JPS5953589A - Manufacture of compression-formed coal - Google Patents

Manufacture of compression-formed coal

Info

Publication number
JPS5953589A
JPS5953589A JP16559282A JP16559282A JPS5953589A JP S5953589 A JPS5953589 A JP S5953589A JP 16559282 A JP16559282 A JP 16559282A JP 16559282 A JP16559282 A JP 16559282A JP S5953589 A JPS5953589 A JP S5953589A
Authority
JP
Japan
Prior art keywords
coal
mold
compression
molded coal
compressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16559282A
Other languages
Japanese (ja)
Other versions
JPH02400B2 (en
Inventor
Shigeru Kuwajima
桑島 滋
Noboru Ishihara
石原 登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kawatetsu Kagaku KK
Original Assignee
Kawasaki Steel Corp
Kawatetsu Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp, Kawatetsu Kagaku KK filed Critical Kawasaki Steel Corp
Priority to JP16559282A priority Critical patent/JPS5953589A/en
Publication of JPS5953589A publication Critical patent/JPS5953589A/en
Publication of JPH02400B2 publication Critical patent/JPH02400B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PURPOSE:To continuously produce titled coal suitable for block-charging, by first charging a feedstock coal with the previously-formed coal remaining in the opening zone of the mold to carry out a compression to integrate both coals, followed by extruding the front portion of the previously-formed coal out of the mold. CONSTITUTION:The previously-formed coal 12 is left to remain in the opening zone of the mold 11 with the opening located at the end of pressure-applying direction. A feedstock coal 6 is then charged between the above coal 12 and press plate 2 to carry out a compression by applying pressure through the plate 2 to integrate the newly-formed coal and previously-formed one, followed by applying pressure through the plate 2 to the resulting integrated coal to extrude the front portion of the previously-formed coal 12 through the opening outlet. By repeating a sequence of the procedures described above, a compression- formed coal 12' of desired size can be produced. By repeating the above operation, the objective compression-formed coal of any size readily separable block- by-block will continuously be manufactured in succession.

Description

【発明の詳細な説明】 本発明は、嵩密度の大きい圧縮成型炭の製造方法に関し
、とくに嵩密度1.0湿トン/m2以上の任意の大きさ
のものを連なり状態で製造する方法であって、コークス
強度の向上、原料炭選択範囲の拡大、生産性の向上し、
炉上作業および発塵公害の解消に有利な、竃炉ブロック
装入用の圧縮成型炭製造方法について提案するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing compression molded coal with a large bulk density, and particularly a method for producing compacted coal of any size with a bulk density of 1.0 wet tons/m2 or more in a continuous state. This will improve coke strength, expand the range of coking coal selection, and improve productivity.
This paper proposes a method for producing compression-molded coal for charging into furnace blocks, which is advantageous in eliminating furnace work and dust pollution.

従来、我国での原料炭装入法としてバラ物を各窯ごとに
頂部装入孔より装入車を通じて落下装入するというトッ
プチャージの方法が広く採用されてきた。最近、このト
ップチャージする原料炭の嵩密度を増加してコークス強
度の向上をはかる成型炭一部装入法が開発された。この
従来方法は、原料炭を予めダブルロール成型機でブリケ
ット状に成型し、略その30%相当の量の装入炭を混合
することにより、嵩密度を約10%高くする方法である
。しかし、この方法では嵩密度が高くなると言ってもそ
の値は高々0.78乾トン/m3程度であり、本発明で
要求されるような嵩密度1.0湿トン/m3(水分9%
では0.91乾トン/m3)以上ものに比較すればかな
り低いものとならざるを得ない点でブロック装入するた
めには不十分である。
Conventionally, the top-charging method has been widely adopted as a coking coal charging method in Japan, in which bulk materials are dropped into each kiln through a charging car through a charging hole at the top. Recently, a method of partially charging briquette coal has been developed that aims to improve coke strength by increasing the bulk density of the top-charged coking coal. This conventional method is a method in which raw coal is previously formed into a briquette shape using a double roll forming machine, and the bulk density is increased by approximately 10% by mixing in an amount of charge coal equivalent to approximately 30% of the briquette shape. However, even though this method increases the bulk density, the value is at most about 0.78 dry tons/m3, and the bulk density required by the present invention is 1.0 dry tons/m3 (water content 9%).
However, compared to 0.91 dry tons/m3) or more, this is quite low, which is insufficient for block charging.

この種の従来技術としては、例えば特開昭50−594
04号として提案されているものに、底板をもつ金型を
用いてプレスで加圧する成型装置がある。
As this type of conventional technology, for example, Japanese Patent Application Laid-open No. 50-594
A molding device proposed as No. 04 uses a mold with a bottom plate and pressurizes it with a press.

この従来技術の装置では、圧縮成型炭のその大きさに合
わせた金型とプレス装置を用意しなければならない。し
かも、そのために油圧シリンダーのストロークが長くな
り、また加圧面積が大きく金型も全体として圧力に耐え
る強度が要求されるために成型装置が過大になり、ひい
てはコストアップにつながるという問題点があった。そ
の他、この従来装置では、成型した圧縮成型炭を金型か
ら取り出す専用の工程を必要とし、そのために成型加工
の時間が長くなるという欠点もみられた。
In this prior art device, it is necessary to prepare a mold and a press device that match the size of the compacted coal. Moreover, the stroke of the hydraulic cylinder becomes long, and the pressurized area is large, and the mold as a whole is required to be strong enough to withstand the pressure, making the molding equipment too large and leading to increased costs. Ta. In addition, this conventional apparatus requires a dedicated process for taking out the compacted charcoal from the mold, which has the disadvantage that the molding process takes a long time.

本発明は、ブロック装入するための圧縮成型炭を、金型
出口部で既に圧縮成型を終えるに到った状態にある既圧
縮成型炭の一部を残すと同時に余った金型内空間には新
たに原料炭を装入し、圧縮成型して得た後続の圧縮成型
炭を上記先行成型した既圧縮成型炭尾端に追尾合本させ
て嵩密度1.0湿トン/m3以上の成型炭として、これ
を順次に押し出すという操作を反復して行うことにより
圧縮成型炭を得る方法であって、しかもとりわけそうし
た連続工程の中にあって、圧縮成型炭が所望の長さのも
のに達したときに仕切板を使うことにより、その仕切板
を介挿させたところだけが分離して合体しないで連なっ
た状態の圧縮成型炭を;すなわち任意の大きさ(ブロッ
ク装入のための窯の大きさに合わせた)の圧縮成型炭と
して間欠的に押出すことによって、これを連続的に製造
するのに好適な方法である。以下にその構成の詳細を説
明する。
The present invention allows compressed briquette coal to be charged into blocks to be left in a part of the compressed briquette coal that has already finished compression molding at the exit of the mold, and at the same time to fill the remaining space inside the mold. The following compression molded coal obtained by newly charging coking coal and compression molding is combined with the tail end of the previously molded already compressed molded coal to form a bulk density of 1.0 wet tons/m3 or more. This is a method of obtaining compression briquettes by repeatedly extruding charcoal in sequence, and especially in such a continuous process, the compression briquettes reach a desired length. By using a partition plate when the partition plate is inserted, the compression molded coal is separated only at the part where the partition plate is inserted, and is continuous without coalescing; that is, it can be of any size (for the kiln for charging blocks) The preferred method is to produce it continuously by extruding it intermittently as compacted charcoal (up to size). The details of the configuration will be explained below.

