JPS5978909A - Ozone production device - Google Patents

Ozone production device

Info

Publication number
JPS5978909A
JPS5978909A JP18576182A JP18576182A JPS5978909A JP S5978909 A JPS5978909 A JP S5978909A JP 18576182 A JP18576182 A JP 18576182A JP 18576182 A JP18576182 A JP 18576182A JP S5978909 A JPS5978909 A JP S5978909A
Authority
JP
Japan
Prior art keywords
oxygen
ozone
air
gas
enricher
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18576182A
Other languages
Japanese (ja)
Inventor
Kenzo Takahashi
健造 高橋
Shohei Eto
江藤 昌平
Mitsuo Maeda
満雄 前田
Takanori Nanba
難波 敬典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18576182A priority Critical patent/JPS5978909A/en
Publication of JPS5978909A publication Critical patent/JPS5978909A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To provide a titled device which increases the density of ozone and economizes energy by constituting said device wherein a heat exchanger for the air introduced therein and the gas to be discharged therefrom is provided, and an oxygen enricher of a membrane sepn. system and a dehumidifier by cooling are combined with a circulation line and are coupled to an ozone generation system. CONSTITUTION:The air introduced into a heat exchanger 3 through a suction hole 7 is subjected to a heat exchange with the used gas to be discharged through an evacuation hole 6, by which the air is cooled and dehumidified, then the dehumidified air is supplied to a circulation line wherein a dehumidifier 2 by cooling and an oxygen enricher 1 are combined. A membrane sepn. system using cellulose acetate or the like is incorporated for the enricher 1 which can produce the oxygen-enriched air having a high oxygen concn. by permeating selectively oxygen with the cooled and dehumidified raw material air with good efficiency. The dry oxygen-enriched air to be drawn from the enricher 1 is more preferably passed through a dryer 5 of an adsorption system, to increase thoroughly the degree of dryness; thereafter the air is fed into an ozone generator 4, and the high-concn. ozone produced with good efficiency is drawn from an ozone draw port 9.

Description

【発明の詳細な説明】 この発明は、改良されたオゾン製造装置に関する。[Detailed description of the invention] This invention relates to an improved ozone production apparatus.

上水の殺菌、廃水の脱色、脱臭、あるいは廃カス中の悪
臭物質の分解等にオゾンのオリ用が効果的であるため、
オゾン発生器を組み合わせた設備が広く普及している。
Because ozone is effective for sterilizing tap water, decolorizing and deodorizing wastewater, and decomposing malodorous substances in waste residue,
Equipment that combines an ozone generator is widely used.

しかしながら、オゾン発生器におけるオゾンの生成効率
は非常に低く、消費電力の90チ以上が熱ロスとなって
いるのが現状である。オゾンの生成効率は原料空気の酸
素敬度に依存し、高濃度になる程効率は同上する。空気
中の酸素碗度を筒める方法としては、深冷分離法やセオ
ライト等を用いる吸・脱着法が従来より知られているが
、これらの方法は分離装置自身が大量の電力を消費する
ためにオゾン発生器と組み合わせても省エネルギー化を
図ることかできなかった。
However, the ozone generation efficiency in ozone generators is very low, and currently more than 90 inches of power consumption is lost as heat. The production efficiency of ozone depends on the oxygen purity of the raw air, and the higher the concentration, the higher the efficiency. Cryogenic separation methods and adsorption/desorption methods using ceolite have long been known as methods of reducing oxygen concentration in the air, but these methods require that the separator itself consumes a large amount of electricity. Therefore, it was not possible to save energy even when combined with an ozone generator.

これに対して、最近酸素ガスを選択的に透過させる酸素
富化膜を応用した膜分離法は少ない動力で運転できると
いう特徴を持つことから注目を集めている。Rvち、オ
ゾン発生器と膜分離方式による酸素富化器を組み合わせ
ることにより、オゾン発生器におけるオゾンの生成効率
の同上を通して。
In contrast, membrane separation methods that utilize oxygen-enriched membranes that selectively permeate oxygen gas have recently attracted attention because they can be operated with less power. By combining an ozone generator and an oxygen enricher using a membrane separation method, the ozone generation efficiency in the ozone generator can be improved.

