JPS5963767A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS5963767A
JPS5963767A JP17316782A JP17316782A JPS5963767A JP S5963767 A JPS5963767 A JP S5963767A JP 17316782 A JP17316782 A JP 17316782A JP 17316782 A JP17316782 A JP 17316782A JP S5963767 A JPS5963767 A JP S5963767A
Authority
JP
Japan
Prior art keywords
layer
conductive layer
impurity
electrode
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17316782A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakamura
浩 中村
Toshio Nonaka
野中 敏夫
Yoshiaki Sano
佐野 芳明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP17316782A priority Critical patent/JPS5963767A/en
Publication of JPS5963767A publication Critical patent/JPS5963767A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To increase mutual conductance, and to accelerate a switching speed remarkably by constituting a conductive layer under a gate electrode by a low impurity concentration layer as an upper layer and a high impurity concentration layer as a lower layer, controlling the depth of the depletion layer of the low concentration layer and bringing the low concentration layer into contact with the high concentration layer. CONSTITUTION:A high concentration impurity conductive layer 12 and a low concentration impurity layer 13 are laminated on a semi-insulating GaAs substrate 1 and grown in an epitaxial manner, and a gate electrode 9 is formed at a predetermined position on the layer 13. A compensating impurity, Such as Cr, V, etc. is implanted deeply to the conductive layers 13 and 12 through ion implantation while using the electrode 9 as a mask, the donor impurity ions in high concentration are injected shallowly to source and drain forming regions by jointly using another mask. These implanted ions are activated through heat treatment, and the conductive layers 13 and 12 except the lower section of the electrode 9 are changed into a semi-insulating region 4 while the N type source region 5 and the drain region 6 are formed to the surface section of the region 4. Accordingly, the depth of the depletion layer of the layer 13 remaining under the electrode 9 is controlled, and the connection of the regions 5 and 6 is turned ON- OFF.

Description

【発明の詳細な説明】 この発明は、スイッチング素子として使用される半導体
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device used as a switching element.

GaAs (砒化ガリウム)をはじめとするいくつかの
化合物半導体を用いたスイッチング素子においては、そ
の物質中の電子の高移動度という特徴を生かし、また表
面反転層の形成がむずかしいために、金属−半導体接触
型電界効果トランジスタ(以下IVIEsFETと略称
する)が広く用いられている。この素子のスイッチング
時間はほぼ相互コンダクタンスの値に反比例し、ダート
・ソース間容量に比例する。
In switching elements using some compound semiconductors such as GaAs (gallium arsenide), metal-semiconductor switching devices take advantage of the high mobility of electrons in the material, and also because it is difficult to form a surface inversion layer. Contact field effect transistors (hereinafter abbreviated as IVIEsFET) are widely used. The switching time of this device is approximately inversely proportional to the value of transconductance and proportional to the dart-to-source capacitance.

ところで、素子のしきい値をある一定の値に固定して考
えると、チャネル部の不純物濃度分布としては、浅い位
置に高濃度の不純物を配する場合と、深い位置に低濃度
の不純物を配する場合、とが考えられる。前述の相互コ
ンダクタンスはほぼ不純物濃度に比例し、P−)・ソー
ス間容量は#1は不純物濃度の平方根に反比例する。し
たがって、素子のスイッチング時間を短くするには、チ
ャネル内の浅い位置に高濃度の不純物を配する方が有利
である。
By the way, assuming that the threshold value of the device is fixed at a certain value, the impurity concentration distribution in the channel part can be divided into two cases: a case where a high concentration impurity is placed at a shallow position, and a case where a low concentration impurity is placed at a deep position. If so, then it is possible. The above-mentioned mutual conductance is approximately proportional to the impurity concentration, and the P-) to source capacitance #1 is inversely proportional to the square root of the impurity concentration. Therefore, in order to shorten the switching time of the device, it is advantageous to place highly concentrated impurities at a shallow position within the channel.

