JPS5942822B2 - Analysis equipment - Google Patents

Analysis equipment

Info

Publication number
JPS5942822B2
JPS5942822B2 JP53019497A JP1949778A JPS5942822B2 JP S5942822 B2 JPS5942822 B2 JP S5942822B2 JP 53019497 A JP53019497 A JP 53019497A JP 1949778 A JP1949778 A JP 1949778A JP S5942822 B2 JPS5942822 B2 JP S5942822B2
Authority
JP
Japan
Prior art keywords
sample
container
light
target substances
reference sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53019497A
Other languages
Japanese (ja)
Other versions
JPS54111876A (en
Inventor
友 横山
重良 池田
充弘 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP53019497A priority Critical patent/JPS5942822B2/en
Publication of JPS54111876A publication Critical patent/JPS54111876A/en
Publication of JPS5942822B2 publication Critical patent/JPS5942822B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 この発明は分析装置、詳しくは赤外線、紫外線を含む光
またはX線を固体、液体に照射することによつて生じる
周囲の気体の変動を音響スペクトルとして取り出す手段
を含む分析装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an analytical device, specifically an analytical device that includes a means for extracting fluctuations in surrounding gas as an acoustic spectrum by irradiating a solid or liquid with light including infrared rays, ultraviolet rays, or X-rays. It is related to the device.

分析しようとする対象物質を密閉容器内に入れたとえば
ある一定周波数に変調した光を物質に照射すると、光を
吸収した物質はこの周波数に応じた熱を発生して、容器
内の気体にゆらぎを引き起こして疎密波を生じさせ、こ
の疎密波を容器内のマイクロフォンなどの音波検出器で
検出して電気信号として取り出すことによつて、対象物
質の解析を行う分析は数10年来知られている測定技術
である。
When a target substance to be analyzed is placed in a sealed container and light modulated to a certain frequency is irradiated onto the substance, the substance absorbs the light and generates heat corresponding to this frequency, causing fluctuations in the gas inside the container. Analysis is a measurement method that has been known for several decades, in which the target substance is analyzed by causing compression waves to be generated, which are then detected by a sonic detector such as a microphone inside a container and extracted as an electrical signal. It's technology.

0 第1図はこのような分析法を応用した従来の分析装
置の一例を示したものである。
0 FIG. 1 shows an example of a conventional analytical device to which such an analytical method is applied.

この例の使用法を説明すると次のとおりである。The usage of this example is as follows.

すなわち、光源のキセノンランプ1の光を分光器2を通
して単色光とし、チョッパ3を通して光を5変調し、こ
の変調光で容器4内に入れた試料5を照射する。照射さ
れた試料5は光を吸収して熱を発生し、容器4内の気体
に圧力波として伝わる。この圧力波は容器4内に向けら
れたマイクロフォン6に伝わり、プリメインアツプ□、
ロックイン’0 アンプ8を介してチョッピング周波数
に同期した信号のみを取り出している。一方、ハーフミ
ラー9、反射板10を介して基準試料(図示せず)を入
れた容器11を照射し、上記したと同時にプリメインア
ンプ12、ロック・5 インアンプ13を介して入射光
強度をモニターしている。
That is, the light from a xenon lamp 1 as a light source is passed through a spectroscope 2 to convert it into monochromatic light, the light is modulated by five modulated lights through a chopper 3, and a sample 5 placed in a container 4 is irradiated with this modulated light. The irradiated sample 5 absorbs the light and generates heat, which is transmitted to the gas inside the container 4 as a pressure wave. This pressure wave is transmitted to the microphone 6 directed into the container 4, and the pre-main up □,
Lock-in '0 Only the signal synchronized with the chopping frequency is extracted via the amplifier 8. On the other hand, a container 11 containing a reference sample (not shown) is irradiated via a half mirror 9 and a reflector 10, and at the same time as described above, the intensity of the incident light is monitored via an integrated amplifier 12 and a lock 5-in amplifier 13. are doing.