本発明の着想の基本は、成型に際して、粉粒状の原料炭
中に仕切板を入れて嵩密度1.0湿トン/m3以上に圧
縮成型すると、仕切板を入れた圧縮成型炭の端面は原料
炭粒子が面にそってされいに再配列するため、容易にそ
の後両端面を加圧接触させても合体しないというその現
象を利用する点にある。
The basic concept of the present invention is that when molding, if a partition plate is inserted into powdered coking coal and compression molded to a bulk density of 1.0 wet tons/m3 or more, the end face of the compression-molded coal containing the partition plate becomes the raw material. The purpose of this method is to take advantage of the phenomenon that since the charcoal particles are rearranged along the surface, they do not coalesce even if the two end surfaces are brought into contact with each other under pressure.

通常金型内の粉粒状の原料炭を加圧すると、金型の壁面
に摩擦力が発生する。これはすでに成型を終えた金型内
にある既圧縮成型炭を押出す際も同じであり、押出しに
当ってはそれ自身がもつ摩擦抵抗を超える圧力を加えな
ければならない。
Normally, when powdered raw coal in a mold is pressurized, frictional force is generated on the wall of the mold. This is the same when extruding compressed briquettes from a mold that has already been molded; during extrusion, pressure must be applied that exceeds the frictional resistance of the charcoal itself.

そこで、金型内に成型した圧縮成型炭を一部残したまま
にしておくと、例えばその残留させる圧縮成型炭の大き
さ(層厚) を適切に選ぶことにより、既圧縮成型炭の
装入側に新たに原料を入れて金型内残留の既圧縮成型炭
尾端面との間で、次の追尾合体させる圧縮型炭を接続的
に成型させるときの加圧に耐え得る摩擦力が生ずる。従
って、押板と該先行的に成型した既圧縮成型炭尾端面と
の間に生じる金型空間内に新たに原料炭を浸入し、その
装入側の一方より押板を押し進めて圧縮成型すれば、た
とえ押圧方向側の他端部に固定壁がなくとも、既圧縮成
型炭尾端面がそれに代って固定壁の役目を果すから、後
続的に成型させる追尾圧縮成型炭の成型が可能になり、
しかもその嵩密度を1.10湿トン/m3以上のものを
製造できる。そして、さらにより大きな圧力を加えてい
くことにより、上記の先行的に成型した金型内残留分の
既圧縮成型炭を金型外へ押出すことができる。要するに
、このような操作の反復により、任意の大きさの圧縮成
型炭を連続的に製造できるのである。
Therefore, if some of the compression briquettes formed in the mold are left in the mold, for example, by appropriately selecting the size (layer thickness) of the compression briquettes to be left, it is possible to charge the compression briquettes. A frictional force is generated between the new raw material and the tail end surface of the compressed coal remaining in the mold to withstand the pressure applied when the next compressed coal to be tracked and combined is connected and molded. Therefore, coking coal is newly injected into the mold space created between the press plate and the tail end face of the compressed coal that has been formed in advance, and the press plate is pushed forward from one side of the charging side to perform compression molding. For example, even if there is no fixed wall at the other end on the pressing direction side, the tail end surface of the pre-compressed and formed coal will act as a fixed wall instead, making it possible to form the trailing compression-molded coal that is subsequently formed. Become,
Furthermore, it is possible to produce a product having a bulk density of 1.10 wet tons/m3 or more. Then, by applying even greater pressure, the compressed briquette remaining in the mold after being previously molded can be extruded out of the mold. In short, by repeating such operations, compression molded coal of any size can be continuously produced.

さらに、本発明では先行成型した既圧縮成型炭に追尾合
体させる後続成型の圧縮成型炭が所望の長さに選したと
き、仕切板を介挿させてから、前述と同じように金型内
に原料炭を装入し、同様に押板を押し進めて新規装入の
原料を加圧すれば原料炭粒子が仕切板の面にそってきれ
いに再配列するので、たとえ該仕切板をその後取除いて
も、先行的に成型した既圧縮成型を後続する圧縮成型炭
とが接合しても合体することはない。
Furthermore, in the present invention, when the compression molded coal of the subsequent molding to be tracked and combined with the previously molded compressed molded coal has a desired length, a partition plate is inserted, and then it is inserted into the mold in the same manner as described above. If coking coal is charged and the push plate is pushed forward in the same way to pressurize the newly charged raw material, the coking coal particles will rearrange neatly along the surface of the partition plate, so even if the partition plate is subsequently removed. Also, even if the previously formed compacted coal is joined with the subsequent compacted coal, it will not coalesce.

従って、所望の大きさの成型炭をそれらを連ねたまま順
次金型外へ連続的に押し出していくことがでさるように
なる。
Therefore, it becomes possible to continuously extrude briquettes of desired size out of the mold one after another while keeping them in a row.

なお、成型炭の大きさを所望の大きさに区切るために仕
切板を入れて原料炭を圧縮する際に嵩密度を増加させる
方法としては、加圧力を大きくする方法、原科炭の装入
量を減少させて層厚を薄くする方法、あるいはそれらの
組合わせによる方法があり、これらの方法を用いれば必
要に応じて高密度を1.20湿トン/m3以上にするこ
とができる。
In addition, methods for increasing the bulk density when compressing coking coal by inserting partition plates to divide the size of briquette coal into desired sizes include increasing the pressing force, charging raw coal, etc. There are methods of reducing the layer thickness by reducing the amount, or a combination thereof, and by using these methods, it is possible to achieve a high density of 1.20 wet tons/m@3 or more as required.

上述のように、圧縮成型炭の大きさを実質的に決める仕
切板は、原料炭を加圧する際の反力受け板として使用し
加圧後取り除く形式の他に、先行成型した既圧縮成型炭
と、その先行成型のものに追尾させる後続の圧縮成型炭
との間に該仕切板をそのまま残すようにしてもよい。そ
の後者の方法には、押板を利用して仕切板をセットする
方法あるいは金型の上方もしくは横側からセットする方
法がある。材質としては、鉄板、木板、紙板、プラスチ
ック板、石板等を用いることができるが、その材質やま
た厚さには制約はない。
As mentioned above, the partition plate that essentially determines the size of the compression molded coal can be used as a reaction force receiving plate when pressurizing raw coal and removed after pressurization. The partition plate may be left as it is between the compressed coal and the subsequent compression molded coal that is to be followed by the preceding molded coal. The latter method includes a method of setting the partition plate using a push plate or a method of setting the partition plate from above or from the side of the mold. As the material, iron plates, wooden plates, paper plates, plastic plates, stone plates, etc. can be used, but there are no restrictions on the material or thickness.

上述のようにして得られた所定の大きさの圧縮成型炭を
室炉のドアー側から装入するブロック装入法では、圧縮
成型炭の嵩密度は少なくとも1.0湿トン/m3はない
と、装入時は破損したりして炉内への円滑な装入ができ
ない。これが達成されないと、最悪の場合、ドアーの装
着ができない状態となって崩壊するか、そのままで圧縮
成型炭への着火が行われて操業上のトラブルを発生する
In the block charging method, in which the compacted coal of a predetermined size obtained as described above is charged from the door side of the chamber furnace, the bulk density of the compacted coal must be at least 1.0 wet tons/m3. Otherwise, it may be damaged during charging, making it impossible to charge it smoothly into the furnace. If this is not achieved, in the worst case, the door will not be able to be installed and will collapse, or the compressed coal will continue to ignite, causing operational trouble.