しかしながら、あまシにチャネル内の不純物濃度が高く
なると、電子の移動度が減少し、またダート金属−半樽
体間の良好な整流性接触特性が44にくくなるため、か
えって素子の特性は悪化する。
However, if the impurity concentration in the channel becomes too high, the electron mobility decreases and good rectifying contact characteristics between the dart metal and the half-barrel become difficult to achieve, which actually worsens the device characteristics. .

そのため、チャネル内の不純物濃度にはある最適の値が
存在する。
Therefore, there exists a certain optimum value for the impurity concentration within the channel.

ゆえに、素子のしきい値電圧を固定し、またリソグラフ
ィー上の制約からケ°−ト長の値を固定し! て考えると、通常のMg5FETで得られるスイッチン
グ速度には限界がある。
Therefore, the threshold voltage of the device is fixed, and the value of the gate length is also fixed due to lithography constraints! Considering this, there is a limit to the switching speed that can be obtained with a normal Mg5FET.

この関門は上記の点に鑑みなされたもので、スイッチン
グ速度を従来の限界以上に速くすることができる半導体
装置を提供することを目的とする。
This barrier was created in view of the above points, and the purpose is to provide a semiconductor device whose switching speed can be increased beyond the conventional limit.

以下この発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.

′#J1図はこの発明の第1の実施例を示す図である。Figure '#J1 is a diagram showing a first embodiment of the present invention.

この図において、lは半絶縁性GaAs基板であり、こ
の基板1上には導電層2.3と半絶縁性領域4が形成さ
れる。導電層2は高濃1ψドナー不純物を有する^専屯
率の導電層、導電層3は低濃度ドナー不純物を有する低
導電率の′4昨層である。
In this figure, l is a semi-insulating GaAs substrate, on which a conductive layer 2.3 and a semi-insulating region 4 are formed. The conductive layer 2 is a conductive layer having a high concentration of 1ψ donor impurities, and the conductive layer 3 is a low conductivity layer having a low concentration of donor impurities.

これらは、後述するダート電極下の4電層として設けら
れるもので、−4屯ノー3がダート電極下の浅い位置つ
まシ上方に位置し、その下つまりr−)電極下の深い位
置に導電層2が位置する。前記半絶縁性領域4は、これ
ら導電層2,3の周囲に位置する。この半絶縁性領域4
の表面部には、導電層3の両側において導電層5,6が
形成される。
These are provided as a 4-conductor layer under the dirt electrode, which will be described later. -4 ton No. 3 is located above the shallow position under the dirt electrode, and the conductive layer is located below it, that is, at a deep position under the r-) electrode. Layer 2 is located. The semi-insulating region 4 is located around these conductive layers 2,3. This semi-insulating region 4
Conductive layers 5 and 6 are formed on both sides of the conductive layer 3 on the surface of the conductive layer 3 .

この導電層5,6はソース・ドレイン領域としての導゛
市層であり、高濃度ドナー不純物を有する高導電率の4
成層である。そして、この4電層5゜6上にソース・ド
レイン電極7,8が形成される。
These conductive layers 5 and 6 are conductive layers serving as source/drain regions, and are made of high conductivity 4 layers having a high concentration of donor impurities.
It is stratified. Then, source/drain electrodes 7 and 8 are formed on this tetraelectric layer 5.6.

一方、導電層3上に、はケ゛−ト電極9が形成される。On the other hand, a gate electrode 9 is formed on the conductive layer 3.

なお、このケ゛−ト電極9は導′亀層3,2と位置を光
分正確に合致させる必要がある。また、ケ゛−ト屯・1
歩9Fの前記導′亀層3は導電層5,6の厚さに比ベテ
500〜1000オングメトローム厚く形成される。し
かも、導電層3と導′亀層5,6の境界は充分急峻に作
成される。
Incidentally, it is necessary that the position of this gate electrode 9 coincides with the conductive layer 3, 2 with optical precision. Also, Kate Tun 1
The conductive layer 3 at step 9F is formed to be 500 to 1000 angstroms thicker than the conductive layers 5 and 6. Moreover, the boundaries between the conductive layer 3 and the conductive turtle layers 5 and 6 are made sufficiently steep.