オゾンの高濃度化およびオゾン製造の省エネルキー化が
図れるのである。膜分離方式による酸素a化器では、酸
素ガスを選択的に透過させる酸素富化膜を用いて膜モジ
ュールを構成し2.この酸素富化膜で仕切られた一方の
空間(Feed側)に原料である空気を高圧あるいは常
圧で供給し、他方の空間(Product lli )
を常圧あるいは減圧に吸引することにより膜を通して高
酸素濃度の酸素富化空気を生産するものである。この酸
素富化空気の酸素濃度(CP)は酸素富化膜の酸素ガス
選択透過性の指標である分離係数(α)と膜モジュール
の運転条件、 ff1JちFeed側圧力(PF )お
よびProduct側の圧力(PP)の設定により変化
する。これらの関係は膜モジュールの形態に依らず、理
論的に次式で表わされる。
This makes it possible to increase the concentration of ozone and to save energy in ozone production. In an oxygen a converter using a membrane separation method, a membrane module is constructed using an oxygen enrichment membrane that selectively permeates oxygen gas.2. Air, which is a raw material, is supplied at high pressure or normal pressure to one space (Feed side) partitioned by this oxygen enrichment membrane, and the other space (Product side) is
By suctioning air to normal or reduced pressure, oxygen-enriched air with a high oxygen concentration is produced through a membrane. The oxygen concentration (CP) of this oxygen-enriched air is determined by the separation coefficient (α), which is an index of the oxygen gas selective permeability of the oxygen-enriched membrane, the operating conditions of the membrane module, the feed side pressure (PF), and the product side pressure. It changes depending on the pressure (PP) setting. These relationships are theoretically expressed by the following equation, regardless of the form of the membrane module.

Qp= X 10o     (vol、%) 但しγはFeed9111に対するProduct 1
jlll(7)圧力比(PP/PF)を表わし、CFは
Feed側の酸素濃度(vol、%)を表わす。上記の
式より酸素富化膜の分離係数(α)をパラメータとし、
圧力比(γ)と酸素富化空気の酸素濃度(CP)の関係
を求めて第1図に示す。但し0F=21 vol、%と
する。第1図より明らかなように圧力比が小さい程酸素
11cは尚くなるか、  Feed 1lllを高圧に
したり、  proauctlB++’Q減圧に吸引す
るに要する動力は圧力比を小さくすると共に急激に増大
するため実用的には0.1〜0.5の範囲の圧力比が用
いられる。圧力比0.1〜0.5における酸素濃度を少
なくとも5gvo1.%以上にするためには酸素富化膜
の分離係数は少なくとも4以上、好ましくは6以上であ
ることが要求される。
Qp=X 10o (vol,%) However, γ is Product 1 for Feed9111
jllll(7) represents the pressure ratio (PP/PF), and CF represents the oxygen concentration (vol, %) on the Feed side. From the above formula, the separation coefficient (α) of the oxygen enrichment membrane is set as a parameter,
The relationship between the pressure ratio (γ) and the oxygen concentration (CP) of oxygen-enriched air was determined and shown in FIG. However, 0F=21 vol, %. As is clear from Figure 1, the smaller the pressure ratio, the more oxygen 11c will be produced, or the power required to make Feed 1llll a high pressure or to suck in proauctlB++'Q pressure increases rapidly as the pressure ratio decreases. Practically, pressure ratios in the range 0.1 to 0.5 are used. The oxygen concentration at a pressure ratio of 0.1 to 0.5 is at least 5 gvol. % or more, it is required that the separation coefficient of the oxygen enrichment membrane is at least 4 or more, preferably 6 or more.

現在実用化されている酸素富化膜の常温における分離係
数は、ポリジメチルシロキサンを素材とするものが2.
酢酸セルロースあるいはポリ4−メチルペンテン−1を
累月とするものが3.ポリエステルを累月とするものが
5と、6を超えるものはない。(酸素富化膜の分離係数
は温度に依存し。
The separation coefficient at room temperature of oxygen enrichment membranes currently in practical use is 2.
3. Cellulose acetate or poly-4-methylpentene-1 is used as a compound. The number of polyester samples is 5, and there are no cases exceeding 6. (The separation coefficient of oxygen enrichment membranes depends on temperature.

低温になる程増大する。この場合酸素カスの透過係数の
減少を伴なうが、膜面積の増大または薄膜化により補う
ことができる。) この発明は、膜分離方式による酸素富化器と冷却除湿器
を循環路により結合し、この循環路に。
It increases as the temperature decreases. In this case, the permeability coefficient of oxygen scum is reduced, but this can be compensated for by increasing the membrane area or making the membrane thinner. ) This invention combines an oxygen enricher using a membrane separation method and a cooling dehumidifier through a circulation path.

