JPS5961400A - Focusing type ultrasonic wave probe - Google Patents

Focusing type ultrasonic wave probe

Info

Publication number
JPS5961400A
JPS5961400A JP57171370A JP17137082A JPS5961400A JP S5961400 A JPS5961400 A JP S5961400A JP 57171370 A JP57171370 A JP 57171370A JP 17137082 A JP17137082 A JP 17137082A JP S5961400 A JPS5961400 A JP S5961400A
Authority
JP
Japan
Prior art keywords
electrode
film
ultrasonic probe
piezoelectric
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57171370A
Other languages
Japanese (ja)
Inventor
Nagao Kaneko
金子 長雄
Yoshinori Fujimori
藤森 良経
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57171370A priority Critical patent/JPS5961400A/en
Publication of JPS5961400A publication Critical patent/JPS5961400A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/32Sound-focusing or directing, e.g. scanning characterised by the shape of the source

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To focus an ultrasonic wave irradiated from a piezoelectric body onto a sound axis with a minute and high sound field, by providing an electrode on both sides and the piezoelectric body having >=2 radii of curvature on both a sound operating side and its opposite side. CONSTITUTION:The electrodes 121, 122 are formed on both sides of a high polymer piezoelectric film 11 and a copper-made reflecting plate 13 is bonded on the electrode 122. Then, the high polymer piezoelectric film 11 is pressed with a metallic die processed in advance to form the sound operating faces having different radii of curvature. Further, the high polymer piezoelectric film 11 is bonded to a cylindrical box 15 having a step part at the inside of the tip, and leads 14, 14 are connected to the electrodes 121, 122, then a support 16 made of epoxy resin is formed. Moreover, an insulating layer 17 is formed on the surface.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は超音波診断装置に有用な集束型超音波探触子に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a focused ultrasound probe useful for ultrasound diagnostic equipment.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、超音波診断装置の分解能を向上させる方法として
、圧電体から発せられた超音波を超音波伝播媒体や生体
にどの被検体の一点に集束させることが行なわれている
2. Description of the Related Art Conventionally, as a method for improving the resolution of an ultrasound diagnostic apparatus, ultrasound waves emitted from a piezoelectric body are focused on a single point on an ultrasound propagation medium or a living body.

ところで、かかる方法に用いられる超音波探触子として
、従来、第1図に示す如く圧電体ハを趣向状凹曲面に加
工したもの、第2図に示す如く平坦な圧電体12に片面
が球面状凹曲面に加工した¥5−響レンズ2を一体とし
たもの、或いは第3図(a) 、 (b)に示す如く平
坦な圧電体13の片面に第1の′成極31を設けかつ他
方の面にリング状に分割し7た第2の電極32を設け、
圧電体13を電気的に駆動させることにより超音波を発
し相互干渉によって集束することを図ったもの等が知ら
れている。これらの超音波探触子は、いずれも圧電体か
ら発生した超音波を、凹面加工した圧電体や音響レンズ
の凹面幽率半径或いは分割した電極の設計に基づいて音
軸上の一点(焦点)部分に集束させ、この点でn)1<
かつ高いiI¥(音−波音一場を得ようとするものであ
る。
By the way, conventional ultrasonic probes used in such a method include those in which a piezoelectric body 12 is processed into a concave curved surface as shown in FIG. The 5-sound lens 2 processed into a concave curved surface is integrated, or the first polarization 31 is provided on one side of a flat piezoelectric body 13 as shown in FIGS. A second electrode 32 divided into 7 ring shapes is provided on the other surface,
There are known devices in which ultrasonic waves are emitted by electrically driving the piezoelectric body 13 and focused through mutual interference. All of these ultrasonic probes focus the ultrasonic waves generated from a piezoelectric material on a single point (focal point) on the sound axis based on the concavely processed piezoelectric material, the concave radius of the acoustic lens, or the design of divided electrodes. at this point n) 1 <
It is intended to obtain a high iI\ (sound-wave sound field).

