US7851307B2 (en) 2007-08-17 2010-12-14 Micron Technology, Inc. Method of forming complex oxide nanodots for a charge trap
US8203179B2 (en) 2007-08-17 2012-06-19 Micron Technology, Inc. Device having complex oxide nanodots
US7833906B2 (en) 2008-12-11 2010-11-16 Asm International N.V. Titanium silicon nitride deposition

Similar Documents

Publication Publication Date Title
JPS5978919A (en) Formation of amorphous silicon film
JP3168002B2 (en) Transition metal nitride chemical vapor deposition method
JPS5978918A (en) Formation of amorphous silicon film with wide band gap
JPS5989407A (en) Formation of amorphous silicon film
JPS6043485A (en) Formation of amorphous silicon film
McCrary et al. The ultraviolet absorpton spectra of selected organometallic compounds used in the chemical vapor deposition of gallium arsenide
JPS6042817A (en) Method for controlling valence electron of hydrogenated amorphous silicon film
Hashimoto et al. Growth kinetics of polycrystalline silicon from silane by thermal chemical vapor deposition method
JPS5957909A (en) Formation of amorphous silicon film
KR930008342B1 (en) Method of forming amorphous polymeric halosilane films and products produced therefrom
GB1136881A (en) Vapour growth of silicon crystals and apparatus for producing the same
JPS5957908A (en) Formation of amorphous silicon film
JP4193017B2 (en) Method for forming boron doped silicon film
JPS6043484A (en) Formation of amorphous silicon film having wide band gap
JPS6036662A (en) Vapor phase method under reduced pressure
JPS5955441A (en) Formation of hydrogenated amorphous silicon film
JPS61276976A (en) Method and apparatus for producing high quality thin film containing silicon by thermal cvd method using species in intermediate state
JPS6221868B2 (en)
JPS6395617A (en) Method of forming film containing amorphous polymer silicon
JP2890698B2 (en) Method of forming silicon nitride film
JPS59147436A (en) Forming process of silicon nitride film
JPS6042818A (en) Formation of amorphous silicon film
JPS5988307A (en) Manufacture of product coated with silicon carbide
JPS6199150A (en) Formation of deposited film
JPH03222321A (en) Manufacture of amorphous semiconductor thin film