このため、圧縮成型炭の嵩密度は1.0湿トン/m3以
上、好ましくは1.15湿トン/m3以上が必要である
。このことから本発明においては、前記押板を押し進め
て装入原料炭を圧縮する圧力を、その加圧によって圧縮
される原料炭が1.0湿トン/m3の嵩密度の成型炭と
なるのに必要な大きさとする。
For this reason, the bulk density of the compression molded coal needs to be 1.0 wet tons/m3 or more, preferably 1.15 wet tons/m3 or more. Therefore, in the present invention, the pressure for compressing the charging raw coal by pushing the push plate is adjusted so that the raw coal compressed by the pressurization becomes molded coal with a bulk density of 1.0 wet tons/m3. Make it the size necessary.

また、そのために同時に金型内に一部残留させる既圧縮
成型炭の大きさ:即ち上記加圧力に耐え得る摩擦抵抗が
得られるような大きさのものにしなければならない。
In addition, for this purpose, the size of the compressed briquette coal that is partially left in the mold must be such that it can provide a frictional resistance that can withstand the above-mentioned pressing force.

すなわち、粉粒状の原料炭を圧力Pt/cm2で加圧す
ると、金型の壁面には圧力Pst/cm2が発生し、摩
擦力μPst/cm2(μ:摩擦係数)を生ずる。第1
図に微小層厚dHにおける圧力Pと摩擦力μPsの関係
を示した。原料炭の自重は圧力と比較して小さいので、
無視すると、(1)式のように摩擦力μPsは圧力P、
原料炭の層厚H、加圧面積Fおよび金型の周長Uの関数
として理解される。
That is, when granular raw coal is pressurized at a pressure Pt/cm2, a pressure Pst/cm2 is generated on the wall surface of the mold, and a frictional force μPst/cm2 (μ: coefficient of friction) is generated. 1st
The figure shows the relationship between the pressure P and the frictional force μPs at a minute layer thickness dH. Since the weight of coking coal is small compared to its pressure,
If ignored, the frictional force μPs becomes the pressure P, as shown in equation (1).
It is understood as a function of the layer thickness H of the raw coal, the pressurized area F, and the circumferential length U of the mold.

μPs=f(P、H、F、U)・・・(1)なお、ブロ
ック装入する対象炉が決まると、炉寸法より金型の周長
Uと加圧面積Fが決まる。層厚Hの位置における圧縮成
型炭は上方の圧力に対して摩擦力μPsが生じており、
要するにこの摩擦力μPsによって残留既圧縮炭の金型
内での支持力が決定される。そこで、上述のごとく圧力
Pと層厚Hを与えると摩擦力μPsが求まるまで、その
結果(1)式により、残留すべき先行生成させた既圧縮
成型炭の量:すなわち大きさを決めることができる。経
験によれば金型350mm×1000mmにおいて嵩密
度1.0湿トン/m3の圧縮成型炭を得るために必要な
押板の圧力は50kg/m3程度である。そして、嵩密
度1.0湿トン/m3以上の先行的に生成させた既圧縮
成型炭を金型内出口部に残し、新たに原料炭を該金型内
の押板と前記先行既圧縮成型炭との間に装入して加圧す
るとき、前記金型内に残す先行的に生成させた既圧縮成
型炭は、新しく装入する原料炭を圧縮するときの支持力
として機能するのであり、それが押出しの直前、直後に
おける摩擦抵抗でもって新しく装入された原料炭が最大
限に圧縮される。このようにして、残留させる先行的に
生成した既圧縮成型炭の層厚と新しく装入した原料炭の
量:即ち層厚を適切に選ぶことにより嵩密度1.0湿ト
ン/m3の圧縮成型炭を成型するのに必要な圧力(50
kg/cm2)、好ましくは嵩密度1.15湿トン/m
3の圧縮成型炭を得るのに必要な圧力(100kg/c
m2)を、前記押板に付加できるのである。
μPs=f(P, H, F, U) (1) Once the target furnace to which the blocks are to be charged is determined, the circumferential length U and pressurizing area F of the mold are determined from the furnace dimensions. The compression-molded coal at the layer thickness H has a frictional force μPs against the upward pressure,
In short, this frictional force μPs determines the supporting force of the residual compressed coal within the mold. Therefore, when the pressure P and layer thickness H are given as described above, until the frictional force μPs is determined, the amount of pre-produced compacted coal that should remain, that is, the size, can be determined by equation (1). can. According to experience, the pressure of the press plate required to obtain compacted coal with a bulk density of 1.0 wet tons/m3 in a mold of 350 mm x 1000 mm is about 50 kg/m3. Then, the pre-compressed and molded coal produced in advance with a bulk density of 1.0 wet tons/m3 or more is left at the outlet of the mold, and the raw coal is newly added to the press plate in the mold and the pre-compressed molded coal. When charging and pressurizing the raw coal between the coal and the coal, the previously generated compacted coal remaining in the mold functions as a supporting force when compressing the newly charged raw material coal, The newly charged coking coal is compressed to the maximum due to the frictional resistance immediately before and after extrusion. In this way, compression molding with a bulk density of 1.0 wet tons/m3 can be achieved by appropriately selecting the layer thickness of the previously produced compacted coal to be retained and the amount of newly charged coking coal: that is, the layer thickness. The pressure required to form charcoal (50
kg/cm2), preferably bulk density 1.15 wet tons/m
Pressure required to obtain compression molded coal (100 kg/c
m2) can be added to the push plate.

そして、摩擦力μPsとの釣合いを超えた圧力Pで加圧
をつづけると、金型内に生成した既圧縮成型炭を金型か
ら押し出すことができ、これらの順次操作により、エン
ドレスな圧縮成型炭を製造することができる。上述のよ
うに構成することにより、金型は最小限の装入ブロック
の大きさに対応させれば足りるから経済的で取扱いやす
い大きさのものとすることができ、とくに図示した好適
例の場合のような加圧方向が横方向のケースでは加圧面
積が最小となるので、成型装置を最も小型化できすぐれ
た経済性を発揮する。加圧方向としては、竪方向、横方
向、斜めの方向、いずれの方向でもよい。
When pressurization is continued at a pressure P that exceeds the balance with the frictional force μPs, the compressed molten coal generated in the mold can be pushed out of the mold, and by these sequential operations, endless compression molten coal is produced. can be manufactured. By configuring as described above, the mold only needs to correspond to the minimum size of the charging block, so it can be made economical and easy to handle, especially in the case of the preferred example shown. In the case where the pressurizing direction is horizontal, the pressurizing area is minimized, so the molding device can be made most compact and exhibits excellent economic efficiency. The pressing direction may be any direction, including vertical, horizontal, and diagonal directions.

また、本発明の場合、仕切板を入れて圧縮することによ
り、所望の大きさの圧縮成型炭を同じ工程の継続の中で
連続的に行うことが可能で、もちろん切断工程が不要と
なる。さらに仕切板を入れて圧縮する部分、即ち圧縮成
型炭の先端部の物理強度の大巾な向上を達成することが
できる。
In addition, in the case of the present invention, by inserting a partition plate and compressing, it is possible to continuously compress and mold coal of a desired size in the same process, and of course, the cutting process is not necessary. Furthermore, the physical strength of the part to be compressed by inserting the partition plate, that is, the tip of the compacted coal, can be greatly improved.