しかしながら、前記超音波探触子(d:焦点から音+I
lt土でわずかに前後する部分においては急激に超音波
音場が減少し、超音波ビーl、が太くなるという欠点が
あった。しかして、超音波BljJ’i装置に有用な超
音波探触子としては従来のθ1」<横方向の分解能を向
上させるだけでなく、縦方向の分解能も同時に向上さぜ
ることか望捷れている。ことで、縦方向の分解能を向上
さぜるに&J1、圧電体から発せられた超音波が11・
!’1fl上の−′yV距pin+に集束するように凹
曲面の曲率半径を設定し、具体的には例えにJ二圧電体
を研摩などによシ凹面加工f:施したり、音響レンズを
結合させる等の方法によって実現している。従来の超音
波探触子ては、使用L1的の超音波媒体、被検体の診断
部所に応じて短焦点(2〜4 /、]11 ) 、、中
焦点(4〜8 an ) 、長焦点(8cm以上)々ど
の各種の超音波探触子を使いわけておシ、任意の部所を
精度よく診断するには熟紳を要しかつ時間も長くかかる
However, the ultrasonic probe (d: sound + I from the focal point
There was a drawback that the ultrasonic sound field suddenly decreased in the slightly forward and backward part of the soil, and the ultrasonic beam became thicker. Therefore, as an ultrasonic probe useful for the ultrasonic BljJ'i device, it is desirable to improve not only the conventional θ1'' resolution in the horizontal direction but also the resolution in the vertical direction at the same time. ing. In order to improve the vertical resolution, the ultrasonic waves emitted from the piezoelectric material are
! The radius of curvature of the concave curved surface is set so as to focus on the -'yV distance pin+ on '1fl. Specifically, for example, the J2 piezoelectric body is subjected to concave surface processing f: by polishing, etc., and an acoustic lens is combined. This is achieved through methods such as Conventional ultrasound probes have short focus (2~4 an, ]11), medium focus (4~8 an), long focus, depending on the L1 ultrasound medium used and the diagnostic site of the subject. It takes a lot of skill and time to accurately diagnose any part by using various types of ultrasound probes depending on the focal point (8 cm or more).

このようなことから、最近、圧電1体から発せられた超
音波が任意の点で集束できるような可変焦点型の超音波
探触子の出現が要望され、かかる超音波探触子として特
開昭55−151895が提案されている。この超音波
探触子は、予め凹曲rIjjに加工した高分子圧電体を
背面電極の背面側の気密室を加圧あるいは減圧すること
により凹曲面の曲率半径を可変しこれにより焦点を任意
に選択したシ、もしくは凹曲面に加工した高分子圧’f
i’j、体の背面電極の背面側又は0111面をコイル
の励磁により移動するアクチュエーターにより変化させ
凹曲面の曲率半径を可変することによって焦点を任意に
選択することを図ったものである。1〜かしながら、上
記超音波探触子は、焦点を可変するために空気塊・減圧
装置を具備したり、複雑な回路(1゛々成を有するアク
チーエータ−を設ける必要があり、大型化するという欠
点があった。また、前記アクチーエータ−から発生する
ノイズが超音波探触子の性能を著しく低−トさぜるとい
う欠点があった。
For these reasons, there has recently been a demand for a variable focus type ultrasound probe that can focus ultrasound waves emitted from a single piezoelectric body at an arbitrary point, and such an ultrasound probe has been developed in the Japanese Patent Publication No. 151895 of 1983 has been proposed. This ultrasonic probe uses a polymer piezoelectric material that has been processed in advance to have a concave curve rIjj. By pressurizing or depressurizing the airtight chamber on the back side of the back electrode, the radius of curvature of the concave surface can be varied and the focal point can be arbitrarily set. Selected shi or polymer pressure processed into concave curved surface
i'j, the back side of the back electrode of the body or the 0111 plane is changed by an actuator that moves by excitation of a coil, and the radius of curvature of the concave curved surface is varied, so that the focal point can be arbitrarily selected. However, the above-mentioned ultrasonic probe is required to be equipped with an air mass/decompression device to vary the focus, or to be provided with a complicated circuit (actuator having a single component), resulting in an increase in size. Another disadvantage is that the noise generated from the actuator significantly degrades the performance of the ultrasonic probe.

〔発明の[j的〕[target of invention]

本発明は上記事情に鑑みてなされたもので、圧電体から
発せられた超音波を音軸上に対しライン状に細くかつ高
い音場で集束させ、縦及び横方向の分解能が優れた集束
型超音波探触子全接供することを目的とするものである
The present invention has been made in view of the above circumstances, and is a focusing type that focuses ultrasonic waves emitted from a piezoelectric body in a thin line on the sound axis with a high sound field, and has excellent vertical and horizontal resolution. The purpose is to provide all ultrasonic probes.