基準資料と試料5の復調信号から差動アンプ14によつ
て両復調信号の差信号が得られ、こうして得られた差信
号は記録計15に表示される。10し力化上記した従来
のものは、試料5を入れた容器4のほかに、基準試料を
入れた容器11を用意しなければならず、このためプリ
メインアンプ12、ロックインアンプ13も必要となり
、装置全体の形状が大きくなるとともに装置自体が高価
ゞ5 なものとなつている。
A difference signal between the demodulated signals of the reference material and the sample 5 is obtained by the differential amplifier 14, and the difference signal thus obtained is displayed on the recorder 15. In the conventional system described above, in addition to the container 4 containing the sample 5, a container 11 containing the reference sample must be prepared, and therefore an integrated amplifier 12 and a lock-in amplifier 13 are also required. As the overall size of the device becomes larger, the device itself becomes more expensive.

また、試料用のマイクロホン6と基準試料用のマイクロ
フォン(図示せず)の特性が変化すれば、それから取り
出される信号が変化して、それにもとづく出力差がその
まま測定誤差となつてしまう。
Furthermore, if the characteristics of the sample microphone 6 and the reference sample microphone (not shown) change, the signals extracted from them will change, and the output difference based thereon will directly become a measurement error.

さらに試料用容器4と基準試料用容器11とが幾何学的
に別配置になるので、外部から受ける雑音などの影響が
変わり、これも測定誤差となる。さらにまた図示しない
が、従来の1個の容器を用いた分析装置の他の例では、
基準試料と試料について別々に測定を行わなければなら
なかつた。この発明はこのような問題をことごとく解決
した分析装置を提供することを目的としたもので、その
要旨とするところは、基準試料と被測定試料の各対象物
質を収納した密閉容器と、前記各対象物質に交互に供給
することにより密閉容器内に検出可能な圧力の変動を生
じさせる可変振幅エネルギー源と、エネルギーの供給に
より前記各対象物質から生じる密閉容器内の周期的圧力
変動の変化分を測定する手段を有し、前記各対象物質に
供給したエネルギーに対する被測定試料の正味の信号強
度を指示することを特徴とするものである。以下この発
明を図示した一実施例に従つて詳述する。第2図はこの
発明の一実施例を示したものである。
Furthermore, since the sample container 4 and the reference sample container 11 are arranged geometrically differently, the influence of external noise changes, which also causes measurement errors. Furthermore, although not shown, in another example of a conventional analyzer using a single container,
Separate measurements had to be made on the reference sample and the sample. The purpose of this invention is to provide an analysis device that solves all of these problems, and the gist of the invention is to provide an airtight container containing each of the target substances of a reference sample and a sample to be measured; a variable amplitude energy source that produces detectable pressure fluctuations in a closed container by supplying the target substances alternately; The present invention is characterized in that it has a measuring means and indicates the net signal intensity of the sample to be measured with respect to the energy supplied to each of the target substances. The present invention will be described in detail below with reference to an illustrated embodiment. FIG. 2 shows an embodiment of the present invention.

101は光源であるキセノンランプ、102はレンズ、
103は分光器、104はチヨツパで、光をある周波数
に変調するもので、後述するように基準試料と被測定試
料の各対象物質に交互に光を照射するため2つのスリツ
口05、106が設けられている。
101 is a xenon lamp as a light source; 102 is a lens;
103 is a spectrometer, and 104 is a chipper that modulates light to a certain frequency.As will be described later, two slot ports 05 and 106 are provided in order to alternately irradiate each target substance of the reference sample and the sample to be measured with light. It is provided.

107は容器で、基準試料108と被測定試料109を
収納している。
A container 107 houses a reference sample 108 and a sample 109 to be measured.

110は試料108、109を固定した台である。Reference numeral 110 is a table on which the samples 108 and 109 are fixed.