熱交換器を介して空気の導入と用済み包体の排出を行な
わせる系を、オゾン発生系と結合することにより、オゾ
ンの高濃度化およびオゾン製造の省ニオ、/lキーを実
現できるオゾン製造装置を得ることを目的とするもので
ある。
By combining a system that introduces air and discharges used packaging via a heat exchanger with an ozone generation system, an ozone system that can increase ozone concentration, reduce ozone production, and achieve the /l key. The purpose is to obtain manufacturing equipment.

第2図はこの発明の一実施例を示すブロック図であり2
図において(1)は膜分離方式による酸素富化器、(2
)は冷却除湿器、(3)は熱交換器、(4)はオゾン発
生器、(5)は吸着式乾燥器、(6)は排気孔、(7)
は吸気孔、(8)は排水孔、(91はオゾンの取出し口
である。
FIG. 2 is a block diagram showing one embodiment of the present invention.
In the figure, (1) is an oxygen enricher using a membrane separation method, (2)
) is a cooling dehumidifier, (3) is a heat exchanger, (4) is an ozone generator, (5) is an adsorption dryer, (6) is an exhaust hole, (7) is
(8) is a drainage hole, (91 is an ozone outlet).

上記のように構成されたオゾン製造装置において、オゾ
ン発生器(41へ供給する原料空気は酸素濃度が高いこ
とと同時に乾燥していることが要求されるため、冷却除
湿器(21か原料空気を冷却して酸素富化膜の分離係数
の増大と原料空気の乾燥を同時に実現するため第2図に
示したように配置されている。即ち、膜分離方式による
酸素富化器(11と冷却除湿器(2)の間で気体流(空
気流)の循環路を形成し、循環路を形成している全気体
流の約1v011% の気体を乾燥した酸素富化空気と
して酸素富化器から取り出し、約1gvo10%の気体
を循環路から熱交換器(3)を介して排気すると同時に
上記操作により不足となる約20 vol、%の空気を
熱交換器を介して外気から取り込まれるように設定する
ことにより酸素濃度が一定の酸素富化気体を連続的に取
り出すことができた。
In the ozone production apparatus configured as described above, the raw air supplied to the ozone generator (41) is required to have a high oxygen concentration and be dry at the same time. In order to increase the separation coefficient of the oxygen enrichment membrane and dry the raw air at the same time by cooling, the arrangement is as shown in Figure 2. A circulation path for gas flow (air flow) is formed between the containers (2), and about 1% of the total gas flow forming the circulation path is taken out from the oxygen enrichment device as dry oxygen-enriched air. , about 1 gvo 10% of gas is exhausted from the circulation path via the heat exchanger (3), and at the same time about 20 vol, % of the air that is insufficient due to the above operation is set to be taken in from the outside air via the heat exchanger. This made it possible to continuously extract oxygen-enriched gas with a constant oxygen concentration.

膜分離方式による酸素富化器としては、酸素ガスの分離
係数が常温(25℃)で3の酢酸セルロースあるいは5
のポリエステルを累月とする酸素富化膜を用い、冷却除
湿器で原料空気の温度をO〜10℃に冷却することによ
り分離係数は4〜Tとなった。従って膜モジュールのF
eθd側圧力を2気圧、  Product  側を0
.4気圧即ち圧力比を02と設定して運転することによ
り酸素濃度が5 Q VOI。
An oxygen enricher using a membrane separation method uses cellulose acetate, which has an oxygen gas separation coefficient of 3 at room temperature (25°C), or 5
By using an oxygen-enriching membrane made of polyester and cooling the temperature of the raw air to 0 to 10°C with a cooling dehumidifier, the separation coefficient became 4 to T. Therefore, F of the membrane module
Pressure on the eθd side is 2 atm, and pressure on the Product side is 0.
.. By operating with the pressure ratio set to 4 atm, that is, 02, the oxygen concentration will be 5 Q VOI.

係以上の乾燥した酸素富化気体を得た。A dry oxygen-enriched gas with a temperature of more than 50% was obtained.

熱交換器として、温度(顕熱)と湿度(潜熱)を同時に
交換する(全)熱交換器、を用いることにより、外気を
低温、低湿度化して取り込むことにより冷却除湿器の負
荷を軽減することができた。
By using a (total) heat exchanger that simultaneously exchanges temperature (sensible heat) and humidity (latent heat) as a heat exchanger, the load on the cooling dehumidifier is reduced by bringing in outside air at a lower temperature and humidity. I was able to do that.