〔発明の概要〕[Summary of the invention]

本発明は両面ば電極を有踵がっγf響動作而面及び反対
側の面の両方の2つ以上の曲率半径をもつ圧電体金偏え
ることによって、EE 正体から発せられた超音波を音
軸上に対し細くかつ高い高揚で集束させ、従来の如く横
方向の分解能だけでなく縦方向の分解能をも向上するこ
とを図ったものである。
The present invention converts the ultrasonic waves emitted from the EE object into sound by polarizing the double-sided electrode with a piezoelectric material having two or more radii of curvature on both the γf-sounding surface and the opposite surface. This is aimed at improving not only the horizontal resolution but also the vertical resolution as in the past by focusing narrowly and with high aptitude on the axis.

本発明に係る電極材料としては、Au + Ag rN
l g Cr + AZ等が用いられる。また、電極の
形成手段としては、真空蒸着法、スー′e7タリング法
、メッキ法などが挙げられる。
As the electrode material according to the present invention, Au + Ag rN
l g Cr + AZ etc. are used. Furthermore, examples of the means for forming the electrodes include vacuum evaporation, sootering, plating, and the like.

本発明に係る圧電体としそは、ポリフッ化ビニリゾ/、
ポリ塩化ビニル、ポリアクリロニトリル等の高分子圧電
フィルム、或いはポリフッ化ビニリデン・四フッ化エチ
レン 、P l)フッ化ビニリデン・三フッ化エチレン
、ポリアミノビニリデン・11r酸ビニル?、1?:の
共用合性を有した高分子圧電フィルム、或いはポリフッ
、化ビニリデンにPZT粉末やPb T + O=、粉
末又は他の高分子樹脂に圧電性セラミックス粉末ルrを
混練した複合型高分子圧電シートなどが挙げられる。な
お、前記冒分子圧電フィルムもしくは複合型高分子圧’
lj ’/ −) (il−複数枚積層し、積層しゾこ
フィルム(又はシート)の各々が厚み振動を行うように
構成したものも圧電体と用いることもできる。
The piezoelectric material according to the present invention includes polyvinyrizofluoride/,
Polymer piezoelectric film such as polyvinyl chloride, polyacrylonitrile, or polyvinylidene fluoride/tetrafluoroethylene, Pl) vinylidene fluoride/ethylene trifluoride, polyaminovinylidene/vinyl 11r acid? , 1? : A polymer piezoelectric film having the common properties of Examples include sheets. In addition, the above polymer piezoelectric film or composite polymer piezoelectric film
lj'/-) (il- A structure in which a plurality of laminated films (or sheets) are laminated so that each of the laminated films (or sheets) vibrates in thickness can also be used as a piezoelectric material.

前述の如く、圧電体として高分子圧電フィルム(又は複
合型高分子圧゛山、シート)を用いる理由1d1、加工
性が良好であることにノ、(づく。即ち、従来よく゛用
いられているPZT’ (ジルコンチタン酸鉛)やPb
Tl03(チタン酸鉛)などのセラミックヌ圧電体で(
は、該圧電体を凹曲面状に加工する場合研摩等によシ実
現しているため1.所望の精度の凹曲面を形成したり、
均一な厚みとすることが極めて困難である。例えば、セ
ラミックス圧電体を研摩する場合において、゛研摩時に
圧電体の割れや欠損により圧電体を破壊したり、加工時
の圧itt体の歪みの発生や厚みの不均一に伴って超音
波周波数のバラツキが生じて超音波探触子の性能が著し
く低下する。また、かかる超音波探触子の製造において
は、研摩時の工程管理や作業性の困り)1「さなどから
歩留りを低下させる問題がある。更に、セラミックヌ圧
゛ηj7体を異なる二つの凹曲T/4)に加工すること
が非常に困))11である。
As mentioned above, the reason for using a polymer piezoelectric film (or a composite type polymer film or sheet) as a piezoelectric material is that it has good processability. PZT' (lead zirconium titanate) and Pb
Ceramic piezoelectric materials such as Tl03 (lead titanate) (
1. This is because processing the piezoelectric body into a concave curved surface is achieved by polishing or the like. Form concave curved surfaces with desired precision,
It is extremely difficult to obtain a uniform thickness. For example, when polishing a ceramic piezoelectric material, the piezoelectric material may be destroyed due to cracks or defects during polishing, or the ultrasonic frequency may be reduced due to distortion or uneven thickness of the piezoelectric material during processing. Variations occur and the performance of the ultrasonic probe is significantly degraded. In addition, in the manufacture of such ultrasonic probes, there are problems with process control during polishing and workability, which lowers the yield due to problems such as 1. It is very difficult to process the song to T/4))).

