JPS5946364B2 - Arbitrary waveform optical pulse generator - Google Patents

Arbitrary waveform optical pulse generator

Info

Publication number
JPS5946364B2
JPS5946364B2 JP7497477A JP7497477A JPS5946364B2 JP S5946364 B2 JPS5946364 B2 JP S5946364B2 JP 7497477 A JP7497477 A JP 7497477A JP 7497477 A JP7497477 A JP 7497477A JP S5946364 B2 JPS5946364 B2 JP S5946364B2
Authority
JP
Japan
Prior art keywords
light
arbitrary waveform
pulse generator
optical pulse
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7497477A
Other languages
Japanese (ja)
Other versions
JPS549645A (en
Inventor
哲郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOSAKA DAIGAKUCHO
Original Assignee
OOSAKA DAIGAKUCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOSAKA DAIGAKUCHO filed Critical OOSAKA DAIGAKUCHO
Priority to JP7497477A priority Critical patent/JPS5946364B2/en
Publication of JPS549645A publication Critical patent/JPS549645A/en
Publication of JPS5946364B2 publication Critical patent/JPS5946364B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、連続発振あるいはそれに準する発振をして
いるレーザ光から、鋸歯状波もしくは正弦波等の簡単な
電気信号を用いてピコ秒(10−”2秒)オーダの任意
波形光パルスを合成できるようにした、・新形光パルス
発生装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes a simple electric signal such as a sawtooth wave or a sine wave from a continuous oscillation or similar oscillation laser beam to generate a picosecond (10-"2 second) This invention relates to a new type of optical pulse generator that can synthesize arbitrary waveform optical pulses of different orders.

任意波形の光パルスを発生させるには、光変調器を用い
る方法がまず考えられるが、ピコ秒オーダの駆動電気回
路の構成が技術的に非常に困難である。他方、単なるピ
コ秒パルスを得ることはレーザのモード同期等を用いれ
ば簡単であるので、これをいくつかのパルスに分け、そ
れぞれに適当な遅延と強度を与え、再度、重ね合わせて
任意波形を得る方法、また、このピコ秒パルスを空間フ
ィルタ、マスク等を重ねた回折格子に照射し、その回折
光を利用する方法などが提案、報告されている。これら
の場合、ピコ秒パルスを得ることが可能なモード同期レ
ーザが必要であり、そのため、システム全体は大きくな
り、さらに、利用できる波長域も限られる。その上、入
力パルスの性質により、出力波形が大きく変わるなど多
くの欠点を持つ。こゝで述べる新しい装置では、入射光
は連続発振光でもよく、特にレーザの種類、波長を構わ
ず、パルス整形も容易で、かつ小形に構成でき、光エレ
クトロニクス回路素子の一つとして充分実用に供するも
のである。
The first possible way to generate optical pulses with arbitrary waveforms is to use an optical modulator, but it is technically very difficult to construct a driving electric circuit on the order of picoseconds. On the other hand, it is easy to obtain a simple picosecond pulse by using laser mode locking, etc., so it is possible to divide this into several pulses, give each one an appropriate delay and intensity, and then superimpose them again to create an arbitrary waveform. Other methods have been proposed and reported, including a method of irradiating this picosecond pulse onto a diffraction grating overlaid with a spatial filter, mask, etc., and utilizing the diffracted light. In these cases, a mode-locked laser capable of obtaining picosecond pulses is required, which increases the overall system size and further limits the usable wavelength range. Furthermore, it has many drawbacks, such as the output waveform changing greatly depending on the nature of the input pulse. In the new device described here, the incident light can be continuous wave light, the type of laser and wavelength are not particularly important, pulse shaping is easy, and it can be configured compactly, making it fully practical as an optoelectronic circuit element. This is what we provide.

以下、実施例につき、図面に従つて説明する。Examples will be described below with reference to the drawings.

