JPS5944819A - Equipment for vapor growth - Google Patents

Equipment for vapor growth

Info

Publication number
JPS5944819A
JPS5944819A JP15552082A JP15552082A JPS5944819A JP S5944819 A JPS5944819 A JP S5944819A JP 15552082 A JP15552082 A JP 15552082A JP 15552082 A JP15552082 A JP 15552082A JP S5944819 A JPS5944819 A JP S5944819A
Authority
JP
Japan
Prior art keywords
heating
coil
temperature
base
heating base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15552082A
Other languages
Japanese (ja)
Inventor
Shigeo Kotani
小谷 滋夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP15552082A priority Critical patent/JPS5944819A/en
Publication of JPS5944819A publication Critical patent/JPS5944819A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To increase a processing capacity by a method wherein a plurality of heating coils are provided concentrically beneath a heating block and temperature control of those heating coils of inside, intermediate and outside portions is performed independently in accordance with the temperature of the heating block. CONSTITUTION:To the center of a heating block 11 a reactive gas supplying tube inserting hole 12 is provided. Heating coil group 13 is composed of an inside circumference coil 13a which is provided beneath the center portion of the block 11, an intermediate coil 13b which is positioned at the intermediate portion of the concentric coil group 13 and an outside circumference coil 13c which is positioned around the intermediate coil 13b. Each coil is electrically independent and is connected to the corresponding high frequency electric source 15a, 15b, 15c. Temperature sensors 16a, 16b, 16c are provided between the block 11 and each coil. The temperature sensors are connected to a temperature controller 17 and a calculator 18 gives a signal to the electric source group 15 according to a signal given by the temperature sensors.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、気相成長装置に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a vapor phase growth apparatus.

〔発明の技術的背景〕[Technical background of the invention]

従来、半導体ウェハ等の被処理体の表面に所望の薄膜を
形成するために第1図に示す如き気の底部には、排気ダ
クト3が形成されている。
Conventionally, in order to form a desired thin film on the surface of an object to be processed such as a semiconductor wafer, an exhaust duct 3 is formed at the bottom of the air as shown in FIG.

反応ガス供給管2の上部には、カーデン等からなる略円
板形の加熱基台4が挿着さハている。
A substantially disc-shaped heating base 4 made of carbon or the like is inserted into the upper part of the reaction gas supply pipe 2 .

加熱基台4上には、被処理体5が載置される。The object to be processed 5 is placed on the heating base 4 .

加熱基台4の下方には、第2図に示す如く、渦巻状の加
熱コイル6が設置されている。
A spiral heating coil 6 is installed below the heating base 4, as shown in FIG.

而して、加熱コイル6にて加熱基台4を介して被処理体
5を所定温度に加熱し々から、被処理体5の表面に気相
成長法によ、す薄膜を形成するようになっている。例え
ばエピタキシャル成長法で被処理体5の表面に薄膜を形
成する場合に、反応ガス5tcz、のときは約1200
℃。
After heating the object to be processed 5 to a predetermined temperature using the heating coil 6 via the heating base 4, a thin film is formed on the surface of the object to be processed 5 by vapor phase growth. It has become. For example, when forming a thin film on the surface of the object to be processed 5 using the epitaxial growth method, when the reaction gas is 5tcz, about 1200
℃.

S + HCZ sのときは約1150℃、5IH2C
12のときは約1100℃# SiH4のときは約10
50℃に加熱する。また、加熱コイル6は、第2図に示
る周波数は50〜200 kHzの範囲で設定する。
Approximately 1150℃, 5IH2C when S + HCZ s
12: approx. 1100℃ # SiH4: approx. 10
Heat to 50°C. Further, the frequency of the heating coil 6 shown in FIG. 2 is set in the range of 50 to 200 kHz.

高周波発振器は200kW程度のものを使用し、加熱基
台4は、直径約600mmφ、厚さ約】5喘のものを通
常使用している。
A high frequency oscillator of about 200 kW is used, and the heating base 4 is usually about 600 mm in diameter and about 5 mm thick.

