JPS5941773B2 - Vapor phase growth method and apparatus - Google Patents

Vapor phase growth method and apparatus

Info

Publication number
JPS5941773B2
JPS5941773B2 JP9361480A JP9361480A JPS5941773B2 JP S5941773 B2 JPS5941773 B2 JP S5941773B2 JP 9361480 A JP9361480 A JP 9361480A JP 9361480 A JP9361480 A JP 9361480A JP S5941773 B2 JPS5941773 B2 JP S5941773B2
Authority
JP
Japan
Prior art keywords
frequency
plasma generation
reaction
reaction gas
generation region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9361480A
Other languages
Japanese (ja)
Other versions
JPS5719034A (en
Inventor
英夫 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP9361480A priority Critical patent/JPS5941773B2/en
Publication of JPS5719034A publication Critical patent/JPS5719034A/en
Publication of JPS5941773B2 publication Critical patent/JPS5941773B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は半導体素子製造工程において、基板表面にたと
えば絶縁膜などの薄膜を成長させる気相成長装置の改良
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a vapor phase growth apparatus for growing a thin film such as an insulating film on a substrate surface in a semiconductor device manufacturing process.

半導体素子の製造工程において、たとえばシリコン窒化
膜のような表面保護用の絶縁膜を半導体集積回路ウェハ
表面に低温度で成長させる方法としてプラズマを利用し
た気相成長法が実用化されている。
In the manufacturing process of semiconductor devices, a vapor phase growth method using plasma has been put into practical use as a method for growing a surface-protecting insulating film, such as a silicon nitride film, on the surface of a semiconductor integrated circuit wafer at a low temperature.

このような気相成長装置は第1図に示すように反応管1
の1側に反応ガス導入口2と、他側に排気口3を各々設
け、その反応管1の外周部に発熱体4を配設するととも
に、内部にプラズマ発生用電極5a、5bを対向配列し
、かつそれら電極を交互に共通接続し、その共通接続線
を高周波電源6に連結して反応領域Tを構成している。
なおウェハ8は反応領域7のプラズマ発生用電極5a、
5bの表面に各々取わ付けられる。そして排気口3から
排気して減圧された反応管1内に反応ガスとしてたとえ
ばアルゴン(Ar)で希釈したモノシラン(SiH4)
とアンモニア(NHs)との混合ガスをガス導入口2か
ら導入して反応領域□においてプラズマを発生してウェ
ハ8表面にSi3N4膜を成長させるようになつている
。ところでこのような装置で成長されるSi3N4膜の
膜質は反応ガスの純度およびガス混合比や高周波電力等
に依存するが、その他周波数にも大きく影響される。す
なわち低い周波数(たとえば400KH2)においては
、Si3N4膜の張力ストレスが小さくて膜にクラック
を生じにくいけれども下地との密着性が悪く耐湿性に劣
るという問題がある。一方周波数が高い場合(たとえば
13.56MH2)には耐湿性に優れているけれどもク
ラックが生じやすいという問題がある。そこで膜質の良
いSi□N4膜を得る1つの手段として高周波電源6の
周波数を成膜途中でたとえば13.56MH2→400
KH2→13.56MH2というように複数回変えなが
ら成膜する方法も提案されているが、このような方法で
は周波数の変更に伴いマツチングの補正も高周波電力等
もそれぞれの周波数に適したものに精度よく制御しなけ
ればならず、装置や成膜工程の複雑化は避けられない。
Such a vapor phase growth apparatus has a reaction tube 1 as shown in FIG.
A reaction gas inlet 2 and an exhaust port 3 are provided on one side of the reaction tube 1 and an exhaust port 3 is provided on the other side, a heating element 4 is provided on the outer periphery of the reaction tube 1, and plasma generation electrodes 5a and 5b are arranged facing each other inside. The electrodes are alternately connected in common, and the common connection line is connected to a high frequency power source 6 to form a reaction region T.
Note that the wafer 8 has a plasma generation electrode 5a in the reaction region 7,
5b, respectively. Monosilane (SiH4) diluted with argon (Ar), for example, is used as a reaction gas in the reaction tube 1, which is evacuated from the exhaust port 3 to reduce the pressure.
A mixed gas of NH and ammonia (NHs) is introduced from the gas inlet 2 to generate plasma in the reaction region □, thereby growing a Si3N4 film on the surface of the wafer 8. By the way, the quality of the Si3N4 film grown with such an apparatus depends on the purity of the reaction gas, the gas mixture ratio, the high frequency power, etc., and is also greatly influenced by the frequency. That is, at low frequencies (for example, 400 KH2), the tensile stress of the Si3N4 film is small and cracks are less likely to occur in the film, but there is a problem in that the adhesion to the base is poor and the moisture resistance is poor. On the other hand, when the frequency is high (for example, 13.56 MH2), although the moisture resistance is excellent, there is a problem that cracks are likely to occur. Therefore, as a means of obtaining a Si□N4 film with good film quality, the frequency of the high-frequency power source 6 may be changed from 13.56MH2 to 400MHz during film formation.
A method has also been proposed in which the film is formed by changing the frequency from KH2 to 13.56MH2 multiple times, but in such a method, as the frequency changes, the matching correction and high frequency power etc. are adjusted to suit each frequency. It must be well controlled, and complication of the equipment and film-forming process is unavoidable.