入射光1が電気光学偏向器2に入いり、分布位相シフタ
3、分布強度絞り4、レンズ5(なくてもよい)を通つ
て回折格子6で回折され、回折光出力7において任意波
形に変換される。まず、時間的にリニアな偏向で、3、
4がない場合を考える。高速で光ビームが振られると、
入射光が連続であるにも拘らず、回折格子6の方へは8
のように光が帯状となつて走行してゆく。この帯の厚さ
や走行方向となす角は、偏向の速さと分解能によつてき
まる。回折格子6を適当な角度に配置すると、回折光で
は9のように帯は走行方向に直角になり、光波形として
は帯の厚さを光速で除した値の時間幅のパルスとなる。
分布位相シフタ3、分布強度絞り4を挿入すれば8の帯
の形が変わり、出力回折光7も種々の波形となる。つぎ
に波形制御を理解するために、より数学的な説明を付け
加える。
Incident light 1 enters an electro-optic deflector 2, passes through a distributed phase shifter 3, a distributed intensity aperture 4, and a lens 5 (optional), is diffracted by a diffraction grating 6, and is converted into an arbitrary waveform at a diffracted light output 7. be done. First, with temporally linear deflection, 3,
Consider the case where there is no 4. When a light beam is swung at high speed,
Even though the incident light is continuous, there are 8 waves toward the diffraction grating 6.
The light travels in a band like this. The thickness of this band and the angle it makes with the direction of travel depend on the speed and resolution of the deflection. When the diffraction grating 6 is arranged at an appropriate angle, the bands of diffracted light will be perpendicular to the traveling direction as shown in 9, and the optical waveform will be a pulse with a time width equal to the thickness of the band divided by the speed of light.
If a distributed phase shifter 3 and a distributed intensity aperture 4 are inserted, the shape of the band 8 changes, and the output diffracted light 7 also takes on various waveforms. Next, we will add a more mathematical explanation to understand waveform control.

電気光学偏向器を通ると、光ビームは断面方向(図では
X方向)にリニアな勾配をもつて光位相シフトを受け、
その結果偏向される(位相シフトは印加電界により偏向
用電気光学結晶の屈折率が変化することで得られる)。
この勾配の大きさは印加電圧に比例するので電圧を時間
的に変化させるとビームの偏向方向が掃引される。いま
、入射光の光角周波数をω。とすると偏向器出口での複
素振幅はX点ではj(ω。
When passing through the electro-optic deflector, the light beam undergoes an optical phase shift with a linear gradient in the cross-sectional direction (X direction in the figure).
As a result, it is deflected (the phase shift is obtained by changing the refractive index of the deflecting electro-optic crystal due to the applied electric field).
Since the magnitude of this gradient is proportional to the applied voltage, changing the voltage over time sweeps the beam deflection direction. Now, the optical angular frequency of the incident light is ω. Then, the complex amplitude at the exit of the deflector is j(ω) at point X.

を−kvX) ・・・・−・・・−・・・・・・・・・
・・(1)となる。
−kvX) ・・・・−・・・−・・・・・・・・・
...(1).

こ\で、tは時刻、は印加電圧、kは定数である。印加
電圧として、鋸歯状のV−At(a:定数) ・・・・
・・・・・・・・(2)を考えると、(1)式はj(ω
o−Kax)T......,..、.. (3)eと
なり、見掛上、x点での角周波数ω(x)はω(x)=
ωo−Kax・・・・・・・・・・・・・・・ (4
)で、x方向に周波数がリニアに異なる波源が分布する
ことになる。
Here, t is time, applied voltage, and k is a constant. As the applied voltage, sawtooth V-At (a: constant)...
・・・・・・・・・Considering (2), equation (1) becomes j(ω
o-Kax)T. .. .. .. .. .. 、. .. ,.. .. (3) e, and apparently the angular frequency ω(x) at point x is ω(x)=
ωo-Kax・・・・・・・・・・・・・・・ (4
), wave sources with linearly different frequencies are distributed in the x direction.