しかしながら、従来の気相成長装#1oでは、第3図に
その要部を示す如く、加熱コイル6と加熱基台4との距
離L1が均一である場合には、加熱基台4外周部では、
その端部1の熱り逃けが大きいため、他の領域に比べて
低温になる。その結果、加熱基台4上の被処理体5を一
定の温度で加熱できず、被処理体5内にスリップが発生
する問題があった。この問題を解消するためIc第4図
に示す如く、特に加熱コイル6′の一部分を加熱基台4
から遠ざけ、外周部分の加熱コイル6’aを加熱基台4
の下面に近づけるように配鍮した気相成長装置が開発さ
れている。このような気相成長装置では、加熱コイル6
′の各々と加熱基台4の下面との距M1を、反応ガス供
給管2から噴出する反応ガスの温度及び流量に応じて試
行錯誤によって最適値に設定すると、気相成長処理を施
している期間中1・ま、所定の処理温度に加熱基台4を
均熱することができる。しかしながら、加熱コイル6′
と加熱基台4の下面との距離が、加熱コイル6′の中央
部と外周部で異なるため、室温から処理温度までの加熱
昇降期間中では、加熱基台4に加熱コイル6′から与え
る誘尋エネルギーは、加熱基台4の中央部に比べて、加
熱基台4に近づけた外周部の方が多くなる。その結果、
加熱基台4及びその上に載陥された被処理体5の内部の
温度分布は、気相成長処理の前後で大きく崩れる。この
ため、依然、被処理体5内にスリップが発生し易い問題
があった。
However, in the conventional vapor phase growth apparatus #1o, as shown in FIG. 3, when the distance L1 between the heating coil 6 and the heating base 4 is uniform, the outer circumference of the heating base 4 is ,
Since the end portion 1 has a large amount of heat dissipation, the temperature is lower than that of other regions. As a result, the object to be processed 5 on the heating base 4 could not be heated at a constant temperature, and there was a problem that slippage occurred within the object to be processed 5. In order to solve this problem, as shown in FIG.
Keep the heating coil 6'a on the outer periphery away from the heating base 4.
A vapor phase growth device has been developed in which the brass is placed close to the bottom surface of the metal. In such a vapor phase growth apparatus, the heating coil 6
' and the lower surface of the heating base 4 is set to the optimum value through trial and error according to the temperature and flow rate of the reaction gas ejected from the reaction gas supply pipe 2, vapor phase growth processing is performed. During the period, the heating base 4 can be soaked to a predetermined processing temperature for 1 minute. However, heating coil 6'
Since the distance between the heating base 4 and the lower surface of the heating base 4 is different between the center and the outer circumference of the heating coil 6', the induction given to the heating base 4 by the heating coil 6' is The amount of energy is greater at the outer circumference near the heating base 4 than at the center of the heating base 4. the result,
The temperature distribution inside the heating base 4 and the object to be processed 5 placed thereon greatly collapses before and after the vapor growth process. For this reason, there still remains the problem that slips are likely to occur within the object to be processed 5.

この問題全解消するために、気相成長処理時の加熱基台
4内の設定温度を、その均熱金ある程度崩し2て、契降
温ル1程中に発生する熱応力を抑制するといった通常の
均熱手段とは矛盾する方法が採用されている。しかしな
がら、この均熱をある程度崩す手段では、気a成長の処
理温度の分布にばらつきかあるため、被処理体5に形成
した薄膜の厚さのばらつき、抵抗値のばらつき、スクッ
キングフォールトやビット等の結晶欠陥等に関する特性
が悪くなる。更に、近年の半導体装置の大型化に伴って
、加熱基台4も直径が600闘φ、 750vmφと大
きく汝っている。
In order to completely eliminate this problem, the usual method is to change the set temperature in the heating base 4 during the vapor phase growth process to some extent by changing the soaking temperature 2 to suppress the thermal stress that occurs during the cooling step 1. A method inconsistent with the heat soaking method is adopted. However, with the means of breaking this uniform heating to some extent, there are variations in the distribution of the processing temperature for the aeration process, so there may be variations in the thickness of the thin film formed on the object to be processed 5, variations in the resistance value, scooking faults, bits, etc. Characteristics related to crystal defects, etc. deteriorate. Furthermore, with the recent increase in the size of semiconductor devices, the diameter of the heating base 4 has also increased to 600mmφ and 750mmφ.