しかして、前述した圧電体として高分子1−iE ’r
ltフィルム等を用いれば、セラミ、クヌ圧″iI↓体
と比べ加工性が著しく優れており、凹面化も筒中にかつ
精度よく達成しうる。例えば、所コイノする門曲山1を
有する剛体で高分子圧電フィル1・をノ0レス加工する
ことによυ上記目的を達成しイ1fる。
Therefore, as the piezoelectric material mentioned above, the polymer 1-iE'r
If lt film or the like is used, the workability is significantly superior to that of ceramic or Kunu pressure "iI↓ bodies, and concave surfaces can also be achieved in the cylinder with high accuracy. The above objective is achieved by subjecting the molecular piezoelectric film 1 to zero-resist processing.

あるいにエフ1ヒキシ樹脂等の支持体になり得る背部益
拐を容器に入れ、背部器利の表面上に7ti、 4返ど
なる金属薄膜、高分子圧電フィルム及′び前記金属薄膜
を置いた後、プレス加工してくほみを作り、その1−1
背部器(Aを硬化させることによって所望の凹曲面を得
、高分子圧電フィルムと支持体とが一体となった凹mj
型超音波探触子が得られる。
Alternatively, a back cover that can be used as a support such as F-1 resin was placed in a container, and a 7ti, 4-back metal thin film, a polymer piezoelectric film, and the metal thin film were placed on the surface of the back cover. After that, press to make a kuhomi, part 1-1
A desired concave curved surface is obtained by curing the back part (A), and a concave mj where the polymer piezoelectric film and the support are integrated
A type ultrasonic probe is obtained.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例である集束型超音波探触子を、製造方
法全併記しつつ第4図(a) 、 (b)に基づいて説
明する。
A focused ultrasonic probe, which is an embodiment of the present invention, will be described with reference to FIGS. 4(a) and 4(b), along with the entire manufacturing method.

〔1〕寸ず、高分子圧電フィルムとなる厚さ65/Am
の一申出り瓜イ申したポリフッ化ヒ゛ニリテンフィルム
の両面に、真空蒸着によりAg膜を蒸着させ厚さ約0.
5μmのAg膜を形成した。つづいて、前記フィルムの
両面のAg膜に100℃で5000Vの直流電圧を一1
時間印加して高分子圧電フィルム11を彫−皮そ形成す
るとともに、一方のAg膜を第1の電極121 とした
。次に、他方のAg膜を適宜エツチング処理して径が1
3咽φの第2の電極122を形成した。次いで、第2の
電極122に1/4波長に相当する銅製の反射板J3を
エポキシ系接着剤もしくはシアノアクリレート系接着剤
を用いて接着し/ζ(第4図(a)図示)。
[1] Thickness of polymer piezoelectric film 65/Am
Ag films were deposited on both sides of the proposed polyvinyrite fluoride film by vacuum evaporation to a thickness of about 0.0mm.
A 5 μm Ag film was formed. Next, a DC voltage of 5000V was applied to the Ag film on both sides of the film at 100°C.
The polymer piezoelectric film 11 was carved by applying time, and one Ag film was used as the first electrode 121. Next, the other Ag film is appropriately etched to reduce the diameter to 1.
A second electrode 122 having a tripharyngeal diameter was formed. Next, a copper reflector J3 corresponding to a quarter wavelength is adhered to the second electrode 122 using an epoxy adhesive or a cyanoacrylate adhesive /ζ (as shown in FIG. 4(a)).