図面に示す第2図は、横型装置による本発明の代表的な
製造方法の1例を示す。(イ)の段階は金型の出口側に
、先行生成の既圧縮成型炭を残して、その背後の空間に
原料炭を装入した段階を示している。(ロ)に示す図は
、押板の前進によって装入原料炭を圧縮し先行生成の既
圧縮成型炭に、次に加圧してできた新しい圧縮成型炭(
追尾成型炭)を追尾合体させる段階である。さらに、(
ハ)に示す図は既圧縮成型炭および追尾成型炭の摩擦抵
抗を超える圧力を加えて押板を押し進めて既圧縮成型炭
を金型外に出す段階である。この段階の操作によって既
圧縮成型炭が金型から押し出され、新しく生成した追尾
成型炭が金型の出口側へ移動する。
FIG. 2 shown in the drawings shows one example of a typical manufacturing method of the present invention using a horizontal device. Stage (a) shows the stage in which the previously produced compressed briquette coal is left on the exit side of the mold, and raw coal is charged into the space behind it. The figure shown in (b) shows the compressed coking coal that has been compressed by the advancement of the push plate, and the previously produced compressed briquette coal, which is then pressurized to produce new compressed briquette coal (
This is the stage of tracking and combining the tracking briquette coal. moreover,(
The diagram shown in c) shows the step in which a pressure that exceeds the frictional resistance of the compressed molten coal and the tracked molten coal is applied to push the press plate forward to force the compressed molten coal out of the mold. By the operation at this stage, the compressed briquette coal is pushed out of the mold, and the newly generated tracking briquette coal moves to the exit side of the mold.

これらを繰返すことによりエンドレス状の任意の大きさ
のものにすることが可能な圧縮成型炭を製造でき、とく
に窯入れする室炉に適合する長さの圧縮成型炭となる。
By repeating these steps, it is possible to produce compression-molded charcoal that can be endlessly shaped into any size, and in particular, the compression-molded charcoal has a length that is suitable for the chamber furnace to be placed in the kiln.

以下に本発明の実施例について説明する。Examples of the present invention will be described below.

図面の第3〜6図は本発明製造方法に供する装置の概略
を示すものであり、図示に示す符号のうち、1は押板駆
動装置、2は押板、3、3′はゲトダンパー駆動装置、
4、4′はゲートダンパー、5、5′は原料炭ホッパー
、6は原料炭、7、7′は金型内部に入れた仕切板、8
は仕切板の駆動装置、9は充填板、10は充填板駆動装
置、11は金型、12は既圧縮成型、12′は押出され
た圧縮成型炭、13は圧縮成型炭用ケース、14はグラ
ウンドプレート、15は金型出口に入れた仕切板、16
は仕切板(15)の駆動装置、17は仕切板(15)の
受け装置を示す。
3 to 6 of the drawings schematically show the apparatus used in the manufacturing method of the present invention, and among the symbols shown in the drawings, 1 is a push plate drive device, 2 is a push plate, and 3 and 3' are get damper drive devices. ,
4, 4' are gate dampers, 5, 5' are raw coal hoppers, 6 is raw coal, 7, 7' are partition plates placed inside the mold, 8
10 is a drive device for the partition plate, 9 is a filling plate, 10 is a filling plate drive device, 11 is a mold, 12 is already compression molded, 12' is extruded compression molded coal, 13 is a case for compression molded coal, 14 is a Ground plate, 15 is a partition plate placed in the mold outlet, 16
17 indicates a driving device for the partition plate (15), and 17 indicates a receiving device for the partition plate (15).

実施例l 前述の第2図に示す(イ)、(ロ)、(ハ)の工程を反
復して順次に既圧縮成型炭12を成型し、その一部を金
型11内に残す。すなわち、第3、4図で示すように金
型外に押し出された圧縮成型炭12を一部は金型外のグ
ラウンドプレート14の上に載せ、残部は金型11内に
収納する。こうして得られる先行する圧縮成型炭12′
につづく一体化した既圧縮成型炭12が任意の所望の長
さに達したならば、上記第2図の工程(ロ)の代りに第
7図において示すような境界に仕切板7を介挿させて圧
縮成型する工程を採用する。
Example 1 The steps (a), (b), and (c) shown in FIG. That is, as shown in FIGS. 3 and 4, a part of the compressed molten coal 12 pushed out of the mold is placed on the ground plate 14 outside the mold, and the rest is stored in the mold 11. The preceding compression molded coal 12′ obtained in this way
When the integrated compressed briquette coal 12 reaches a desired length, a partition plate 7 is inserted at the boundary as shown in FIG. 7 instead of step (b) in FIG. 2 above. A process of compression molding is adopted.

なお、所望の大きさ即ちブロック装入のための指定され
た大きさを形造るまでの第2図で示す工程(イ)、(ロ
)、(ハ)では、充填板9、仕切板7は金型11の内壁
表面と同一レベルにセットしておくが、仕切板7を入れ
て分離することが必要となる工程では充填板9は後退し
、仕切板7が前進して金型内部を横断して充填板9が後
退した跡へ装入する。
In addition, in the steps (a), (b), and (c) shown in FIG. 2 until the desired size, that is, the specified size for block charging, the filling plate 9 and the partition plate 7 are It is set at the same level as the inner wall surface of the mold 11, but in the process where it is necessary to insert and separate the partition plate 7, the filling plate 9 is moved back and the partition plate 7 is moved forward and crosses the inside of the mold. Then, charge the filling plate 9 into the place where it has retreated.

次にゲートダンパー4を開いて仕切板7と押板2との間
に新たな原料炭6を充填した後ゲートダンパー4を閉め
る。上述した状態にある工程の側面図を第3図として、
またそのときの平面14を第4図として示してある。
Next, the gate damper 4 is opened and new raw coal 6 is filled between the partition plate 7 and the push plate 2, and then the gate damper 4 is closed. A side view of the process in the above state is shown in Figure 3.
Further, the plane 14 at that time is shown in FIG.

第1図の(イ)は仕切板7を入れて、押板2に圧力を加
えて圧縮し、追尾成型炭を成型させた状態、第7図の(
ロ)は仕切板7を取除いて追尾成型炭が既圧縮成型炭と
合体せずに直に分離する状態で隣接接触している様子を
示している。
(A) in Fig. 1 shows a state in which the partition plate 7 is inserted and pressure is applied to the pusher plate 2 to compress it and mold the tracking briquette coal.
B) shows a situation in which the partition plate 7 is removed and the tracking briquette coal is in adjacent contact with the compressed briquette coal in a state where it is directly separated without being combined with the compressed briquette coal.

第7図の(ハ)は、第2図で示す工程(ハ)を操作し、
既圧縮成型炭を金型外に押し出して圧縮成型炭をグラウ
ンドプレート14の上にのせて圧縮成型炭用ケース13
内に収納する一方、追尾成型炭の方を金型11内に残し
た状態を示している。以上説明した工程を反復継続し、
ブロック装入に適した任意の大きさの圧縮成型炭を製造
する。
(c) in Fig. 7 is the operation of the step (c) shown in Fig. 2;
The compressed molten coal is pushed out of the mold, and the compressed molten coal is placed on the ground plate 14 to form the compressed molten coal case 13.
The figure shows a state in which the tracking briquette coal is left inside the mold 11. Continue repeating the process explained above,
Produces compacted coal of any size suitable for block charging.