これらの波源から出た光が回折格子に入射するとき、X
に応じ入射角が少しづつ異なるが、光周波数も(4)式
のように少しづつ異なるので、回折格子の設置角を旨く
設定すれば回折光は全て同一方向になる。その結果、こ
れらの波源からの光は回折光が完全に重ね合わされる。
この場合の回折格子の設置角は前述の帯を走行方向に直
交させる条件と等価である。さて、分布位相シフタ3、
分布強度絞り4を通過した直後の光の複素振幅分布は、
(3)式の代わりに,(x)Ejq(X).Ej(ω0
−Kax)T...,..(5)q(x):分布位相シ
フトの量p(x):分布強度絞りの透過特性 で表わされる。
When the light emitted from these wave sources enters the diffraction grating,
Although the incident angle differs slightly depending on the angle, the optical frequency also differs slightly as shown in equation (4), so if the installation angle of the diffraction grating is set appropriately, all the diffracted lights will be in the same direction. As a result, the diffracted light from these sources is completely superimposed.
The installation angle of the diffraction grating in this case is equivalent to the above-mentioned condition in which the bands are perpendicular to the running direction. Now, distributed phase shifter 3,
The complex amplitude distribution of the light immediately after passing through the distribution intensity aperture 4 is:
(3) Instead of (x)Ejq(X). Ej(ω0
-Kax)T. .. .. 、. .. (5) q(x): Amount of distributed phase shift p(x): Represented by the transmission characteristic of the distributed intensity aperture.

従つて回折光D(t)はD(t)0C1P(X)Ejq
(X)・Ej((!)0−KaX)1dx・・・(6)
となりp(x)Ejq(X)はD(t)のフーリエ変換
(厳密にはD(t)e−JOOlのフーリエ変換)に対
応する。
Therefore, the diffracted light D(t) is D(t)0C1P(X)Ejq
(X)・Ej((!)0-KaX)1dx...(6)
Then, p(x)Ejq(X) corresponds to the Fourier transform of D(t) (strictly speaking, the Fourier transform of D(t)e-JOOl).

そこで必要なD(t)に合わせたp(x),q(x)を
3,4により与えてやれば、D(t)が得られるわけで
ある。また、電気光学偏向器が有限の長さを持つので、
リニア掃引時に光の走行効果のためレンズ効果が現われ
、分解能を低下させるが、q(x)でこれを補償させる
ことができる。具体例としては、LiNbO3結晶を用
いた電気光学偏向器にクライトロン(高速サイラトロン
の一種)で5KV/500psの鋸歯状電圧を印加して
10ピコ秒ぐらいの分解能でガウスパルス、三角パルス
、方形パルス、その他任意波形パルスを発生させること
が可能である。
Therefore, if p(x) and q(x) are given by 3 and 4 to match the required D(t), D(t) can be obtained. Also, since the electro-optic deflector has a finite length,
During linear sweeping, a lens effect appears due to the traveling effect of light and reduces the resolution, but this can be compensated for by q(x). As a specific example, a sawtooth voltage of 5 KV/500 ps is applied to an electro-optic deflector using a LiNbO3 crystal using a klytron (a type of high-speed thyratron) to produce Gaussian pulses, triangular pulses, and square pulses with a resolution of about 10 picoseconds. , and other arbitrary waveform pulses can be generated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の光パルス発生装置の実施例の構成概
略図。 1・・・・・・入射光、2・・・・・・電気光学偏向器
、3・・・・・・分布位相シフタ、4・・・・・・分布
強度絞り、5・・・・・・レンズ、6・・・・・・回折
格子、7・・・・・・出力回折光、8・・・光の帯(回
折格子に入いる前)、9・・・・・・光の帯(回折後)
FIG. 1 is a schematic diagram of the configuration of an embodiment of the optical pulse generator of the present invention. 1...Incoming light, 2...Electro-optic deflector, 3...Distributed phase shifter, 4...Distributed intensity aperture, 5...・Lens, 6... Diffraction grating, 7... Output diffracted light, 8... Light band (before entering the diffraction grating), 9... Light band (after diffraction)
.