本発明は前述の点に鑑みなされたもので、その目的は膜
質の良い薄膜を容易に形成できる気相成長装置を提供す
ることであり、その特徴は反応ガス導入口と排気口とを
有する減圧された反応管内に所定の周波数で励起される
プラズマ発生部を設けて成膜用の反応領域とした気相成
長装置に訃いて、前記反応領域の反応ガス導入口側に前
記周波数と異なる周波数で励起される別のプラズマ発生
領域を配設したところにある。
The present invention has been made in view of the above-mentioned points, and its purpose is to provide a vapor phase growth apparatus that can easily form a thin film with good film quality. In a vapor phase growth apparatus, a plasma generating section excited at a predetermined frequency is provided in a reaction tube to serve as a reaction region for film formation, and a plasma generating section excited at a predetermined frequency is installed in the reaction tube side of the reaction gas inlet of the reaction region. This is where another excited plasma generation region is located.

以下本発明の実施例につき図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.

第2図は本発明による気相成長装置の構造を説明するた
めの要部概念図であり、第1図と同等部分には同一符号
を付した。
FIG. 2 is a conceptual diagram of main parts for explaining the structure of the vapor phase growth apparatus according to the present invention, and the same parts as in FIG. 1 are given the same reference numerals.

図に卦いて1は石英からなる反応管であつて、その反応
管1の1側つまり図の左側に反応ガス導入口2が、他側
に排気口3が各々配設してある。また反応管1の排気口
3側の外周部に発熱体4を配設するとともに、内部にプ
ラズマ発生用電極5a,5bを対向配列し、かつそれら
電極を交互に共通接続し、その共通接続線を高周波電源
6に連結して反応領域7を構成している。その反応領域
7のプラズマ発生用電極5a,5bにウエハ8を取り付
ける。このような構成は従来のプラズマを利用した気相
成長装置と同じであるが、本発明による気相成長装置は
さらに前記反応領域7の反応ガス導入口2側に別のプラ
ズマ発生領域9を配設してある。そのプラズマ発生領域
9の構成は前記高周波電源6とは別の高周波電源10に
連結されたプラズマ発生用電極11,12を対向配置す
るとともにガス導入口2側の反応管1外周部に発熱体1
3を配設してなる。な卦プラズマ発生用電極11,12
はたとえばメッシユ状のアルミニウム(Aノ)で形成し
てある。このような構成において、反応領域7のプラズ
マ発生用電極5a,5bにウエハ8を取り付けるととも
に排気口3から排気して反応管1内を減圧する。そして
反応ガス導入口から反応管1内に反応ガスを導入し、プ
ラズマ発生用電極11,12間に流入せしめて、それら
電極間に印加された高周波電界によりプラズマ発生領域
9でプラズマを発生し、反応ガスをあらかじめ高周波電
源10の周波数で励起してから反応領域7に流入せしめ
る。そしてさらにあらかじめ励起された反応ガスを反応
領域7に卦いて引続きプラズマ発生用電極5a,5b間
に印加される高周波電源6の周波数で励起してウエハ8
表面に薄膜を成長させるのである。この際高周波電源1
0卦よび6に卦ける周波数、高周波出力などを互いに異
なつた条件で選択設定することにより、従来反応領域7
のプラズマ発生用電極5a,5b間に印加する高周波電
源6の周波数を成膜途中で変更した場合と実質的に同様
の効果が得られる。その結果膜質の良い薄膜をウエハ8
表面に成長させることができるのである。いまたとえば
Si3N4膜をウエハ8表面に成長させる場合の具体的
条件について述べると、まず反応管1内を減圧した後、
発熱体4を制御して反応領域7に卦ける温度をたとえば
400゛C程度に設定し、さらに発熱体13によつてプ
ラズマ発生領域9の温度を反応領域7の温度よりも低く
(たとえば室温〜300゛C)設定する。また高周波電
源10をたとえば周波数13.56MHz1出力200
W〜1KWに、高周波電源6をたとえば周波数400K
Hz1出力を0.5W/ウエハ程度に各々設定し、たと
えばArで希釈したSiH4とNH3との混合ガスを約
0.5〜1T0rr程度の圧力で反応ガス導入口2から
流入してウエハ8表面にSi3N4膜を成長させる。こ
のような条件で成長させたSi3N4膜は耐湿性に優へ
かつクラツクのないものが得られる。な卦前述の実施例
では反応管1の両端部に反応ガス導入口2と排気口3と
を各々配設し、反応領域7の反応ガス導入口2側に1つ
のプラズマ発生領域9を設けた場合について述べたが、
プラズマ発生領域を1つに限らず、たとえば反応管の中
央部近傍に排気口と反応領域とを構成し、その反応管の
両端部に各々反応ガス導入口を設けるとともに反応領域
と各反応ガス導入口との間に各々プラズマ発生領域を配
設することも勿論可能である。
In the figure, reference numeral 1 denotes a reaction tube made of quartz, and a reaction gas inlet 2 is provided on one side of the reaction tube 1, that is, the left side in the figure, and an exhaust port 3 is provided on the other side. In addition, a heating element 4 is disposed on the outer periphery of the reaction tube 1 on the exhaust port 3 side, and plasma generation electrodes 5a and 5b are arranged facing each other inside, and these electrodes are alternately connected in common, and the common connection line is is connected to a high frequency power source 6 to constitute a reaction region 7. A wafer 8 is attached to the plasma generation electrodes 5a and 5b in the reaction area 7. Although such a configuration is the same as that of a conventional vapor phase growth apparatus using plasma, the vapor phase growth apparatus according to the present invention further includes another plasma generation region 9 disposed on the reaction gas inlet 2 side of the reaction region 7. It has been set up. The configuration of the plasma generation region 9 is such that plasma generation electrodes 11 and 12 connected to a high frequency power source 10 different from the high frequency power source 6 are arranged facing each other, and a heating element 1 is placed on the outer periphery of the reaction tube 1 on the gas inlet 2 side.