このような装置は、たとえば第2図に示すようにして製
造される。
Such a device is manufactured, for example, as shown in FIG.

第2図(5)において、1は半絶縁性Ga As基板で
あり、まず、この基板1上の全面に気相エピタキシャル
成長法を用いて高#度不純物堺電層12および低濃度不
純物導電層13を順次成長させる。
In FIG. 2 (5), reference numeral 1 denotes a semi-insulating GaAs substrate, and first, a high concentration impurity conductive layer 12 and a low concentration impurity conductive layer 13 are grown on the entire surface of the substrate 1 using a vapor phase epitaxial growth method. grow sequentially.

勿論、この結晶成長については、分子線エピタキシャル
成長法や液相エピタキシャル成長法を用いることも可能
である。
Of course, for this crystal growth, it is also possible to use a molecular beam epitaxial growth method or a liquid phase epitaxial growth method.

次に、低濃度不純物導電層13上の所定位置に第2図(
13)に示すようにケ゛−ト電極9を形成する。
Next, in a predetermined position on the low concentration impurity conductive layer 13, as shown in FIG.
13) A gate electrode 9 is formed as shown in FIG.

そして、このケ゛−ト電極9をマスクとして導電層13
.12に深くクロム(元素記号Cr)やパナノウム(元
素記号V)などの補償不純物をイオン注入法によシ打込
み、続けて浅くドナー不純物を高濃度に打込む。なお、
このドナー不純物はソース・ドレイン形成領域のみに打
込むものであり、したがってソース・ドレイン形成領域
周囲の非打込み領域はP−)領域と同様に図示しないマ
スク層で覆っておく。
Then, using this gate electrode 9 as a mask, the conductive layer 13 is
.. A compensating impurity such as chromium (element symbol Cr) or pananum (element symbol V) is deeply implanted into the semiconductor layer 12 by ion implantation, followed by shallow implantation of a donor impurity at a high concentration. In addition,
This donor impurity is implanted only into the source/drain forming regions, so the non-implanted regions around the source/drain forming regions are covered with a mask layer (not shown) like the P-) region.

しかる後、熱処理を行って打込んだ不純物を活性化させ
る。この活性化によシ、ダート電極9下以外の領域の導
電層12.13は、補償不純物によって第2図(Qに示
すように半絶縁性領域4となシ、一方、P−)電極9下
の導電層12.13は導電層2,3として残る。また、
半絶縁性領域4の表面部にはドナー不純物によって導電
層3の両側において導電層5,6が形成される。なお、
この活性化の際、ダート電極9と半導体間の整流性接触
特性が劣化しないように、ケ゛−ト電極9には、耐熱性
のあるケ゛−ト電極材料(タングステン(元素記号W)
など)を用いる必要がある。
Thereafter, heat treatment is performed to activate the implanted impurities. Due to this activation, the conductive layer 12.13 in the region other than under the dirt electrode 9 becomes a semi-insulating region 4 as shown in FIG. The underlying conductive layer 12,13 remains as conductive layer 2,3. Also,
On the surface of the semi-insulating region 4, conductive layers 5 and 6 are formed on both sides of the conductive layer 3 by donor impurities. In addition,
During this activation, the gate electrode 9 is coated with a heat-resistant gate electrode material (tungsten (element symbol W)) so that the rectifying contact characteristics between the dirt electrode 9 and the semiconductor do not deteriorate.
etc.) must be used.

最後に、導電層5,6上に、オーム性接触のソース・ド
レイン電極7,8を第2図(2)に示すように形成する
Finally, ohmic contact source/drain electrodes 7, 8 are formed on the conductive layers 5, 6 as shown in FIG. 2(2).