また酸素富化気体の乾燥度を十分扁めるために4=ニシ
ン生器(4)の前に吸着力式による乾燥器(5)を挿入
することが好ましい。
Further, in order to sufficiently reduce the degree of dryness of the oxygen-enriched gas, it is preferable to insert an adsorption dryer (5) in front of the herring container (4).

この発明によるオゾンの製造装置と従来法の空気、純酸
素を原料とするオゾン発生器を運転した場合を比較する
と、オゾン濃度は(従来法が)それぞれ1係、3〜4チ
に対して本発明の場合は空気を原料とし2〜3チであっ
た。壕だI Kgのオゾンを製造するに要する全動力は
従来法の空気を原料とした場合と比べて10〜20% 
の低減となった。
Comparing the ozone production equipment according to the present invention with the conventional ozone generators using air and pure oxygen as raw materials, the ozone concentration (conventional method) was lower than that of In the case of the invention, air was used as the raw material and the amount was 2 to 3. The total power required to produce 1 kg of ozone is 10-20% compared to the conventional method using air as the raw material.
This resulted in a reduction in

この発明は以上説明したとおり、膜分離方式による酸素
富化器と冷却除湿器を循環路により組合せ、この循環路
に、熱交換器を介して空気の導入と用済み気体の排出を
行なわせる系を、オゾン発生糸と結合することにより、
オゾンの高濃度化およびオゾン製造の省エネルギーを実
埃できるオゾン製造装置を得ることができる。
As explained above, this invention is a system in which an oxygen enricher using a membrane separation method and a cooling dehumidifier are combined in a circulation path, and air is introduced into the circulation path and used gas is discharged through a heat exchanger. By combining with ozone generating thread,
It is possible to obtain an ozone production device that can increase the concentration of ozone and save energy during ozone production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は膜分離方式による酸素富化器により生産される
酸素富化気体の酸素濃度(VOW。チ〕と酸素脇化膜の
分離係数および膜モジュールの連転条件である圧力比と
の関係を表わす図、第2図はこの発明の一実施例を示す
ブロック図である。 図において+11は膜分離方式による酸素n化器。 (2)は冷却除湿器、(3)は熱交換器、(4)はオゾ
ン発生器、(5)は吸着式乾燥器、(6)は排気口、(
7)は吸気孔。 (8)は排水孔、(9)はオゾンの堆出口である。 代理人葛野信− 第1図 ユ  カ  よ乙 第2図 特許庁長官殿 26発明の名称 オゾン製造装置 3 補正をするh 4、代理人 図面 6、補正の内容 図面の第1図を別紙のとおシ訂正する。 乙 添付書類の目録 図面(第1図)        1通 以上
Figure 1 shows the relationship between the oxygen concentration (VOW) of the oxygen-enriched gas produced by an oxygen enricher using a membrane separation method, the separation coefficient of the oxygen enrichment membrane, and the pressure ratio, which is the continuous operation condition of the membrane module. 2 is a block diagram showing an embodiment of the present invention. In the figure, +11 is an oxygen converter using a membrane separation method. (2) is a cooling dehumidifier, (3) is a heat exchanger, (4) is an ozone generator, (5) is an adsorption dryer, (6) is an exhaust port, (
7) is the intake hole. (8) is a drainage hole, and (9) is an ozone exit port. Agent Makoto Kuzuno - Figure 1 Yuka Yootsu Figure 2 Commissioner of the Patent Office 26 Name of the invention Ozone production device 3 Make an amendment 4. Agent drawing 6 Contents of amendment Figure 1 of the drawing is attached as attached. Correct. B Attached document catalog drawing (Figure 1) 1 or more copies

Claims (1)