3 is installed. Naga plasma generation electrodes 11, 12
is made of mesh-like aluminum (A), for example. In such a configuration, the wafer 8 is attached to the plasma generation electrodes 5a and 5b in the reaction region 7, and the pressure inside the reaction tube 1 is reduced by exhausting air from the exhaust port 3. Then, a reactive gas is introduced into the reaction tube 1 from the reactive gas inlet and caused to flow between the plasma generation electrodes 11 and 12, and plasma is generated in the plasma generation region 9 by the high frequency electric field applied between these electrodes. The reaction gas is excited in advance at the frequency of the high frequency power source 10 and then allowed to flow into the reaction region 7. Further, the pre-excited reaction gas is applied to the reaction region 7 and then excited at the frequency of the high-frequency power source 6 applied between the plasma generation electrodes 5a and 5b to remove the wafer 8.
A thin film is grown on the surface. At this time, high frequency power supply 1
By selecting and setting the frequency, high frequency output, etc. of the 0 and 6 hexagrams under different conditions, the conventional reaction area 7
Substantially the same effect as in the case where the frequency of the high frequency power source 6 applied between the plasma generating electrodes 5a and 5b is changed during film formation can be obtained. As a result, a thin film of good quality was deposited on the wafer 8.
It can be grown on the surface. Now, to describe the specific conditions for growing, for example, a Si3N4 film on the surface of the wafer 8, first, after reducing the pressure inside the reaction tube 1,
The heating element 4 is controlled to set the temperature in the reaction region 7 to, for example, about 400°C, and the heating element 13 is used to lower the temperature of the plasma generation region 9 than the temperature of the reaction region 7 (for example, from room temperature to 300°C) setting. In addition, the high frequency power supply 10 has a frequency of 13.56 MHz and 1 output of 200, for example.
W to 1KW, and the high frequency power supply 6 has a frequency of 400K, for example.
The Hz1 output is set to about 0.5 W/wafer, and a mixed gas of SiH4 and NH3 diluted with Ar, for example, is flowed from the reaction gas inlet 2 at a pressure of about 0.5 to 1 T0rr and onto the surface of the wafer 8. Grow a Si3N4 film. The Si3N4 film grown under these conditions has excellent moisture resistance and is free from cracks. In the above-mentioned embodiment, a reaction gas inlet 2 and an exhaust port 3 were provided at both ends of the reaction tube 1, and one plasma generation region 9 was provided on the reaction gas inlet 2 side of the reaction region 7. I mentioned the case,
The plasma generation region is not limited to one. For example, an exhaust port and a reaction region are configured near the center of the reaction tube, and reaction gas inlets are provided at both ends of the reaction tube, and the reaction region and each reaction gas are introduced. Of course, it is also possible to arrange plasma generation regions between the mouth and the mouth.