その結果、加熱コイに6,6’も200kW、 300
kW以上と大型化し、電波法の取扱い上厳しい1ttl
l限をうける。また、大電力を必骸とするため、装置設
計上の絶縁対策や電波漏えい対策か軽視てきなくなる。
As a result, heating carp 6,6' also has 200 kW and 300 kW.
1ttl, which is larger in size (more than kW) and is subject to strict regulations under the Radio Law.
I am subject to a limit. In addition, because large amounts of power are required, insulation measures and measures against radio wave leakage in equipment design are often ignored.

また、第5図に示す如く、加熱コイル6〃の各々の間隔
L21U3全中心部で疎にし、外周部及び内周部で密に
する手段も考えられるか、疎密の調整を極めて高い精度
でする必要がある。
Also, as shown in Fig. 5, it is possible to consider a method in which the spacing L21U3 of each heating coil 6 is made sparse at the entire center and dense at the outer and inner circumferences, or the spacing L21U3 of each heating coil 6 is made denser at the outer and inner circumferences, or the spacing L21U3 of each heating coil 6 is made denser with extremely high precision. There is a need.

しかも高周波加熱特有の発振器とのマツチングが難しく
なる欠点がある。更に、前述と同様に気相成長処理の前
後の昇降温過程で加熱基台4及び被処理体5内の温度分
布がくずれる問題かある。
Moreover, it has the disadvantage that it is difficult to match it with an oscillator specific to high-frequency heating. Furthermore, as described above, there is a problem in that the temperature distribution within the heating base 4 and the object to be processed 5 is distorted during the temperature raising and lowering process before and after the vapor phase growth process.

〔発明の目的〕[Purpose of the invention]

本発明は、被処理体にス’J 2プが発生するのを防止
して、しかも、電力効率が高く、かつ、処理客足の高い
気相成長装置を供給することをその目的とするものであ
る。
An object of the present invention is to provide a vapor phase growth apparatus that prevents the generation of spuds on objects to be processed, has high power efficiency, and has a high number of processing customers. be.

〔発明の概要〕[Summary of the invention]

本発明は、加熱基台の下方に同心固状に複数個設けた加
熱コイルによる加熱動作を、加熱基台の温度に応じて、
中間部とこれを囲む内外周部のコイルとを独立して温度
制御するようにして、高い電力効率でかつ処理容′M′
を多くシ、シかも、スリップの発生を防止して被処理体
を加熱することができる気相成長装置である。
The present invention performs a heating operation using a plurality of heating coils arranged concentrically below a heating base in accordance with the temperature of the heating base.
By independently controlling the temperature of the intermediate section and the coils surrounding the inner and outer circumferential sections, high power efficiency and processing capacity 'M' can be achieved.
This is a vapor phase growth apparatus that can heat the object to be processed while preventing the occurrence of slip.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

第6図は、本発明の一実施例の概略構成を示す説明図で
ある。図中11は、略円板形の加熱基台を直径に沿って
切断した断面を示している。
FIG. 6 is an explanatory diagram showing a schematic configuration of an embodiment of the present invention. In the figure, reference numeral 11 indicates a cross section of a substantially disk-shaped heating base cut along the diameter.