第8図の(イ)は任意の長さで合体せずに接触している
製品圧縮型炭12、12′が2個連なった状態でケース
18内に収納されているもようを示している。これらの
圧縮成型炭12、12′は互いに接しているが、合体し
ていないので容易に分離することができる。
Figure 8 (a) shows a case in which two pieces of compressed product charcoal 12, 12', which are in contact with each other at an arbitrary length and are not combined, are stored in the case 18 in a continuous state. . Although these compacted coals 12 and 12' are in contact with each other, they are not combined and can be easily separated.

室炉長さよりやや短かい圧縮成型炭を製造し、その長さ
に相当するグラウンドプレート14、ケース18に収納
して、ケース13を移動し、圧縮成型炭12、12′を
分離した状態を第8図(ロ)に示している。
Compressed briquettes that are slightly shorter than the length of the chamber furnace are produced and stored in a ground plate 14 and case 18 corresponding to the length, and the case 13 is moved to separate the compression briquettes 12 and 12'. It is shown in Figure 8 (b).

上述したようにして、任意の長さで合体していない圧縮
成型炭を連続的に製造することができるのである。
In the manner described above, it is possible to continuously produce uncoalesced compacted coal of any length.

実施例2 実施例1と同じ工程において、圧縮成型炭12′既圧縮
成型炭12が任意の長さに達したなら、第9図で示すよ
うに、仕切板7′を入れて新たに原料炭6を装入し、そ
の仕切板7′をそのまま金型11内に残したままで押板
2に圧力を加えて圧縮し、以後実施例1と同じ工程を反
復継続して製品とする。仕切板7′は圧縮成型炭と合体
しないので、この実施例の場合も任意の長さの圧縮成型
炭に容易に分離できる。
Example 2 In the same process as in Example 1, when the compressed briquette 12' reaches a desired length, a partition plate 7' is inserted and new raw coal is added, as shown in FIG. 6 is charged, the partition plate 7' remains in the mold 11, pressure is applied to the press plate 2, and the press plate 2 is compressed, and the same process as in Example 1 is repeated and continued to produce a product. Since the partition plate 7' does not combine with the compacted charcoal, the compacted charcoal of this embodiment can be easily separated into compacted charcoal of arbitrary length.

実施例3 実施例1と同じ工程において、圧縮成型炭12′既圧縮
成型炭12が任意の長さに達したら、圧縮成型炭12、
12′を全て金型11外に押し出し、ひきつづき金型1
1の出口部に別の仕切板15を第5図・第6図で示すよ
うにセットし、原料ホッパ−5′から新らたな原料炭を
装入し、圧縮して既圧縮成型炭を生成する。仕切板l5
をセットしたままあるいは取除いてから、原料ホッパー
5から新たに原料炭6を装入し圧縮する。前者の場合、
仕切板15を取除いてから同様な工程を反復継続する。
Example 3 In the same process as in Example 1, when the compressed briquette 12' reaches a desired length, the compression briquette 12,
12' is all extruded out of the mold 11, and then the mold 1
Another partition plate 15 is set at the outlet of 1 as shown in Figs. 5 and 6, and fresh raw coal is charged from the raw material hopper 5' and compressed to form compressed briquette coal. generate. Partition plate l5
After leaving it set or removing it, raw coal 6 is newly charged from the raw material hopper 5 and compressed. In the former case,
After removing the partition plate 15, the same process is repeated.

なお、押板2で原料炭6を圧縮する加圧力は、仕切板1
5を介して受け装着17で受ける。
Note that the pressing force for compressing the raw coal 6 with the press plate 2 is the same as that of the partition plate 1.
5 and is received by a receiving mounting 17.

以上説明したように、本発明によれば、任意長さの圧縮
成型炭を自動的に製造できるので、連続的な製造装置を
使うにもかかわらず、成型炭の切断工程が不要となる長
所がある。この意味で本発明は圧縮成型炭を分割して室
炉へ装入する場合に顕著な効果を発渾する。また、圧縮
成型炭の外殻部は崩壊等に耐える物理強度が大きいこと
が望まれるが仕切板を使うのでとくに圧縮される面の強
度が大きくなりしかもそれは加圧力を大きくすることに
より増大し、例えば嵩密度1.20湿トン/m3以上に
することかでき、圧縮成型炭の物理強度を大幅に向上さ
せることができる。
As explained above, according to the present invention, compression briquettes of any length can be automatically produced, so even though continuous production equipment is used, there is no need for a briquette cutting process. be. In this sense, the present invention provides remarkable effects when compressed coal is divided and charged into a chamber furnace. In addition, it is desirable that the outer shell of compression-molded coal has high physical strength to withstand collapse, etc., but since partition plates are used, the strength of the surface to be compressed becomes particularly large, and this increases as the pressing force increases. For example, the bulk density can be increased to 1.20 wet tons/m3 or more, and the physical strength of the compacted coal can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、圧力と摩擦力との関係を示す模式図、第2図
は、圧縮成型過程を示す断面図で(イ)は加圧する初期
の状態を示す工程、(ロ)は先行成型の既圧縮成型炭に
後続して成型させた追尾成型炭が押し出され、その追尾
成型炭が置換して金型の出口側に移動した状態を示す工
程の図、 第3図は仕切板を使って成型するもようを示す縦断面図
、 第4図は充填板、仕切板を使って成型するもようを示す
水平断面図、 第5図および第6図は、本発明の別の実施例を示す縦断
面図・水平断面図、 第7図の(イ)〜(ハ)は、第8、4図に対応する本発
明実施例の工程図、 第8図の(イ)、(ロ)は、いずれも圧縮成型炭をケー
ス内に収納したもようを示す平面図、 第9図は仕切板を介挿させたまま順次成型を行う実施例
の断面図である。 1・・・押板駆動装置、2・・・押板、3、3′・・・
ゲートダンパー駆動装置、4、4′・・・ゲートダンパ
ー、5、5′・・・原料炭ホッパー、6・・・原料炭、
7、7′・・・金型内部に入れた仕切板、8・・・仕切
板(7)の駆動装置、9・・・充填板、10・・・充填
板駆動装置、11・・・金型、12・・・既圧縮成型炭
、12′・・・押出された圧縮成型炭、13・・・圧縮
成型炭用ケース、14・・・グラウンドプレート、l5
・・・金型出口に入れた仕切板、16・・・仕切板(l
5)駆動装置、17・・・仕切板(15)受け装置。
Figure 1 is a schematic diagram showing the relationship between pressure and frictional force, and Figure 2 is a cross-sectional view showing the compression molding process, where (a) shows the initial state of pressurization, and (b) shows the preliminary molding process. Figure 3 is a process diagram showing the state in which the tracking briquette coal that was molded following the compressed briquette coal is pushed out, and the tracking briquette replaces it and moves to the outlet side of the mold. FIG. 4 is a horizontal sectional view showing a molding case using a filling plate and a partition plate; FIGS. 5 and 6 show another embodiment of the present invention. Vertical sectional view/horizontal sectional view, (A) to (C) in FIG. 7 are process diagrams of the embodiment of the present invention corresponding to FIGS. 8 and 4, (A) and (B) in FIG. Both are plan views showing a case in which compression molded coal is stored in a case, and FIG. 9 is a cross-sectional view of an embodiment in which molding is performed sequentially with partition plates inserted. 1... Push plate drive device, 2... Push plate, 3, 3'...
Gate damper drive device, 4, 4'... Gate damper, 5, 5'... Coking coal hopper, 6... Coking coal,
7, 7'... Partition plate placed inside the mold, 8... Drive device for partition plate (7), 9... Filling plate, 10... Filling plate drive device, 11... Gold Mold, 12... Compressed briquette coal, 12'... Extruded compression briquette coal, 13... Compression briquette case, 14... Ground plate, l5
...Partition plate inserted into the mold outlet, 16...Partition plate (l
5) Drive device, 17... partition plate (15) receiving device.