〔11〕次に、前記高分子圧電フィルム11を予め加工
した金型でプレスし、該ンイルムlノの651面の曲率
半径を音1ql+より:30 、50 、70 mmと
した。この際、異なる曲率半径をイ1する音響動作rf
iu;i:全て同一の面積を持つように設泪し、曲率半
径30mmは音用(がら7.5 mmφ、曲率半径50
間ハフ5〜ワφから10.6循φ、曲率半径70市は1
06聴φから13.0mmφとなるようにした。つづい
て、反射板13の中心にリード線14をイシ糸光させる
とともに、第1の電極12]のψi1a Fillにも
リード線14を接続させた。次いで、前記品分子用電フ
ィルム11を、先端内部に段差すXl−を有した円筒状
の筐体15に、該圧電フィルム1ノの反射板13を有し
た側が筺体15の内g+r) Vc i)′lX置する
ように接着剤にょシ固定した。なお、前記筺体15の側
壁には図示しない細孔があって第1の箱7(飢12.が
らのリード線14が通っている。この後、反射板13側
の筺体)5内の一部にエポキシ樹脂を充填、硬化して支
持体16を形成した。更に、第1の電極721(111
1の筺体15の先Q!ij内にアクリル酸エステル紫外
線硬化塗料を塗布し、紫外線照射を行なって厚さ12μ
n1の絶縁層17を形成した(第4図(b)図示)。
[11] Next, the polymer piezoelectric film 11 was pressed using a pre-processed mold, and the radius of curvature of the 651 plane of the film was set to 30 mm, 50 mm, and 70 mm from 1ql+. At this time, the acoustic motion rf that creates different radii of curvature
iu;i: They are all set to have the same area, and the curvature radius of 30 mm is for sound (7.5 mmφ, curvature radius of 50 mm)
Between Huff 5 and Wa φ, 10.6 cycles φ, radius of curvature 70 is 1
The diameter was changed from 06 mm to 13.0 mm. Subsequently, the lead wire 14 was connected to the center of the reflection plate 13 and also connected to the ψi1a Fill of the first electrode 12. Next, the piezoelectric film 11 is placed in a cylindrical casing 15 having a step Xl- inside the tip, and the side of the piezoelectric film 1 having the reflection plate 13 is placed inside the casing 15 (g+r) Vc i )'lX position and fixed with adhesive. Incidentally, there is a pore (not shown) in the side wall of the casing 15, through which the lead wire 14 of the first box 7 (the first box 7) passes through. was filled with epoxy resin and cured to form a support 16. Furthermore, the first electrode 721 (111
Q ahead of 1 housing 15! Apply acrylic ester ultraviolet curing paint inside the ij and irradiate it with ultraviolet rays to reduce the thickness to 12μ.
An insulating layer 17 of n1 was formed (as shown in FIG. 4(b)).

前述の如く製造される集束型超音波探触′Fは、第4図
(b)に示す如く、両面に3種の曲率半径を( イコする高分子IIE電フィルム11の音響動作面側に
第1の電極をかつ音響動作面と反対側に第2の電極12
2、反射板13を設け、第1の電極12、及び反射板1
3に夫々リード絆14゜14を設け、前記フィルム11
を円筒状の筐体17の先端部に設け、更に反射板I3側
の筐体15内の一部に支持体16を設けかつ第1の電極
121側の筐体15の先端内に絶縁層17を設けた構造
となっている。
The focused ultrasonic probe 'F manufactured as described above has three radii of curvature on both sides (equal radii of curvature on the acoustically active surface side of the polymer IIE film 11), as shown in FIG. 4(b). 1 and a second electrode 12 on the side opposite to the acoustic active surface.
2. A reflection plate 13 is provided, and the first electrode 12 and the reflection plate 1 are provided.
A lead bond 14° 14 is provided on each of the film 11.
is provided at the tip of the cylindrical casing 17, a support 16 is provided in a part of the casing 15 on the reflection plate I3 side, and an insulating layer 17 is provided in the tip of the casing 15 on the first electrode 121 side. It has a structure with