加熱基台1ノの中央部には、図示しない反応ガス供給管
が挿入される挿入孔12が押設さtしている。加熱基台
1ノの下方には、略環状の高周波加熱コイル13(以下
、単に加熱コイルと記す。)が設けられている。加熱コ
イル13は、加熱基台1ノの中央部の下方に設置された
内周部コイル13aと、加熱コイル13の同心円方向の
中間部に位置する中間部コイル13bと、更にその外周
をとシ巻く外周部コイル13cとで構成されている。内
周部コイル13aの中央部ニは、反応ガス供給管が挿入
されるJWi人孔14が形成されている。内周部コイル
13m、中間部コイル13b及び外周部コイル13 c
 IrJ’、 、各々電気的に独立しており、夫々の高
周波電源部”15 a・・・15cに接続されている。
An insertion hole 12 into which a reaction gas supply pipe (not shown) is inserted is pressed into the center of the heating base 1. A substantially annular high-frequency heating coil 13 (hereinafter simply referred to as a heating coil) is provided below the heating base 1 . The heating coil 13 includes an inner circumferential coil 13a installed below the central portion of the heating base 1, an intermediate coil 13b located at a concentrically intermediate portion of the heating coil 13, and an outer circumference thereof. The outer peripheral coil 13c is wound. A JWi manhole 14 into which a reaction gas supply pipe is inserted is formed in the central portion of the inner peripheral coil 13a. Inner circumference coil 13m, intermediate coil 13b, and outer circumference coil 13c
IrJ', , are electrically independent and connected to the respective high frequency power supply units "15a...15c".

内周部コイし、或は、環状コイルを同心円状に配向した
ものでも良い。要は、内周部コイル13az中間部コイ
ル13b1外周部コイル1.9 cの各々が電気的に独
立しておシ、加熱基台1ノの−T方にその中央部から外
周部にかけて存在し7ていれは良い。内周部コイル13
dと加熱基台11間、中間部コイル13bと加熱基台1
1、及び外周部コイル13cと加熱基台11間Kid、
加熱基台1ノの中央部、中間部、外周部の温度を測定す
るための温度センサ16a・・・16cが設けられてい
る。温度センサ16a・・・16cは、温度コントロー
ラ17に接続されており、温度コントローラ17で温度
信号が増幅される」、うになっている。温度センサ16
a・・・16cとしてし、」5、例えば赤外線の吸収I
&長が0.9μnlのシリコンからなる受光ダイオード
を使用する。寸だ、温度センサ16a・・16cの設置
鉦位信は、加熱コイルを構成するコイル間に設定しても
良い。温度検出精度を筒めるには、加熱基台1ノの南下
にレンズオプティカルファイバーからなる検知体を設け
、この検知体に前述の受光ダイオードな!取付けるよう
UCt、でも良い。更に、加熱基台1ノの直上部に′0
A度センザ16 a −16c (17設!ij t。
The inner circumferential portion may be coiled, or annular coils may be arranged concentrically. In short, the inner circumferential coil 13az, the intermediate coil 13b1, and the outer circumferential coil 1.9c are electrically independent and exist from the center to the outer circumference in the -T direction of the heating base 1. 7 is good. Inner peripheral coil 13
d and the heating base 11, between the intermediate coil 13b and the heating base 1
1, and Kid between the outer peripheral coil 13c and the heating base 11,
Temperature sensors 16a, . . . , 16c are provided to measure the temperature at the center, middle, and outer circumference of the heating base 1. The temperature sensors 16a...16c are connected to a temperature controller 17, and the temperature signal is amplified by the temperature controller 17. Temperature sensor 16
a...16c, ``5, for example, infrared absorption I
A light receiving diode made of silicon and having a length of 0.9 μnl is used. In fact, the temperature sensors 16a, . . . 16c may be installed between the coils forming the heating coil. In order to improve temperature detection accuracy, a sensing body made of a lens optical fiber is installed south of the heating base 1, and this sensing body is equipped with the aforementioned light receiving diode. UCt is fine for installation. Furthermore, '0' is placed directly above the heating base 1.
A degree sensor 16a -16c (17 installed!ijt.