Claims (2)

【特許請求の範囲】[Claims] 1.成型金型内に原料炭を装入し押板により加圧して圧
縮成型炭を得る方法において、加圧方向端を開口させた
成型金型内に原料を装入し、前記押板を押し進めて金型
内で圧縮成型炭を成型するとともに、さらに押し進めて
加圧方向先の前記開口出口から押し出すに当り、 (イ)先行させて成型した既圧縮成型炭を金型出口部に
残留させる工程、 (ロ)該圧縮成型炭と押板との間に新たに原料炭を装入
し、圧力を押板に加えて圧縮し、後続的に生成させる追
尾成型炭を既圧縮成型炭と合体させる工程、 (ハ)合体させた圧縮成型炭に対し圧力を押板に加えて
既圧縮成型炭の先行する部分を金型外に押し出す順次操
作の反復によって所望の大きさの圧縮成形炭を得る工程
、 (ニ)その後所望の大きさに達した一部が金型内に残留
する圧縮成型炭の尾端面に、その後取除くかそのまま残
留させたままにおく仕切板を押し当て、その仕切板と押
板との間に新らたな原料炭を装入して該押板を押し進め
て加圧圧縮、再び所望の大きさの圧縮成型炭を得る工程
、 からなる順次操作の反復によって、ブロック毎に直ちに
分離できる任意の大きさの圧縮成型炭を連続して連なり
状態で成型製造することを特徴とする圧縮成型炭の製造
方法。
1. In a method of obtaining compression molded coal by charging raw coal into a mold and pressurizing it with a push plate, the raw material is charged into a mold with an open end in the pressure direction, and the press plate is pushed forward. In molding the compression molded coal in the mold and further pushing it out from the opening outlet in the direction of pressurization, (a) a step of leaving the previously molded compressed molded coal at the mold outlet; (b) A step of newly charging raw coal between the compression molded coal and the press plate, compressing it by applying pressure to the press plate, and combining the tracked molded coal to be generated subsequently with the already compressed molded coal. (c) Obtaining compression molded coal of a desired size by repeating the sequential operation of applying pressure to the combined compression molded coal on a push plate and pushing the preceding portion of the compressed molded coal out of the mold; (d) After that, a part of the compression molded coal that has reached the desired size is pressed against the tail end face of the compression molded coal, which remains in the mold, with a partition plate that is to be removed or left as it is, and pressed against the partition plate. For each block, by repeating the sequential operation consisting of the steps of charging new raw coal between the plate and pushing the plate to pressurize and compress it to obtain compacted coal of the desired size again. A method for producing compression-molded coal, which comprises continuously molding and manufacturing compression-molded coal of any size that can be immediately separated.
2.成型金型内に原料炭を装入し押板により加圧して圧
縮成型炭を得る方法において、加圧方向端を開口させた
成型金型内に原料を装入し、前記押板を押し進めて金型
内で圧縮成型炭を成型するとともに、さらに押し進めて
加圧方向先の前記開口出口から押し出すに当り、 (イ)先行させて成型した既圧縮成型炭を金型出口部に
残留させる工程、 (ロ)該既圧縮編成型炭と押板との間に新たに原料炭を
装入し、圧力を押板に加えて圧縮し、後続的に生成させ
る追尾成型炭を既圧縮成型炭と合体させる工程、 (ハ)合体させた圧縮成型炭に対し圧力を押板に加えて
既圧縮成型炭の先行する部分を金型外に押し出す順次操
作の反復によって所望の大きさの圧縮成型炭を得る工法
、 (ニ)その後所望の大きさに達した上記(ハ)の工程で
得られた圧縮成型炭を一旦全部金型外に押し出し、上記
金型出口端に着脱可能に仕切板をセットして、再び前記
(イ)〜(ハ)の工程を経て、次の圧縮成型炭を成型す
る工程、 からなる順次操作の反復によって、ブロック毎に直ちに
分離できる任意の大きさの圧縮成型炭を連続して連なり
状態で成型製造することを特徴とする圧縮成型炭の製造
法。
2. In a method of obtaining compression molded coal by charging raw coal into a mold and pressurizing it with a push plate, the raw material is charged into a mold with an open end in the pressure direction, and the press plate is pushed forward. In molding the compression molded coal in the mold and further pushing it out from the opening outlet in the direction of pressurization, (a) a step of leaving the previously molded compressed molded coal at the mold outlet; (b) New raw coal is charged between the compressed formed coal and the push plate, pressure is applied to the push plate to compress it, and the tracked formed coal to be generated subsequently is combined with the already compressed formed coal. (c) Obtaining compression molded coal of a desired size by repeating the sequential operation of applying pressure to the combined compression molded coal on a push plate and pushing out the preceding portion of the compressed molded coal out of the mold. (d) After that, the compression molded coal obtained in the step (c) above that has reached the desired size is once pushed out of the mold, and a partition plate is removably set at the exit end of the mold. , go through the steps (a) to (c) above again, and then mold the next compression molded coal.By repeating the sequential operations, compressed molded coal of any size that can be immediately separated into blocks can be continuously produced. A method for producing compression briquettes characterized by forming and producing charcoal in a continuous state.
JP16559282A 1982-09-22 1982-09-22 Manufacture of compression-formed coal Granted JPS5953589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16559282A JPS5953589A (en) 1982-09-22 1982-09-22 Manufacture of compression-formed coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16559282A JPS5953589A (en) 1982-09-22 1982-09-22 Manufacture of compression-formed coal

Publications (2)

Publication Number Publication Date
JPS5953589A true JPS5953589A (en) 1984-03-28
JPH02400B2 JPH02400B2 (en) 1990-01-08

Family

ID=15815277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16559282A Granted JPS5953589A (en) 1982-09-22 1982-09-22 Manufacture of compression-formed coal

Country Status (1)