Claims (1)

【特許請求の範囲】[Claims] 1 高速で駆動する電気光学偏向器の出力部に空間的に
分布した光位相シフタ、および透過度が空間分布を持つ
絞りもしくはマスクを配し、これらにより出力光に任意
の位相、強度分布を与えた後、適当な角度に設置された
回折格子等の周波数分散素子に照射して、任意波形のパ
ルスを合成する装置。
1. A spatially distributed optical phase shifter and a diaphragm or mask with spatially distributed transmittance are arranged at the output part of an electro-optic deflector driven at high speed, and these give the output light an arbitrary phase and intensity distribution. A device that synthesizes arbitrary waveform pulses by irradiating a frequency dispersion element such as a diffraction grating installed at an appropriate angle.
JP7497477A 1977-06-23 1977-06-23 Arbitrary waveform optical pulse generator Expired JPS5946364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7497477A JPS5946364B2 (en) 1977-06-23 1977-06-23 Arbitrary waveform optical pulse generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7497477A JPS5946364B2 (en) 1977-06-23 1977-06-23 Arbitrary waveform optical pulse generator

Publications (2)

Publication Number Publication Date
JPS549645A JPS549645A (en) 1979-01-24
JPS5946364B2 true JPS5946364B2 (en) 1984-11-12

Family

ID=13562762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7497477A Expired JPS5946364B2 (en) 1977-06-23 1977-06-23 Arbitrary waveform optical pulse generator

Country Status (1)

Country Link
JP (1) JPS5946364B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119459U (en) * 1991-04-05 1992-10-26 株式会社東芝 developing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119459U (en) * 1991-04-05 1992-10-26 株式会社東芝 developing device

Also Published As

Publication number Publication date
JPS549645A (en) 1979-01-24

Similar Documents

Publication Publication Date Title
US11409184B2 (en) Acousto-optic deflector with multiple output beams
US5682262A (en) Method and device for generating spatially and temporally shaped optical waveforms
CN111123560B (en) Optical pulse modulation method and system based on multi-frequency acousto-optic modulation and grating diffraction
US20190128741A1 (en) Pulsed light waveform measurement method and waveform measurement device
US5263039A (en) System for generating shaped optical pulses and measuring optical pulses using spectral beam deflection (SBD)
SU984418A3 (en) Kaser beam control system
US3961841A (en) Optical pulse position modulator
US4146783A (en) Multiplexed optical communication system
Kobayashi et al. Generation of arbitrarily shaped optical pulses in the subnanosecond to picosecond region using a fast electrooptic deflector
JP2003279480A (en) Single shot transition absorption measurement method and single shot transition absorption measurement system using broadband super-continuum ultra-short light pulse
JPS5946364B2 (en) Arbitrary waveform optical pulse generator
JPH0440696B2 (en)
Konishi et al. Optical spectrogram scope using time-to-two-dimensional space conversion and interferometric time-of-flight cross correlation
Mazurenko et al. Time-to-space conversion of fast signals by the method of spectral nonlinear optics
JP2001060734A (en) Ultrashort pulse wide band light wave generating method and device therefor
JP2000088657A (en) Method for measuring wavelength of extremely short light pulse
Lee et al. Programmable optical pulse burst manipulation using a virtually imaged phased array (VIPA) based Fourier transform pulse shaper
RU2687513C1 (en) Device for adaptive time profiling of ultrashort laser pulses
Skupsky et al. Laser‐beam pulse shaping using spectral beam deflection
RU2650854C1 (en) Device for measuring transient characteristics of optical amplifiers
US6574036B1 (en) Procedure and device for the programmable time profile shaping of quasi-monochromatic optical pulses
JP3837564B2 (en) Broadband optical sideband generation method and broadband optical sideband generation apparatus
EP4249895A1 (en) Time response measurement apparatus and time response measurement method
WO2022249659A1 (en) Dispersion measuring device, and dispersion measuring method
JP2004055626A (en) PULSE WIDTH CONTROLLER, THz ELECTROMAGNETIC WAVE GENERATOR AND GENERATING METHOD