ても良い。温度コントローラノアは、各々の温度センサ
16a・・・16cの増幅した温度48号台演算器I8
及び高周波電源部15g・・・15cに供給するように
なっている。演算器18は、温度センサ16a・・・1
6cから得た加熱基台11の温度信号をもとに【7て、
加熱基台1)の所定領域を加熱するのに最適の加熱電流
?高周波電源部15a・・・15cから加熱コイル13
の各部のコイルに供給するように、演算処理を行って所
定の出力信号を高周波電源部15a・・・15cに供給
するようになっている。このように棉成さオlた加熱基
台11及び加熱mlイル13は、反応ガス供給管、排気
ダクト等を壱する藏圧谷霜)内に、反応ガス供給管が加
熱基台11及び加熱コイル13の挿通孔12,14内に
挿入するようにして設置さり、ている。
It's okay. The temperature controller Noah is a No. 48 computing unit I8 that amplifies the temperature of each temperature sensor 16a...16c.
and the high frequency power supply units 15g...15c. The computing unit 18 includes temperature sensors 16a...1
Based on the temperature signal of the heating base 11 obtained from 6c, [7]
What is the optimal heating current for heating a predetermined area of the heating base 1)? From the high frequency power supply section 15a...15c to the heating coil 13
Arithmetic processing is performed and predetermined output signals are supplied to the high frequency power supply sections 15a...15c so as to be supplied to the coils of each section. In this way, the heating base 11 and the heating oil 13 are arranged so that the reaction gas supply pipe is placed inside the heating base 11 and the heating oil pipe 13, which contains the reaction gas supply pipe, the exhaust duct, etc. It is installed so as to be inserted into the insertion holes 12 and 14 of the coil 13.

而して、このように構成された気相成長装置によれば、
加熱基台1ノ上に被処理体を設を飽L、排気ダクトから
容器内の雰囲気ガスを排気して所定の圧力状態に保持す
る。次いで、反応ガス供給管から容器内に5tcz、等
の反応ガスを供給する。次いで、温度コントローラ17
及び演算器18によって高周波電源部15a・・・15
cから加熱コイル13にlJj給する加熱π1.流f:
制預I L、、加熱基台11の全域を室温から例えば1
200℃の気相成長処理温度まで第7図中直線(])に
て示す如く、一定の加熱速度で昇温する。次いで、気相
成長処理中は、同様に温度センサ16a・・・16c、
温度コントローラ17、演rJ器18によシ、高周波電
源部15a・・・15cから加熱コイルに供給する加熱
電流を制御し2て、第7図中直線(II)にて示す如く
、1200℃の気相成長処理温度に保持する。更に、降
温時には、同様にして第7図中直線OIハ・(て示す如
く、一定の降温速度で加熱基台11の温度降−トヲ行う
。このようにし2て気相成長処理期間中0もとより、そ
の前後の昇降温度期間を含めて、加熱基台11及びぞの
上に載+w した被処理体内の温Ifのばらつきを極め
て小さく抑えることができる。因姓二、を制べたとこイ
)、第8図中曲線(1′)及び(Il+ ’ 、)にて
示す如く、極めて小さいことが確認された。
According to the vapor phase growth apparatus configured in this way,
The object to be processed is placed on the heating base 1, and the atmospheric gas in the container is exhausted from the exhaust duct to maintain a predetermined pressure. Next, a reaction gas such as 5tcz is supplied into the container from the reaction gas supply pipe. Next, the temperature controller 17
and the high frequency power supply section 15a...15 by the arithmetic unit 18.
Heating π1.c supplies lJj to the heating coil 13. Flow f:
The entire area of the heating base 11 is heated from room temperature to 1, for example.
The temperature is raised at a constant heating rate to a vapor phase growth treatment temperature of 200° C., as shown by the straight line ( ] in FIG. 7. Next, during the vapor phase growth process, the temperature sensors 16a...16c,
The temperature controller 17 and the generator 18 control the heating current supplied to the heating coils from the high frequency power supply units 15a...15c, and as shown by the straight line (II) in FIG. Maintain at vapor phase growth processing temperature. Furthermore, when the temperature is lowered, the temperature of the heating base 11 is lowered at a constant temperature lowering rate as shown by the straight line OI in FIG. , including the period of temperature rise and fall before and after that, it is possible to suppress variations in the temperature If of the object to be processed placed on the heating base 11 and the grooves to an extremely small level. As shown by curves (1') and (Il+',) in FIG. 8, it was confirmed that the curves were extremely small.