【特許請求の範囲】 (1)導入した気体から分離膜により酸素富化気体を生
成する膜分離方式による酸素襖化器と、冷却除湿器とを
含む循環路を有し、この循環路に空気を導入し、酸素富
化気体を生成し、用済気体を排出する酸素富化系、上記
循環路に導入する空気と排出する気体間に設けられた熱
交換器、および上記酸素富化系により得られた酸素富化
気体を基にオゾンを発生させる糸を備えたことを特徴と
するオゾン製造装置。 (21オゾンを発生させる糸は、酸素富化動体を乾燥さ
せる乾燥器、およびこの乾燥器により得られた乾燥した
酸素富化気体を基にオゾンを発生させるオゾン発生器を
画えていることを特徴とする特W′f請求の範囲第」項
記載のオゾン製造装置。 (3)  熱交換器が、温度と湿度を同時に交換する熱
交換器であることを特徴とする特許請求の範囲第1項又
は第2項記載のオゾン製造装置。
[Scope of Claims] (1) It has a circulation path including an oxygen fusuma converter using a membrane separation method that generates oxygen-enriched gas from introduced gas using a separation membrane, and a cooling dehumidifier, an oxygen enrichment system that introduces oxygen, generates oxygen enriched gas, and discharges spent gas, a heat exchanger provided between the air introduced into the circulation path and the gas to be discharged, and the oxygen enrichment system. An ozone production device characterized by comprising a thread that generates ozone based on the obtained oxygen-enriched gas. (21 The thread that generates ozone is characterized by a dryer that dries the oxygen-enriched moving body, and an ozone generator that generates ozone based on the dried oxygen-enriched gas obtained by this dryer. The ozone production apparatus according to Claim W'f. (3) Claim 1, wherein the heat exchanger is a heat exchanger that simultaneously exchanges temperature and humidity. Or the ozone production device according to item 2.
JP18576182A 1982-10-22 1982-10-22 Ozone production device Pending JPS5978909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18576182A JPS5978909A (en) 1982-10-22 1982-10-22 Ozone production device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18576182A JPS5978909A (en) 1982-10-22 1982-10-22 Ozone production device

Publications (1)

Publication Number Publication Date
JPS5978909A true JPS5978909A (en) 1984-05-08

Family

ID=16176403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18576182A Pending JPS5978909A (en) 1982-10-22 1982-10-22 Ozone production device

Country Status (1)

Country Link
JP (1) JPS5978909A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5039314A (en) * 1989-06-26 1991-08-13 Voest-Alpine Industrienlagenbau Gesellschaft M.B.H. Method for producing oxygen and/or ozone
WO2012124531A1 (en) * 2011-03-15 2012-09-20 日野自動車株式会社 Exhaust gas purification device
JP2013011193A (en) * 2011-06-28 2013-01-17 Hino Motors Ltd Exhaust gas purification device
JP2014047669A (en) * 2012-08-30 2014-03-17 Denso Corp Nox aftertreatment device of engine including ozone generation means

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5039314A (en) * 1989-06-26 1991-08-13 Voest-Alpine Industrienlagenbau Gesellschaft M.B.H. Method for producing oxygen and/or ozone
WO2012124531A1 (en) * 2011-03-15 2012-09-20 日野自動車株式会社 Exhaust gas purification device
US9021792B2 (en) 2011-03-15 2015-05-05 Hino Motors, Ltd. Exhaust gas purification device
JP2013011193A (en) * 2011-06-28 2013-01-17 Hino Motors Ltd Exhaust gas purification device
JP2014047669A (en) * 2012-08-30 2014-03-17 Denso Corp Nox aftertreatment device of engine including ozone generation means

Similar Documents

Publication Publication Date Title
CN1020884C (en) Improved process and system for production of dry high purity nitrogen
CN1035235C (en) Two stage membrane dryer
US4352740A (en) Water ozonation method
CA2172301C (en) Pressure driven solid electrolyte membrane gas separation method
US5004482A (en) Production of dry, high purity nitrogen
EP0460636B1 (en) Improved membrane nitrogen process and system
JPH05269334A (en) Membrane air drying and separation operation
JPH04227021A (en) Hybrid preliminary purifier for low temperature air separation plant
EP0430304B1 (en) Separation of gas mixtures
CN206823510U (en) One kind CO suitable for cement kiln flue gas2The change system continuously trapped
US3674022A (en) Integrated system for generating oxygen and controlling carbon dioxide concentration in closed circuit breathing apparatus
CN211629222U (en) Fuel cell system and exhaust hydrogen purging system using stack waste gas
CN114904372A (en) Energy-saving carbon dioxide capture system and method thereof
CN1219502A (en) Solid electrolyte ionic conductor oxygen production method with steam purge
JPS5978909A (en) Ozone production device
KR102235015B1 (en) Method for producing nitrogen-enriched air using flue gas
JPH01292196A (en) System for removing ink from wastepaper
JPH06234505A (en) Production of oxygen-rich gas
JPH02135117A (en) Gas separation module and multistage gas separator
CN1840965A (en) Oxy-fuel combustion process
JPH02135118A (en) Production of low humidity air
JP2016150340A (en) Product gas treatment device and treatment method of product gas
JPH03236166A (en) Power generating method for molten carbonate fuel cell
JP2879846B2 (en) Separation and recovery method of gas by separation membrane
JP2022127390A (en) Production system of refined gas and production method of refined gas