111は音波検出器、具体的にはマイクロフオン、エレ
クトレツトなどであり、光の交互照射により生じた試料
108、109からの圧力変動を検出する。
Reference numeral 111 denotes a sound wave detector, specifically a microphone, an electret, etc., which detects pressure fluctuations from the samples 108 and 109 caused by alternate irradiation of light.

音波検出器111に検出された圧力波はプリメインアツ
プ112、ロツクインアンプ113を通じてチヨツピン
グ周波数に同期した信号のみを取り出し、試料108、
109の周期的圧力変動の差を記録計114に示す。基
準試料108として不純物あるいは添加物を含まない基
質を用い被測定試料109として不純物あるいは添加物
を含む基質を用いるときには、基質自身から生じる信号
は消去され、不純物あるいは添加物のみによる信号が記
録計114に現れる。上記した構成のうち、光源である
キセノンランプ101は試料108、109から熱を発
生させて密閉容器107内に圧力の変動を起こさせる赤
外線から紫外線までの波長範囲のエネルギー源として役
立つているが、このほかエネルギー源としてはX線があ
る。
The pressure wave detected by the sonic detector 111 passes through the integrated amplifier 112 and the lock-in amplifier 113 to extract only the signal synchronized with the chopping frequency.
The difference in the periodic pressure fluctuations of 109 is shown on recorder 114. When a substrate containing no impurities or additives is used as the reference sample 108 and a substrate containing impurities or additives as the sample to be measured 109, the signal generated from the substrate itself is erased, and the signal caused only by the impurities or additives is transmitted to the recorder 114. appears in Of the above configurations, the xenon lamp 101 as a light source serves as an energy source in the wavelength range from infrared to ultraviolet rays that generates heat from the samples 108 and 109 and causes pressure fluctuations in the sealed container 107. Other energy sources include X-rays.

また音波検出器111、プリメインアンプ112、ロツ
クインアンプ113、および記録計114は密閉容器1
07内の周期的変動の変化分を測定する手段を構成して
いる。次に上記した構成の分析装置および第1図に示し
た分析装置を用いて基質(キナリザリン)の中に含まれ
る微量不純物(アルミニウム・レーキ)の光音響スペク
トルを測定した。第3図の実線aはこの発明による分析
結果である。なお、第3図の破線b、一点鎖線cは従来
装置によるスペクトルを示し、このうち破線bは基質の
スペタトルを示じ一点鎖線cは微量不純物を含む基質の
スペクトルを示している。第3図から明らかなように、
第1図の従来装置では基質のスペクトル(破線b)に微
量不純物を含む基質のスペクトル(一点鎖線c)が重な
つたスペクトルが記録されるが、この発明にかかる分析
装置では微量不純物のみによるスペクトルが記録される
Also, the sound wave detector 111, the integrated amplifier 112, the lock-in amplifier 113, and the recorder 114 are connected to the airtight container 1.
This constitutes means for measuring changes in periodic fluctuations within 0.07. Next, the photoacoustic spectrum of a trace impurity (aluminum lake) contained in the substrate (quinalizarin) was measured using the analyzer configured as described above and the analyzer shown in FIG. The solid line a in FIG. 3 is the analysis result according to the present invention. Note that the dashed line b and the dashed-dotted line c in FIG. 3 show spectra obtained by the conventional apparatus, of which the dashed line b shows the spectrum of the substrate, and the dashed-dotted line c shows the spectrum of the substrate containing trace impurities. As is clear from Figure 3,
The conventional apparatus shown in FIG. 1 records a spectrum in which the spectrum of the substrate (dashed line b) and the spectrum of the substrate containing trace impurities (dotted chain line c) are superimposed, but the analyzer according to the present invention records a spectrum due only to trace impurities. is recorded.