ここで、Tc1lJ′、被処理体の中央部の温度、Te
は、被処理体の周縁部の温度、TIIけ、加熱基台11
の温度である。これを比較するために第1図に示す如き
従来の気相成長装置にて同様の実験を行ったところ、第
8図中曲線(IV)及び(V)にて示す如く、被処理体
5内の昇降温期間中の温度のばらつきは大へん大きいこ
とが確認された。また、実施例の気相成長装置では、昇
降温期間中の被処理体1ノ内の温度分布曲線の差(1”
lll’)はほぼ零であシ、被処理体内で急激な変動は
全く起きていない。その結果、気相成長処理中にスリッ
プが発生するのを阻止することができるものである。因
に、直径4インチの被処理体中でのスリップの発生1を
調べたところ、実施例の気相成長装備では皆無であるこ
とが確認された。
Here, Tc1lJ', temperature at the center of the object to be processed, Te
is the temperature of the peripheral part of the object to be processed, TII, heating base 11
temperature. In order to compare this, a similar experiment was conducted using a conventional vapor phase growth apparatus as shown in FIG. 1, and as shown by curves (IV) and (V) in FIG. It was confirmed that the temperature variation during the period of temperature rise and fall was very large. In addition, in the vapor phase growth apparatus of the example, the difference (1"
lll') is almost zero, and no sudden changes occur within the body to be treated. As a result, it is possible to prevent slip from occurring during the vapor phase growth process. Incidentally, when the occurrence of slip in the object to be processed having a diameter of 4 inches was investigated, it was confirmed that there was no occurrence of slip in the vapor phase growth equipment of the example.

これに比べて第1図に示す従来の気相成長装置では、被
処理体5の15%の領域でスリップが発生していること
が確認された。また、その際の電力効率は、実施例の気
相成長装置では、0.60〜065であり、従来の気相
成長装置では、0.50〜060であった。このことか
ら、実施例の気相成長装置では、電力を崩効利用するこ
とができる。
In contrast, in the conventional vapor phase growth apparatus shown in FIG. 1, it was confirmed that slip occurred in 15% of the area of the object to be processed 5. Moreover, the power efficiency at that time was 0.60 to 0.65 in the vapor phase growth apparatus of the example, and 0.50 to 0.060 in the conventional vapor growth apparatus. From this, in the vapor phase growth apparatus of the example, electric power can be effectively utilized.

なお、実施例では、加熱コイル13を3分割したものに
ついて説明したが、この他にも第9図に示す如く、内周
部コイル138′と外周部コイル13c’f屯気的に接
続し2て実質」−一体のコイルとし、加熱コイルを中間
部コイル13b′とこれを両側から囲む周囲コイル(中
央コイルと外コイル)に2分割し、たものとしても良い
。ここで、温度センサ168′等は加熱コイル13の分
割に応じた数に設定する。ことは当然でJ’)る。
In the embodiment, the heating coil 13 is divided into three parts, but as shown in FIG. The heating coil may be essentially an integral coil, and the heating coil may be divided into two parts: an intermediate coil 13b' and surrounding coils (a central coil and an outer coil) surrounding this from both sides. Here, the number of temperature sensors 168' etc. is set according to the division of the heating coil 13. Of course, J').

また、第9図中実施例と同一部分一同符号を付している
In addition, in FIG. 9, the same parts as in the embodiment are given the same reference numerals.