Country Link
JP (1) JPS5953589A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6290494B1 (en) 2000-10-05 2001-09-18 Sun Coke Company Method and apparatus for coal coking
US9169439B2 (en) 2012-08-29 2015-10-27 Suncoke Technology And Development Llc Method and apparatus for testing coal coking properties
US9193915B2 (en) 2013-03-14 2015-11-24 Suncoke Technology And Development Llc. Horizontal heat recovery coke ovens having monolith crowns
US9193913B2 (en) 2012-09-21 2015-11-24 Suncoke Technology And Development Llc Reduced output rate coke oven operation with gas sharing providing extended process cycle
US9200225B2 (en) 2010-08-03 2015-12-01 Suncoke Technology And Development Llc. Method and apparatus for compacting coal for a coal coking process
US9238778B2 (en) 2012-12-28 2016-01-19 Suncoke Technology And Development Llc. Systems and methods for improving quenched coke recovery
US9243186B2 (en) 2012-08-17 2016-01-26 Suncoke Technology And Development Llc. Coke plant including exhaust gas sharing
US9249357B2 (en) 2012-08-17 2016-02-02 Suncoke Technology And Development Llc. Method and apparatus for volatile matter sharing in stamp-charged coke ovens
US9273250B2 (en) 2013-03-15 2016-03-01 Suncoke Technology And Development Llc. Methods and systems for improved quench tower design
US9273249B2 (en) 2012-12-28 2016-03-01 Suncoke Technology And Development Llc. Systems and methods for controlling air distribution in a coke oven
US9359554B2 (en) 2012-08-17 2016-06-07 Suncoke Technology And Development Llc Automatic draft control system for coke plants
US9476547B2 (en) 2012-12-28 2016-10-25 Suncoke Technology And Development Llc Exhaust flow modifier, duct intersection incorporating the same, and methods therefor
US9580656B2 (en) 2014-08-28 2017-02-28 Suncoke Technology And Development Llc Coke oven charging system
US9683740B2 (en) 2012-07-31 2017-06-20 Suncoke Technology And Development Llc Methods for handling coal processing emissions and associated systems and devices
US10016714B2 (en) 2012-12-28 2018-07-10 Suncoke Technology And Development Llc Systems and methods for removing mercury from emissions
US10526541B2 (en) 2014-06-30 2020-01-07 Suncoke Technology And Development Llc Horizontal heat recovery coke ovens having monolith crowns
US10619101B2 (en) 2013-12-31 2020-04-14 Suncoke Technology And Development Llc Methods for decarbonizing coking ovens, and associated systems and devices
US10760002B2 (en) 2012-12-28 2020-09-01 Suncoke Technology And Development Llc Systems and methods for maintaining a hot car in a coke plant
US10851306B2 (en) 2017-05-23 2020-12-01 Suncoke Technology And Development Llc System and method for repairing a coke oven
US10883051B2 (en) 2012-12-28 2021-01-05 Suncoke Technology And Development Llc Methods and systems for improved coke quenching
US10968393B2 (en) 2014-09-15 2021-04-06 Suncoke Technology And Development Llc Coke ovens having monolith component construction
US10968395B2 (en) 2014-12-31 2021-04-06 Suncoke Technology And Development Llc Multi-modal beds of coking material
US11008517B2 (en) 2012-12-28 2021-05-18 Suncoke Technology And Development Llc Non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods
US11008518B2 (en) 2018-12-28 2021-05-18 Suncoke Technology And Development Llc Coke plant tunnel repair and flexible joints
US11021655B2 (en) 2018-12-28 2021-06-01 Suncoke Technology And Development Llc Decarbonization of coke ovens and associated systems and methods
US11060032B2 (en) 2015-01-02 2021-07-13 Suncoke Technology And Development Llc Integrated coke plant automation and optimization using advanced control and optimization techniques
US11071935B2 (en) 2018-12-28 2021-07-27 Suncoke Technology And Development Llc Particulate detection for industrial facilities, and associated systems and methods
US11098252B2 (en) 2018-12-28 2021-08-24 Suncoke Technology And Development Llc Spring-loaded heat recovery oven system and method
US11142699B2 (en) 2012-12-28 2021-10-12 Suncoke Technology And Development Llc Vent stack lids and associated systems and methods
US11214739B2 (en) 2015-12-28 2022-01-04 Suncoke Technology And Development Llc Method and system for dynamically charging a coke oven
US11261381B2 (en) 2018-12-28 2022-03-01 Suncoke Technology And Development Llc Heat recovery oven foundation
US11395989B2 (en) 2018-12-31 2022-07-26 Suncoke Technology And Development Llc Methods and systems for providing corrosion resistant surfaces in contaminant treatment systems
US11486572B2 (en) 2018-12-31 2022-11-01 Suncoke Technology And Development Llc Systems and methods for Utilizing flue gas
US11508230B2 (en) 2016-06-03 2022-11-22 Suncoke Technology And Development Llc Methods and systems for automatically generating a remedial action in an industrial facility
US11760937B2 (en) 2018-12-28 2023-09-19 Suncoke Technology And Development Llc Oven uptakes
US11767482B2 (en) 2020-05-03 2023-09-26 Suncoke Technology And Development Llc High-quality coke products
US11788012B2 (en) 2015-01-02 2023-10-17 Suncoke Technology And Development Llc Integrated coke plant automation and optimization using advanced control and optimization techniques