上記した実施例から明らかなようにこの発明によれば、
1つの密閉容器内に基準試料と被測定試料の各対象物質
を収納するため装置が小型になり、しかも基準試料用の
ための音波検出器、プリメインアンプ、ロツタインアン
プが不要となり、約半分の費用で構成することができる
As is clear from the above embodiments, according to the present invention,
Because the target substances of the reference sample and the sample to be measured are housed in one sealed container, the device becomes smaller, and the sonic detector, integrated amplifier, and Rotstein amplifier for the reference sample are no longer required, which reduces the cost by about half. Can be configured at a cost.

また各対象物質に交互に照射することにより、測定した
い不純物のみの信号が現われるため、従来のように差働
アンプを必要とせず、一層小型化が図れる。
Furthermore, by alternately irradiating each target substance, a signal of only the impurity to be measured appears, so there is no need for a differential amplifier as in the past, and further miniaturization can be achieved.

また一つの音波検出器にて圧力波を検出するため、従来
のように別々の音波検出器で検出する場合にくらべて誤
差がきわめて少なくなる。
Furthermore, since the pressure waves are detected by one sonic detector, the error is extremely reduced compared to the conventional case where the pressure waves are detected by separate sonic detectors.

さらに幾何学的配置による外部雑音の影響度合も少なく
なり検出精度が高くなる。
Furthermore, the degree of influence of external noise due to the geometrical arrangement is reduced, and detection accuracy is increased.

さらにまた同一容器に収容し、同一熱容量、同一熱損失
および同一感度特性を有するなど分析条件が同じである
ため、スペクトルの補正がほぼ完全に行える。
Furthermore, since the analysis conditions are the same, such as being housed in the same container and having the same heat capacity, the same heat loss, and the same sensitivity characteristics, the spectrum can be almost completely corrected.

なお、上記した実施例はこの発明の一例を示したものに
すぎない。
It should be noted that the above-described embodiment is merely an example of the present invention.

たとえば、同一光線によつて各対象物質に交互に照射す
るため、円板に2段のスリツトを形成したチヨツパを用
いたが、第4図のように円筒201に相対向する窓20
2、窓203を形成したものを用いてもよく、また図示
しないが反射板を操作して各対象物を交互に照射するよ
うにしてもよい。また第2図および第4図にそれぞれ示
したチヨツパを用いた場合、各対象物質を照射できるよ
うに光束幅を大きくする必要があるが、これには光源中
間結像法を用いればよい。また基準用試料としては差ス
ペクトルを求めたいいかなるものでも用いることができ
る。さらに上記した実施例では固体の分析例を示したが
、このほか液体についても応用することが可能である。
For example, in order to alternately irradiate each target substance with the same light beam, a chopper with two slits formed in a disk was used, but as shown in FIG.
2. A device with a window 203 formed therein may be used, and although not shown, a reflector plate may be operated to alternately illuminate each object. Furthermore, when using the chopper shown in FIGS. 2 and 4, it is necessary to increase the beam width so that each target substance can be irradiated, but this can be achieved by using the light source intermediate imaging method. Moreover, any sample for which a difference spectrum is desired can be used as the reference sample. Further, in the above-mentioned embodiments, solid analysis examples were shown, but it is also possible to apply the present invention to liquids.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例を示す概略説明図、第2図はこの発明の
一実施例を示す概略説明図、第3図は第2図に示した装
置により得られた光音響スペクトルの一例、第4図はチ
ヨツパの例を示す斜視図である。 101・・・・・・キセノンランプ、103・・・・・
・分光器、104・・・・・・チヨツパ、107・・・
・・・密閉容器、108・・・・・・基準試料、109
・・・・・・被測定試料、111・・・・・・音波検出
器。
FIG. 1 is a schematic explanatory diagram showing a conventional example, FIG. 2 is a schematic explanatory diagram showing an embodiment of the present invention, and FIG. 3 is an example of a photoacoustic spectrum obtained by the apparatus shown in FIG. FIG. 4 is a perspective view showing an example of a chopper. 101...Xenon lamp, 103...
・Spectrometer, 104... Chiyotsupa, 107...
...Airtight container, 108...Reference sample, 109
...Measurement sample, 111...Sonic wave detector.