〔発明の効果〕〔Effect of the invention〕

以上説明し、た如く、本発明に係る気相成長装置によれ
ば、電力効率が高く、かつ、処理容量が多く、シかも、
被処理体にスリップが発生するの全防止することができ
るものである。
As explained above, the vapor phase growth apparatus according to the present invention has high power efficiency, large processing capacity, and
It is possible to completely prevent slippage from occurring on the object to be processed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の気相成長装置の断面図、第2図は、同
装置内に設けられた加熱コイルの剰視図、第3図乃至第
5図は、従来の気相成長装置に使用されている加熱コイ
ルを示す説明図、第6図は、本発明の一実施例の概略構
成を示す説明図、第7図は、加熱基台の温度と加熱時間
の関係を示す特性図、第8図−1被処理体内の温度と昇
降温期間との関係を示す特性図、第9図は、本発明の他
の実施例の概略構成を示す説明図である。 1ノ・・・加熱基台、12・・・挿入孔、13・・・加
熱コイル、13a・・・内周部コイル、13b・・・中
間部コイル、13C・・・外周部コイル、14・・・挿
入孔、15 a + 15 b + 15 c ・・・
高周波電源部、115 a + J 6 b + 16
 c・・・温度センサ、17・・・温度コントローラ、
18・・・演1′4.器。 出願人代理人 弁理士 鈴 江 武 診第1図 0 第3図 ム 第4図 ム 第5図 /。 第6図 第7図 力O処時間
Fig. 1 is a sectional view of a conventional vapor phase growth apparatus, Fig. 2 is an enlarged perspective view of a heating coil provided in the same apparatus, and Figs. 3 to 5 are a cross-sectional view of a conventional vapor phase growth apparatus. An explanatory diagram showing the heating coil used; FIG. 6 is an explanatory diagram showing a schematic configuration of an embodiment of the present invention; FIG. 7 is a characteristic diagram showing the relationship between the temperature of the heating base and the heating time; FIG. 8-1 is a characteristic diagram showing the relationship between the temperature inside the object to be processed and the temperature rise/fall period. FIG. 9 is an explanatory diagram showing the schematic structure of another embodiment of the present invention. 1 No. Heating base, 12 Insertion hole, 13 Heating coil, 13a Inner circumference coil, 13b Intermediate coil, 13C Outer circumference coil, 14. ...Insertion hole, 15a + 15b + 15c...
High frequency power supply section, 115 a + J 6 b + 16
c...Temperature sensor, 17...Temperature controller,
18...Performance 1'4. vessel. Applicant's Representative Patent Attorney Takeshi Suzue Examination Figure 1 0 Figure 3 Figure 4 Figure 5/. Figure 6 Figure 7 Power O processing time

Claims (1)

【特許請求の範囲】[Claims] 排気ダクトと反応ガス供給管を有する減圧容器内に回転
自在に設けられた加熱基台と、該基台の下方に同心円状
に複数個設けられた加熱コイルと、該加熱コイルと前記
基台間に設けられた温度センサと、該温度センサから前
記基台の温度信号が供給され所定の出力信号を演算器に
供給する温度コントローラと、該温度コントローラから
温度信号が供給され、かつ、前記演算器から加熱信号が
供給されると共に、前記加熱コイルの中心部のコイルと
それを囲む周部のコイルに独立して各々に応じた加熱電
流を出力する電源部とを具備することを特徴とする気相
成長装置。
A heating base rotatably provided in a depressurized container having an exhaust duct and a reaction gas supply pipe, a plurality of heating coils provided concentrically below the base, and a space between the heating coil and the base. a temperature sensor provided in the base, a temperature controller to which the temperature signal of the base is supplied from the temperature sensor and which supplies a predetermined output signal to the arithmetic unit; A heating signal is supplied from the heating coil, and the heating coil is provided with a power supply section that outputs heating currents corresponding to the central coil and surrounding peripheral coils independently of each other. Phase growth device.
JP15552082A 1982-09-07 1982-09-07 Equipment for vapor growth Pending JPS5944819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15552082A JPS5944819A (en) 1982-09-07 1982-09-07 Equipment for vapor growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15552082A JPS5944819A (en) 1982-09-07 1982-09-07 Equipment for vapor growth

Publications (1)