このようにして製造される第1図の装置において、しき
い値電圧が正の、すなわちノーマリ−オフの素子を作製
するためには、導電層3のドナ・−不純物濃贋をI X
 1017cIn73として導電層3の厚さは2000
オングストロ一ム程度となる。この場合は、ケ゛−ト電
位をソース電位に等しくしだ状態(P−)電圧がOv)
で導電層3はすべて空乏層化し、導電層5,6と導電層
2、延いては導電層5と導電層6は電気的に切り離され
る。一方、ケ゛−トをしだいに正にバイアスしていくと
、4電層3内の空乏層はしだいに後退して表面近傍だけ
になる。したがって、導電層5,6と導゛屯層2が導電
層3を通して電気的に接続され、導電W45と導電層6
が電気的に接続される。ここで、導電層5゜6と2のド
ナー不純物濃度を1〜5 X l 018α〔3と高く
しておくと、チャネルが導通した時のオン抵抗の値は、
導電層2を持たない通常のMESFE’rに比較して非
常に低くなる。
In the device shown in FIG. 1 manufactured in this way, in order to produce a normally-off device with a positive threshold voltage, the donor impurity concentration of the conductive layer 3 must be reduced by IX
Assuming 1017cIn73, the thickness of the conductive layer 3 is 2000
It is about 1 angstrom. In this case, the state (P-) voltage is Ov) when the gate potential is equal to the source potential.
All of the conductive layer 3 becomes a depletion layer, and the conductive layers 5 and 6 are electrically separated from the conductive layer 2, and thus the conductive layer 5 and the conductive layer 6 are electrically separated. On the other hand, as the gate is gradually biased positively, the depletion layer in the four-electric layer 3 gradually recedes and becomes only near the surface. Therefore, the conductive layers 5 and 6 and the conductive layer 2 are electrically connected through the conductive layer 3, and the conductive layers 45 and 6 are electrically connected to each other through the conductive layer 3.
are electrically connected. Here, if the donor impurity concentration of the conductive layer 5゜6 and 2 is set high as 1 to 5 X l 018α [3, the value of the on-resistance when the channel becomes conductive is
Compared to normal MESFE'r which does not have the conductive layer 2, it is much lower.

以上のように、第1の実施例の装置においては、導電層
3内部の空乏層の法官により導電層5,6と導電j−2
、処いては導電層5と6の接続をオン・オフするため、
相互コンダクタンスの値が通常のMESFETに比較し
て非常に大きくなる。一方、ケ°−ト・ソース間の容量
は通常のfvlEsF”ETに比較してほとんど増加せ
ず、そのため、スイッチング時間は非常に速くなる。ケ
゛−ト長および各導電層の不純物濃度々どによってもか
なシ異なるが、通常のΔ1EsNETに比べてスイッチ
ング速度は数倍は速くすることが可能である。
As described above, in the device of the first embodiment, the conductive layers 5 and 6 and the conductive j-2 are
, to turn on and off the connection between the conductive layers 5 and 6.
The value of transconductance is much larger than that of a normal MESFET. On the other hand, the capacitance between the gate and the source hardly increases compared to a normal fvlEsF"ET, so the switching time becomes very fast. Depending on the gate length and the impurity concentration of each conductive layer, Although the performance is different, the switching speed can be several times faster than that of a normal Δ1EsNET.