しかして、本発明の集束型超音波探触子によれば、高分
子圧電フィルム1)が音用1よシ3050.70rrr
ynの3踵の曲率半径を有する構造とガっているため、
フィルム11から発しf超音θりを音軸上に対し細くか
つ病い音場で集束でき、第4図(h)に示す如く超音波
の集束点A、B、Cを形成でき、もって横方向の分解能
の向上に限らず、従来達しく+’)なかった縦方向の分
解能をもの第1の電接を有する集束型超音波探触子(比
較例)及び第4図(b)図示の¥廁例のものを超音波探
触子の中心軸上から50瑞の位frtl)に直径0、5
 mmのナイロン糸をターケ゛ッ)・とじて設置し、こ
のクーグツ)・を夫々xry方向に移動させた時の超音
波の反射波(エコー波)の強度をプロットした。なお、
第5図中の4は高分子1七市、フィルムを、51152
は前記フィルム4の両面の第1.第2の電極を、6は反
射板を、7は絶縁層を夫々示す。この結果、比較例はx
 = (1、l:!iち音11+上の中心においてy 
= 53 mm % RIJも高分子圧電フィルム1)
表面よ’) 53 mmfqj[れた距離においてのみ
しかエコー波の強度は最大とならなかった。これに対し
、実施例は第6図に示す如ら80箇才で、即ち前記フィ
ルム11表面より25鍋から75順の距陛(においてエ
コー波の強度は3回最大となった。これによシ、本実施
例の集束型超音波探触子が比較例の集束型超音波探触子
と比べ、優れていることか確認できる。
According to the focused ultrasonic probe of the present invention, the polymer piezoelectric film 1) is 3050.70 rrr compared to the acoustic type 1.
Because it has a structure with a radius of curvature of 3 heel of yn,
It is possible to focus the ultrasonic wave θ emitted from the film 11 narrowly and in a narrow sound field on the sound axis, and to form the ultrasonic focusing points A, B, and C as shown in FIG. In addition to improving the resolution in the directional direction, we also achieved the resolution in the vertical direction, which was previously unattainable. The diameter of the example is 0.5 m at 50 m (frtl) from the center axis of the ultrasonic probe.
A nylon thread of 2.0 mm in length was set up with a knot, and the intensity of the reflected ultrasound wave (echo wave) was plotted when the thread was moved in the xry direction. In addition,
4 in Figure 5 is polymer 17, film, 51152
are the first . . . on both sides of the film 4. 6 represents a second electrode, 6 represents a reflective plate, and 7 represents an insulating layer. As a result, the comparative example is x
= (1,l:!i in the center above 11+y
= 53 mm % RIJ is also a polymer piezoelectric film 1)
The intensity of the echo wave was maximum only at a distance of 53 mmfqj [from the surface. On the other hand, in the example, the intensity of the echo wave reached its maximum three times at 80 points as shown in FIG. It can be confirmed that the focused ultrasonic probe of this example is superior to the focused ultrasonic probe of the comparative example.

なお、本発明に係る集束型超音波探触1(子は、第4〆
l(b月ンj示のものに1沢らず、第7図図示のもので
もよい。IコIJち、第7図図示の集束型超音波探触、
子は、第4図(b)図示のものと比べ、高分子圧電フィ
ルム1ノの第1の電極12. と反対側に、幅1咽のリ
ング状の訪2ノを隔てでAg膜と銅製の反射4に’から
形成される分極された複数のリング状の第2の電極22
が設けら11、かつ各編2の′屯不返22にリート°′
I泉14’、 14’・・・が夫々接続された構造とな
っている。ここで、第1の電極121及び第2の電極2
2には圧↑b、性が付与されるが、第2の電極22が形
成されない溝2て部分は非圧電性となる。
Note that the focused ultrasonic probe 1 according to the present invention may be the one shown in FIG. Focused ultrasonic probe shown in Figure 7,
Compared to the one shown in FIG. 4(b), the first electrode 12. of the polymer piezoelectric film 1. On the opposite side, a plurality of polarized ring-shaped second electrodes 22 are formed on the Ag film and the copper reflector 4 with a ring-shaped gap of 1 width in between.
is provided 11, and it is read in 22 of each edition 2.
The I springs 14', 14'... are connected to each other. Here, the first electrode 121 and the second electrode 2
2 is given pressure ↑b, but the portion of the groove 2 where the second electrode 22 is not formed becomes non-piezoelectric.