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6290494B1 (en) 2000-10-05 2001-09-18 Sun Coke Company Method and apparatus for coal coking
US9200225B2 (en) 2010-08-03 2015-12-01 Suncoke Technology And Development Llc. Method and apparatus for compacting coal for a coal coking process
US9683740B2 (en) 2012-07-31 2017-06-20 Suncoke Technology And Development Llc Methods for handling coal processing emissions and associated systems and devices
US9249357B2 (en) 2012-08-17 2016-02-02 Suncoke Technology And Development Llc. Method and apparatus for volatile matter sharing in stamp-charged coke ovens
US11692138B2 (en) 2012-08-17 2023-07-04 Suncoke Technology And Development Llc Automatic draft control system for coke plants
US10947455B2 (en) 2012-08-17 2021-03-16 Suncoke Technology And Development Llc Automatic draft control system for coke plants
US9243186B2 (en) 2012-08-17 2016-01-26 Suncoke Technology And Development Llc. Coke plant including exhaust gas sharing
US11441077B2 (en) 2012-08-17 2022-09-13 Suncoke Technology And Development Llc Coke plant including exhaust gas sharing
US10041002B2 (en) 2012-08-17 2018-08-07 Suncoke Technology And Development Llc Coke plant including exhaust gas sharing
US9359554B2 (en) 2012-08-17 2016-06-07 Suncoke Technology And Development Llc Automatic draft control system for coke plants
US9169439B2 (en) 2012-08-29 2015-10-27 Suncoke Technology And Development Llc Method and apparatus for testing coal coking properties
US10053627B2 (en) 2012-08-29 2018-08-21 Suncoke Technology And Development Llc Method and apparatus for testing coal coking properties
US9193913B2 (en) 2012-09-21 2015-11-24 Suncoke Technology And Development Llc Reduced output rate coke oven operation with gas sharing providing extended process cycle
US10975309B2 (en) 2012-12-28 2021-04-13 Suncoke Technology And Development Llc Exhaust flow modifier, duct intersection incorporating the same, and methods therefor
US11117087B2 (en) 2012-12-28 2021-09-14 Suncoke Technology And Development Llc Systems and methods for removing mercury from emissions
US9862888B2 (en) 2012-12-28 2018-01-09 Suncoke Technology And Development Llc Systems and methods for improving quenched coke recovery
US9238778B2 (en) 2012-12-28 2016-01-19 Suncoke Technology And Development Llc. Systems and methods for improving quenched coke recovery
US10016714B2 (en) 2012-12-28 2018-07-10 Suncoke Technology And Development Llc Systems and methods for removing mercury from emissions
US11008517B2 (en) 2012-12-28 2021-05-18 Suncoke Technology And Development Llc Non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods
US11939526B2 (en) 2012-12-28 2024-03-26 Suncoke Technology And Development Llc Vent stack lids and associated systems and methods
US9273249B2 (en) 2012-12-28 2016-03-01 Suncoke Technology And Development Llc. Systems and methods for controlling air distribution in a coke oven
US9476547B2 (en) 2012-12-28 2016-10-25 Suncoke Technology And Development Llc Exhaust flow modifier, duct intersection incorporating the same, and methods therefor
US10323192B2 (en) 2012-12-28 2019-06-18 Suncoke Technology And Development Llc Systems and methods for improving quenched coke recovery
US11359145B2 (en) 2012-12-28 2022-06-14 Suncoke Technology And Development Llc Systems and methods for maintaining a hot car in a coke plant
US11142699B2 (en) 2012-12-28 2021-10-12 Suncoke Technology And Development Llc Vent stack lids and associated systems and methods
US10760002B2 (en) 2012-12-28 2020-09-01 Suncoke Technology And Development Llc Systems and methods for maintaining a hot car in a coke plant
US10883051B2 (en) 2012-12-28 2021-01-05 Suncoke Technology And Development Llc Methods and systems for improved coke quenching
US9193915B2 (en) 2013-03-14 2015-11-24 Suncoke Technology And Development Llc. Horizontal heat recovery coke ovens having monolith crowns
US11746296B2 (en) 2013-03-15 2023-09-05 Suncoke Technology And Development Llc Methods and systems for improved quench tower design
US9273250B2 (en) 2013-03-15 2016-03-01 Suncoke Technology And Development Llc. Methods and systems for improved quench tower design
US10927303B2 (en) 2013-03-15 2021-02-23 Suncoke Technology And Development Llc Methods for improved quench tower design
US11359146B2 (en) 2013-12-31 2022-06-14 Suncoke Technology And Development Llc Methods for decarbonizing coking ovens, and associated systems and devices
US10619101B2 (en) 2013-12-31 2020-04-14 Suncoke Technology And Development Llc Methods for decarbonizing coking ovens, and associated systems and devices
US10526541B2 (en) 2014-06-30 2020-01-07 Suncoke Technology And Development Llc Horizontal heat recovery coke ovens having monolith crowns
US9708542B2 (en) 2014-08-28 2017-07-18 Suncoke Technology And Development Llc Method and system for optimizing coke plant operation and output
US10308876B2 (en) 2014-08-28 2019-06-04 Suncoke Technology And Development Llc Burn profiles for coke operations
US10920148B2 (en) 2014-08-28 2021-02-16 Suncoke Technology And Development Llc Burn profiles for coke operations
US9580656B2 (en) 2014-08-28 2017-02-28 Suncoke Technology And Development Llc Coke oven charging system
US10233392B2 (en) 2014-08-28 2019-03-19 Suncoke Technology And Development Llc Method for optimizing coke plant operation and output
US11053444B2 (en) 2014-08-28 2021-07-06 Suncoke Technology And Development Llc Method and system for optimizing coke plant operation and output
US9976089B2 (en) 2014-08-28 2018-05-22 Suncoke Technology And Development Llc Coke oven charging system
US10968393B2 (en) 2014-09-15 2021-04-06 Suncoke Technology And Development Llc Coke ovens having monolith component construction
US11795400B2 (en) 2014-09-15 2023-10-24 Suncoke Technology And Development Llc Coke ovens having monolith component construction
US10968395B2 (en) 2014-12-31 2021-04-06 Suncoke Technology And Development Llc Multi-modal beds of coking material
US10975311B2 (en) 2014-12-31 2021-04-13 Suncoke Technology And Development Llc Multi-modal beds of coking material
US10975310B2 (en) 2014-12-31 2021-04-13 Suncoke Technology And Development Llc Multi-modal beds of coking material
US11060032B2 (en) 2015-01-02 2021-07-13 Suncoke Technology And Development Llc Integrated coke plant automation and optimization using advanced control and optimization techniques
US11788012B2 (en) 2015-01-02 2023-10-17 Suncoke Technology And Development Llc Integrated coke plant automation and optimization using advanced control and optimization techniques
US11214739B2 (en) 2015-12-28 2022-01-04 Suncoke Technology And Development Llc Method and system for dynamically charging a coke oven
US11508230B2 (en) 2016-06-03 2022-11-22 Suncoke Technology And Development Llc Methods and systems for automatically generating a remedial action in an industrial facility
US10851306B2 (en) 2017-05-23 2020-12-01 Suncoke Technology And Development Llc System and method for repairing a coke oven
US11643602B2 (en) 2018-12-28 2023-05-09 Suncoke Technology And Development Llc Decarbonization of coke ovens, and associated systems and methods
US11680208B2 (en) 2018-12-28 2023-06-20 Suncoke Technology And Development Llc Spring-loaded heat recovery oven system and method
US11008518B2 (en) 2018-12-28 2021-05-18 Suncoke Technology And Development Llc Coke plant tunnel repair and flexible joints
US11365355B2 (en) 2018-12-28 2022-06-21 Suncoke Technology And Development Llc Systems and methods for treating a surface of a coke plant
US11505747B2 (en) 2018-12-28 2022-11-22 Suncoke Technology And Development Llc Coke plant tunnel repair and anchor distribution
US11597881B2 (en) 2018-12-28 2023-03-07 Suncoke Technology And Development Llc Coke plant tunnel repair and flexible joints
US11261381B2 (en) 2018-12-28 2022-03-01 Suncoke Technology And Development Llc Heat recovery oven foundation
US11021655B2 (en) 2018-12-28 2021-06-01 Suncoke Technology And Development Llc Decarbonization of coke ovens and associated systems and methods
US11098252B2 (en) 2018-12-28 2021-08-24 Suncoke Technology And Development Llc Spring-loaded heat recovery oven system and method
US11071935B2 (en) 2018-12-28 2021-07-27 Suncoke Technology And Development Llc Particulate detection for industrial facilities, and associated systems and methods
US11760937B2 (en) 2018-12-28 2023-09-19 Suncoke Technology And Development Llc Oven uptakes
US11193069B2 (en) 2018-12-28 2021-12-07 Suncoke Technology And Development Llc Coke plant tunnel repair and anchor distribution
US11395989B2 (en) 2018-12-31 2022-07-26 Suncoke Technology And Development Llc Methods and systems for providing corrosion resistant surfaces in contaminant treatment systems
US11819802B2 (en) 2018-12-31 2023-11-21 Suncoke Technology And Development Llc Methods and systems for providing corrosion resistant surfaces in contaminant treatment systems
US11486572B2 (en) 2018-12-31 2022-11-01 Suncoke Technology And Development Llc Systems and methods for Utilizing flue gas
US11767482B2 (en) 2020-05-03 2023-09-26 Suncoke Technology And Development Llc High-quality coke products

Also Published As

Publication number Publication date
JPH02400B2 (en) 1990-01-08

Similar Documents

Publication Publication Date Title
JPS5953589A (en) Manufacture of compression-formed coal
TWI481701B (en) Method for coke oven chamber suitable compacting of coal
US3166617A (en) Method and apparatus for producing articles of molded particle board
US4606876A (en) Method of continuously producing compression molded coal
US3905735A (en) Stack molding apparatus
US3876744A (en) Compacting step by step
TWI512098B (en) Method and device for the successive production of coal pressing blocks suitable for coke oven chambers
CN1081943A (en) The method that is used for compacting casting foundry sand
US4083912A (en) Process for the compression of black powder
RU2770793C1 (en) Method and device for the manufacture of molded articles
JP2002542036A (en) Metal shaving method and method press
JPS5956501A (en) Molding method of composite powder
US4439129A (en) Hydraulic refractory press including floating upper and lower plunger assemblies
JPS5912710B2 (en) Continuous production method of compression briquette coal
US1609427A (en) queneau
US20090257904A1 (en) Device and method for pressing a metal powder compact
US3523344A (en) Apparatus for dry pressing ceramic tile
JPH0212517B2 (en)
CN220129608U (en) Powder cake-shaped cosmetic extruder
CN218195853U (en) Brick making mold and brick making machine
JPS59122583A (en) Production unit for consolidated cake of powdered coal
JPS6053590A (en) Production of metallurgical coke
SU1726128A1 (en) Method of powder compaction into shapes
CN117773116A (en) Powder pressing device and method
JPS636181Y2 (en)