第1の実施例は、ソース側とドレイン側が対称の構造を
持つ装置について説明した。この装置においては、r−
ト電極を正にバイアスしてチャネルを導通させた状態で
ドレイン電圧を上げていくと、空乏層がケ゛−トからド
レインの方向に向って延びるだめ、ドレイン電圧−電流
特性は通常のIV11!;SFh;Tと同様の飽和特性
を示す、一方、第3図のこの発明の第2の実施例によれ
は、ドレイン電圧−電流特性の飽和特性は弱くなり、よ
り線形な特性に近くなる。すなわち、第3図においては
ドレイン領域としての導電層6の端と導電層2の端とが
ケ゛−ト電極9を外れた領域において=fti層3の下
層部を介して重なるイー掌造としである。この構造によ
れば、導電層2とドレイン領域としての導電層6が導電
層3を介して常に接続きれている構造となり、ゆえに、
ドレイン電圧−電流特性の飽和特性は弱くなシ、よ#)
勝形な特性に近くなる。
In the first embodiment, a device having a symmetrical structure on the source side and the drain side has been described. In this device, r-
When the drain voltage is increased with the gate electrode positively biased and the channel conductive, the depletion layer extends from the gate toward the drain, so the drain voltage-current characteristic becomes the normal IV11! SFh; On the other hand, according to the second embodiment of the present invention shown in FIG. 3, the saturation characteristic of the drain voltage-current characteristic becomes weaker and becomes closer to a linear characteristic. That is, in FIG. 3, the edge of the conductive layer 6 serving as the drain region and the edge of the conductive layer 2 overlap with each other via the lower part of the fti layer 3 in a region outside the gate electrode 9. be. According to this structure, the conductive layer 2 and the conductive layer 6 as the drain region are always connected through the conductive layer 3, and therefore,
The saturation characteristics of the drain voltage-current characteristics are weak.
It becomes close to the characteristic of Katsutakata.

以上評述したようにこの発明の半導体装置においては、
上層低濃度不純物導電層と下層高儂度不純物導゛亀層と
をr−)電極下の導電層として形成し、前記低濃朋不純
物導電層の空乏層の深さを制御して、この導電層を介し
ての前記高濃戚不純物導電層に対する電気的接続を制御
することにより、前W+p低濃度不純物導電層両側のソ
ース・ドレイン領域としての2つの高濃度不純物導電層
相互の電気的接続を制御するようにしたので、i1互コ
ンダクタンスが大きくなシ、スイッチング速度を極めて
速くすることができる。
As described above, in the semiconductor device of the present invention,
An upper low-concentration impurity conductive layer and a lower high-temperature impurity conductive layer are formed as conductive layers under the r-) electrode, and the depth of the depletion layer of the low-concentration impurity conductive layer is controlled to improve this conductivity. By controlling the electrical connection to the highly concentrated impurity conductive layer through the layer, the mutual electrical connection between the two highly concentrated impurity conductive layers serving as source/drain regions on both sides of the previous W+p low concentration impurity conductive layer can be established. Since the i1 mutual conductance is large, the switching speed can be made extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(1この発明の半導体装置の第1の実hIIi例
を示す断面図、第2図は第1の実施例の装置の製造方法
を示す断面図、第3図はこの発明の第2の実施例を示す
断面図である。 2.3,5.6・・・導電層、9・・・グー)11f極
。 特許出願人 沖電気工業株式会社
FIG. 1 (1) is a cross-sectional view showing a first practical example of the semiconductor device of the present invention, FIG. 2 is a cross-sectional view showing a method for manufacturing the device of the first embodiment, and FIG. 2.3, 5.6... conductive layer, 9... goo) 11f pole. Patent applicant Oki Electric Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] r−)電圧に応じて空乏層が領域全体あるいは表面近傍
のみに変化する低濃度不純物導電層と、その下の高濃度
不純物導電層上をf−)電極下の導電層として形成し、
前記低濃度不純物導電層の空乏層の深さを制御して、仁
の導電層を介しての前記高濃度不純物導電層に対する電
気的接続を制御することによ凱前記低濃度不純物導電層
両側のソース・ドレイン領域としての2つの高濃度不純
物導電層相互の電気的接続を制御することを特徴とする
半導体装置。
r-) forming a low concentration impurity conductive layer in which the depletion layer changes over the entire region or only near the surface depending on the voltage, and f-) forming a conductive layer under the electrode on a high concentration impurity conductive layer thereunder;
By controlling the depth of the depletion layer of the low concentration impurity conductive layer and controlling the electrical connection to the high concentration impurity conductive layer through the other conductive layer, A semiconductor device characterized in that electrical connection between two highly doped conductive layers serving as source/drain regions is controlled.
JP17316782A 1982-10-04 1982-10-04 Semiconductor device Pending JPS5963767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17316782A JPS5963767A (en) 1982-10-04 1982-10-04 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17316782A JPS5963767A (en) 1982-10-04 1982-10-04 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS5963767A true JPS5963767A (en) 1984-04-11