Claims (1)

【特許請求の範囲】 1 基準試料と被測定資料の各対象物質を収納した密閉
容器と、前記各対象物質に交互に供給することにより密
閉容器内に検出可能な圧力の変動を生じさせる可変振幅
エネルギー源と、エネルギーの供給により前記各対象物
質から生じる密閉容器内の周期的圧力変動の変化分を測
定する手段を有し、前記各対象物質に供給したエネルギ
ーに対する測定信号強度を指示することを特徴とする分
析装置。 2 可変振幅エネルギー源は光またはX線であることを
特徴とする特許請求の範囲第1項記載の分析装置。
[Scope of Claims] 1. A closed container containing target substances of a reference sample and a material to be measured, and a variable amplitude that causes detectable pressure fluctuations in the closed container by alternately supplying each target substance to the target substances. comprising an energy source and a means for measuring changes in periodic pressure fluctuations in the closed container caused by the supply of energy from each of the target substances, and indicating a measurement signal intensity with respect to the energy supplied to each of the target substances. Characteristic analysis equipment. 2. The analysis device according to claim 1, wherein the variable amplitude energy source is light or X-rays.
JP53019497A 1978-02-21 1978-02-21 Analysis equipment Expired JPS5942822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53019497A JPS5942822B2 (en) 1978-02-21 1978-02-21 Analysis equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53019497A JPS5942822B2 (en) 1978-02-21 1978-02-21 Analysis equipment

Publications (2)

Publication Number Publication Date
JPS54111876A JPS54111876A (en) 1979-09-01
JPS5942822B2 true JPS5942822B2 (en) 1984-10-17

Family

ID=12000998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53019497A Expired JPS5942822B2 (en) 1978-02-21 1978-02-21 Analysis equipment

Country Status (1)

Country Link
JP (1) JPS5942822B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058013Y2 (en) * 1985-02-18 1993-03-01

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058013Y2 (en) * 1985-02-18 1993-03-01

Also Published As

Publication number Publication date
JPS54111876A (en) 1979-09-01

Similar Documents

Publication Publication Date Title
US3679899A (en) Nondispersive gas analyzing method and apparatus wherein radiation is serially passed through a reference and unknown gas
JPS61258147A (en) Method and device for detecting gas
US3792272A (en) Breath test device for organic components, including alcohol
US4215940A (en) Optode arrangement
Rockley Fourier-transformed infrared photoacoustic spectroscopy of solids
GB1479316A (en) Methods and means for investigating substances
EP0478136B1 (en) Photoacoustic cell and photoacoustic measuring device
US4187026A (en) Photoacoustic method and apparatus for measuring intensity of electromagnetic radiation
JPS62212551A (en) Gas chamber for test used for spectrometer
JP2012504248A (en) Arrangement adapted for spectral analysis of high-concentration gases
JPS63500267A (en) Method and device for improving separation characteristics in spectroscopic measurements
US3578866A (en) Frequency modulated optical spectrometer
Adams et al. Analytical optoacoustic spectrometry. Part IV. A double-beam optoacoustic spectrometer for use with solid and liquid samples in the ultraviolet, visible and near-infrared regions of the spectrum
US3911276A (en) Laser spectroscopy
US2806957A (en) Apparatus and method for spectral analysis
JPH0252980B2 (en)
US3121790A (en) Infrared analyser with signal ratio indicating means
JPS5942822B2 (en) Analysis equipment
JP2004020539A (en) Infrared circular dichroism measuring instrument and infrared circular dichroism measuring method
Delany The optic-acoustic effect in gases
US3920993A (en) Piggyback optical bench
Sebacher Airborne nondispersive infrared monitor for atmospheric trace gases
JPH029290B2 (en)
EP0819243A1 (en) Photoacoustic measuring apparatus
JPS6082835A (en) Automatic spectrum measuring device of light and heat