Publication Number Publication Date
JPS5944819A true JPS5944819A (en) 1984-03-13

Family

ID=15607855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15552082A Pending JPS5944819A (en) 1982-09-07 1982-09-07 Equipment for vapor growth

Country Status (1)

Country Link
JP (1) JPS5944819A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5294778A (en) * 1991-09-11 1994-03-15 Lam Research Corporation CVD platen heater system utilizing concentric electric heating elements
US5344492A (en) * 1992-07-23 1994-09-06 Kabushiki Kaisha Toshiba Vapor growth apparatus for semiconductor devices
US5474612A (en) * 1990-03-19 1995-12-12 Kabushiki Kaisha Toshiba Vapor-phase deposition apparatus and vapor-phase deposition method
WO1996020293A1 (en) * 1994-12-28 1996-07-04 Aixtron Gmbh Layer-depositing device
JP2004260097A (en) * 2003-02-27 2004-09-16 Mitsui Eng & Shipbuild Co Ltd Method for thermally processing semiconductor
JP2011077369A (en) * 2009-09-30 2011-04-14 Mitsui Eng & Shipbuild Co Ltd Semiconductor substrate heat treatment device
US20140000519A1 (en) * 2008-09-05 2014-01-02 Jusung Engineering Co., Ltd. Substrate processing apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474612A (en) * 1990-03-19 1995-12-12 Kabushiki Kaisha Toshiba Vapor-phase deposition apparatus and vapor-phase deposition method
US5294778A (en) * 1991-09-11 1994-03-15 Lam Research Corporation CVD platen heater system utilizing concentric electric heating elements
US5344492A (en) * 1992-07-23 1994-09-06 Kabushiki Kaisha Toshiba Vapor growth apparatus for semiconductor devices
WO1996020293A1 (en) * 1994-12-28 1996-07-04 Aixtron Gmbh Layer-depositing device
JP2004260097A (en) * 2003-02-27 2004-09-16 Mitsui Eng & Shipbuild Co Ltd Method for thermally processing semiconductor
US20140000519A1 (en) * 2008-09-05 2014-01-02 Jusung Engineering Co., Ltd. Substrate processing apparatus
JP2011077369A (en) * 2009-09-30 2011-04-14 Mitsui Eng & Shipbuild Co Ltd Semiconductor substrate heat treatment device

Similar Documents

Publication Publication Date Title
TWI269351B (en) Method and system for temperature control of a substrate
TWI497023B (en) Vertical heat treatment apparatus and method for cooling the apparatus
KR101390444B1 (en) Substrate holding device
WO2021232618A1 (en) Heating and temperature equalization method for local induction heat treatment performed on thick-walled high-pressure apparatus after welding
US20060228818A1 (en) Edge temperature compensation in thermal processing particularly useful for SOI wafers
CN106252189A (en) Temperature-controlled process and plasma processing apparatus
JPS5944819A (en) Equipment for vapor growth
TW201506984A (en) Temperature control in rf chamber with heater and air amplifier
TW201230200A (en) Vertical-type heat treatment apparatus, and control method for same
TW201604916A (en) Plasma processing device and temperature control method thereof
JP3204866B2 (en) Vacuum processing device and vacuum processing method
JP4336283B2 (en) Induction heating device
JP2002141332A (en) Semiconductor manufacturing equipment
CN114481314A (en) Epitaxial equipment cooling system and method
JPS6046029A (en) Equipment for manufacturing semiconductor
JP4829833B2 (en) Temperature estimation method and temperature estimation device
JP2001156008A (en) Heat treatment equipment for semiconductor wafer
JPH1179888A (en) Vapor phase growing apparatus
KR100799781B1 (en) Focus-ring, substrate processing device and substrate processing method
JP3514254B2 (en) Heat treatment apparatus and method for manufacturing silicon epitaxial wafer
TW201526134A (en) Semiconductor processing device
JPH04318923A (en) Heater
JPH0554693B2 (en)
JP2005025983A (en) Induction heating apparatus
JP3028364B2 (en) Plasma processing apparatus and plasma processing method