しかして、第7図図示の集束型超音波探触子によれば、
高分子圧電フィルム11の両面の第1の電極12.及び
溝21によって分子′すされた複数のリング状の?P、
2の電極にのみ圧電性が細布されているため、前記フィ
ルlx l lの圧電性非付与部分は大きな槻砿的損失
を伴うとともに圧電率=0(又は電気機械結合係合−0
)となる。従って、圧電性非付与部分の、吸音部分とし
て作用し、かつηう乙気的にd、良好な?H体となる。
According to the focused ultrasound probe shown in FIG.
First electrodes 12 on both sides of the polymer piezoelectric film 11. and a plurality of ring-shaped molecules separated by grooves 21. P,
Since piezoelectricity is thinly distributed only in the second electrode, the non-piezoelectricity portion of the film lx l l is accompanied by a large loss and piezoelectric constant = 0 (or electromechanical coupling engagement -0
). Therefore, the piezoelectric non-imparting part acts as a sound absorbing part and has a good air quality. It becomes H-body.

この結果、圧電性非付与部分j部分により川’Fl’j
 el=4”Jカ部分間の電気・音響的なカッブリング
が除去され、クロストークが防止される。つ−fシ、第
7図図示の集束型超音波探触子は、ザイドロープが少な
くかつ音軸上に対してライン状に集束し/ζ超)4波を
得ることができる。
As a result, the river 'Fl'j
Electrical and acoustic coupling between the parts is eliminated, and crosstalk is prevented.The focused ultrasonic probe shown in FIG. Four waves can be obtained by focusing in a line on the axis.

寸だ、第4図(b)図示の集束型超音波探触子と同条件
で、超音波のエコー波の強度をプロットしたところ、8
J’j、 f5図と同様な実jj、ω結果が得られた。
When we plotted the intensity of the ultrasound echo wave under the same conditions as the focused ultrasound probe shown in Figure 4(b), we found that it was 8.
Actual jj, ω results similar to those in the J'j, f5 diagram were obtained.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、縦、横方向の分解能
が優れ、超音波診断装置に用いた場合鮮明な画1象が得
られる集束型超音波探触子を提供できるものである。
As described in detail above, according to the present invention, it is possible to provide a focusing ultrasonic probe that has excellent resolution in the vertical and horizontal directions and can provide a clear image when used in an ultrasonic diagnostic apparatus.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図1及び第2図は従来の超音波探触子の断面図、第
3図(a)は従来の他の超音波探jlJjH子の平面図
、同Pi(b)は同図(a)の断面図、第4図(a) 
、 (b)は本発明の集束型超音波探触−Fを製造工程
順に示すHノ1面図、第5図は比較例の集束型超音波探
触子による実験結果を示す説明図、第6図は第4図(b
)図示の集束型超音波探触子による実験結果を示す説明
図、第7図は不発す]の他の実施例を示す集束型超音波
探触子の1イノi面1y(1である。 1)・・・尚分子圧電フィルム、121  + 122
 +22・・・電極、13・・・反射板、15・・・筐
体、16・・・支持体、17・・・絶縁層、2ノ・・・
溝。 出、願人代理人  弁理士 詮 江 武 彦第1図 コ1 第4「 (a) (−b) 〜−−用一 ′1 才anΔ気゛アタ
1 and 2 are cross-sectional views of a conventional ultrasonic probe, FIG. 3(a) is a plan view of another conventional ultrasonic probe, and FIG. ), Figure 4(a)
, (b) is a top view of H No. 1 showing the focused ultrasonic probe-F of the present invention in the order of manufacturing steps, FIG. Figure 6 is similar to Figure 4 (b
) An explanatory diagram showing the experimental results using the illustrated focused ultrasonic probe. 1)...Molecular piezoelectric film, 121 + 122
+22... Electrode, 13... Reflector, 15... Housing, 16... Support, 17... Insulating layer, 2...
groove. Applicant's agent Patent attorney Takehiko Takehiko Figure 1 4.