Family

ID=15955338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17316782A Pending JPS5963767A (en) 1982-10-04 1982-10-04 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5963767A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6476774A (en) * 1987-09-18 1989-03-22 Nec Corp Semiconductor device
US11247058B2 (en) 2014-05-13 2022-02-15 West Affum Holdings Corp. Network-accessible data about patient with wearable cardiac defibrillator system
US11745006B2 (en) 2014-10-30 2023-09-05 West Affum Holdings Dac Wearable cardiac defibrillation system with electrode assemblies having pillow structure
US11759649B2 (en) 2017-01-05 2023-09-19 West Affum Holdings Dac Wearable cardioverter defibrillator having adjustable alarm time
US11880792B2 (en) 2019-01-18 2024-01-23 West Affum Holdings Dac WCD system prioritization of alerts based on severity and/or required timeliness of user response
US11904176B1 (en) 2020-01-27 2024-02-20 West Affum Holdings Dac Wearable defibrillator system forwarding patient information based on recipient profile and/or event type

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6476774A (en) * 1987-09-18 1989-03-22 Nec Corp Semiconductor device
US11247058B2 (en) 2014-05-13 2022-02-15 West Affum Holdings Corp. Network-accessible data about patient with wearable cardiac defibrillator system
US11896829B2 (en) 2014-05-13 2024-02-13 West Affum Holdings Dac Network-accessible data about patient with wearable cardiac defibrillator system
US11745006B2 (en) 2014-10-30 2023-09-05 West Affum Holdings Dac Wearable cardiac defibrillation system with electrode assemblies having pillow structure
US11759649B2 (en) 2017-01-05 2023-09-19 West Affum Holdings Dac Wearable cardioverter defibrillator having adjustable alarm time
US11880792B2 (en) 2019-01-18 2024-01-23 West Affum Holdings Dac WCD system prioritization of alerts based on severity and/or required timeliness of user response
US11904176B1 (en) 2020-01-27 2024-02-20 West Affum Holdings Dac Wearable defibrillator system forwarding patient information based on recipient profile and/or event type

Similar Documents

Publication Publication Date Title
US4471366A (en) Field effect transistor with high cut-off frequency and process for forming same
US5187379A (en) Field effect transistor and manufacturing method therefor
US3804681A (en) Method for making a schottky-barrier field effect transistor
JPS5963767A (en) Semiconductor device
JPH0444328A (en) Semiconductor device and manufacture thereof
US5905277A (en) Field-effect transistor and method of manufacturing the same
JPH0851122A (en) Planer ion implantation gaas mesfet having improved open channel burnout characteristic
JPS61208268A (en) Conductance modulation type semiconductor device
JP2688678B2 (en) Field effect transistor and method of manufacturing the same
JPS592385B2 (en) Mesa-type inactive V-gate GaAs field effect transistor and its manufacturing method
US4889817A (en) Method of manufacturing schottky gate field transistor by ion implantation method
JPH06260552A (en) Element isolation of compound semiconductor device and compound semiconductor device
JPH04199518A (en) Field-effect transistor and manufacture thereof
JPS59222966A (en) Semiconductor device
JPS61222177A (en) Schottky gate field effect transistor and manufacture thereof
JPH08264561A (en) Semiconductor device and fabrication thereof
JPH03240243A (en) Manufacture of field effect type transistor
JPS61251079A (en) Manufacture of field effect transistor
JPS6332273B2 (en)
JPS61222176A (en) Schottky gate field effect transistor and manufacture thereof
JPH043922A (en) Manufacture of semiconductor device
JPH01302771A (en) Field effect transistor
JPH043102B2 (en)
JPH02177337A (en) Manufacture of schottky gate field effect transistor
JPS60100472A (en) Field effect transistor