Claims (1)

【特許請求の範囲】 1 両面に第1.第2の電極を有し、がっ音響動作1r
ii側及び反対側の面の両方に2つ以上の曲率半径をも
つ圧電体を備えたとと全特徴とする集束型超音波探触子
。 2、圧電体の音響動作面側と反対側の而の第2の電極を
複数のリング状の電(會に分割し、その分割された電極
及び第1の電極にのみ圧電性を付与することを/iテ徴
とする特許請求の1・1χ囲第1項記載の集束型超音波
探触子。 3、圧電体として高分子圧電フィルム或いは複合高分子
圧電シートを用いることを特徴とする%#’F 請求の
範囲第1項記載の集束型超音波探触子。
[Claims] 1. First . With the second electrode, the acoustic operation 1r
A focused ultrasonic probe characterized in that both the ii side and the opposite side are provided with piezoelectric bodies having two or more radii of curvature. 2. Divide the second electrode on the side opposite to the acoustically active surface of the piezoelectric body into a plurality of ring-shaped electrodes, and impart piezoelectricity only to the divided electrodes and the first electrode. A focused ultrasonic probe according to item 1 of the patent claim in box 1.1x having /ite as a feature. 3. A focused ultrasonic probe according to claim 1, characterized in that a polymer piezoelectric film or a composite polymer piezoelectric sheet is used as the piezoelectric material. #'F A focused ultrasonic probe according to claim 1.
JP57171370A 1982-09-30 1982-09-30 Focusing type ultrasonic wave probe Pending JPS5961400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57171370A JPS5961400A (en) 1982-09-30 1982-09-30 Focusing type ultrasonic wave probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57171370A JPS5961400A (en) 1982-09-30 1982-09-30 Focusing type ultrasonic wave probe

Publications (1)

Publication Number Publication Date
JPS5961400A true JPS5961400A (en) 1984-04-07

Family

ID=15921918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57171370A Pending JPS5961400A (en) 1982-09-30 1982-09-30 Focusing type ultrasonic wave probe

Country Status (1)

Country Link
JP (1) JPS5961400A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157533A (en) * 1985-12-20 1987-07-13 シ−メンス、アクチエンゲゼルシヤフト Ultrasonic converter for measuring sound power of ultrasonicfield
KR20200051453A (en) * 2018-11-05 2020-05-13 부경대학교 산학협력단 Multi-Focal Point Transducer for High- Frequency Ultrasound Applications, Apparatus and Method for Manufacturing thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157533A (en) * 1985-12-20 1987-07-13 シ−メンス、アクチエンゲゼルシヤフト Ultrasonic converter for measuring sound power of ultrasonicfield
KR20200051453A (en) * 2018-11-05 2020-05-13 부경대학교 산학협력단 Multi-Focal Point Transducer for High- Frequency Ultrasound Applications, Apparatus and Method for Manufacturing thereof

Similar Documents

Publication Publication Date Title
AU688334B2 (en) Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof
US9327317B2 (en) Ultrasound transducer and method for making the same
US5438998A (en) Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof
US5415175A (en) Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof
US5976090A (en) Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof
JPS5977800A (en) Apodictic supersonic transducer and method of producing same
KR101955786B1 (en) Focusing ultrasonic transducer to applying acoustic lens using concentric circle electrode and method for controlling the focusing ultrasonic transducer
CN107534815B (en) Ultrasonic transducer including matching layer having composite structure and method of manufacturing the same
JP5691627B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
JP2007158467A (en) Ultrasonic probe and manufacturing method thereof
US4659956A (en) Compound focus ultrasonic transducer
JP2005027752A (en) Piezoelectric vibrator, manufacturing method of piezoelectric vibrator, ultrasonic probe, and ultrasonic diagnostic apparatus
JPS5961400A (en) Focusing type ultrasonic wave probe
Jian et al. Development of self-focusing piezoelectric composite ultrasound transducer using laser engraving technology
JP2001025094A (en) 1-3 compound piezoelectric body
Cheng et al. Design, fabrication, and performance of a flextensional transducer based on electrostrictive polyvinylidene fluoride-trifluoroethylene copolymer
Chare et al. Polymer-based piezoelectric ultrasound transducer arrays on glass demonstrating mid-air applications
JPS6361161A (en) Converging type ultrasonic probe
Eiras et al. Vibration modes in ultrasonic Bessel transducer
JP4320098B2 (en) Array type composite piezoelectric material
Olbrish et al. Physical apodization of ultrasonic arrays
JPS59202059A (en) Probe for ultrasonic tomographic apparatus
Dausch et al. 11F-3 Performance of Flexure-Mode pMUT 2D Arrays
Nistorica et al. Modeling and characterization of a 3D-MEMS piezoelectric ultrasound transducer
US4062105A (en) Method for fabricating ferroelectric ultrasonic transducers