以上の説明から明らかなように本発明によれば半導体ウ
エハ表面に膜質の優れた薄膜を容易に成長させることが
でき、半導体素子製造技術の向上に貢献するところ極め
て大である。
As is clear from the above description, according to the present invention, a thin film with excellent film quality can be easily grown on the surface of a semiconductor wafer, and it greatly contributes to the improvement of semiconductor device manufacturing technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の気相成長装置の構造を説明するための要
部概念図、第2図は本発明による気相成長装置の構造を
説明するための要部概念図である。 1・・・反応管、2・・・反応ガス導入口、3・・・排
気口、4,13・・・発熱体、5a,5b,11,12
・・・プラズマ発生用電極、6,10・・・高周波電源
、7・・・反応領域、8・・・半導体ウエハ、9・・・
プラズマ発生領域。
FIG. 1 is a conceptual diagram of main parts for explaining the structure of a conventional vapor phase growth apparatus, and FIG. 2 is a conceptual diagram of main parts for explaining the structure of a vapor phase growth apparatus according to the present invention. DESCRIPTION OF SYMBOLS 1... Reaction tube, 2... Reaction gas inlet, 3... Exhaust port, 4, 13... Heating element, 5a, 5b, 11, 12
... Electrode for plasma generation, 6, 10 ... High frequency power supply, 7 ... Reaction area, 8 ... Semiconductor wafer, 9 ...
Plasma generation area.

Claims (1)

【特許請求の範囲】 1 反応ガスの励起用電源として、周波数の異なる複数
の電源を用いて該反応ガスを励起し、被処理基板上に所
望の皮膜を形成する気相成長法に於て、第1の周波数で
励起される第1のプラズマ発生領域と、該第1のプラズ
マ発生領域よりも反応ガス導入口側に第2の周波数で励
起される第2のプラズマ発生領域とを設け、該第1のプ
ラズマ発生領域内に該基板を載置して皮膜形成を行うこ
とを特徴とする気相成長方法。 2 反応ガス導入口と排気口とを有する減圧された反応
管内に、表面にウエハーが取付けられる複数の対向配列
され、かつ交互に共通接続された第1の電極群と、該交
互に共通接続された第1の電極群間に第1の高周波を印
加する第1の高周波電源と、該第1の電極群よりも反応
ガス導入口側に対向配置される第2の電極と、該第2の
電極間に該第1の高周波と異なる第2の高周波を印加す
る第2の高周波電源とを有し、該第1の周波数で励起さ
れる第1のプラズマ発生領域をウェハー処理領域とし、
該反応領域の反応ガス導入口側に該第2の周波数で励起
される第2のプラズマ発生領域を記設したことを特徴と
する気相成長装置。
[Scope of Claims] 1. In a vapor phase growth method in which a plurality of power sources with different frequencies are used as power sources for excitation of a reaction gas to excite the reaction gas and form a desired film on a substrate to be processed, A first plasma generation region excited at a first frequency and a second plasma generation region excited at a second frequency are provided closer to the reaction gas inlet than the first plasma generation region, and the second plasma generation region is excited at a second frequency. A vapor phase growth method characterized in that film formation is performed by placing the substrate within a first plasma generation region. 2. In a reduced pressure reaction tube having a reaction gas inlet and an exhaust port, a plurality of first electrode groups arranged opposite to each other and having a wafer attached to the surface thereof and alternately connected in common; a first high frequency power source that applies a first high frequency between the first electrode groups; a second electrode that is disposed opposite to the first electrode group on the reaction gas inlet side; a second high-frequency power source that applies a second high-frequency wave different from the first high-frequency wave between the electrodes, and a first plasma generation region excited at the first frequency is a wafer processing region;
A vapor phase growth apparatus characterized in that a second plasma generation region excited at the second frequency is provided on the reaction gas inlet side of the reaction region.
JP9361480A 1980-07-09 1980-07-09 Vapor phase growth method and apparatus Expired JPS5941773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9361480A JPS5941773B2 (en) 1980-07-09 1980-07-09 Vapor phase growth method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9361480A JPS5941773B2 (en) 1980-07-09 1980-07-09 Vapor phase growth method and apparatus

Publications (2)

Publication Number Publication Date
JPS5719034A JPS5719034A (en) 1982-02-01
JPS5941773B2 true JPS5941773B2 (en) 1984-10-09

Family

ID=14087199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9361480A Expired JPS5941773B2 (en) 1980-07-09 1980-07-09 Vapor phase growth method and apparatus

Country Status (1)

Country Link
JP (1) JPS5941773B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193361A (en) * 1982-04-30 1983-11-11 Shimadzu Corp Plasma chemical vapor deposition apparatus
JPS59191324A (en) * 1983-04-14 1984-10-30 Victor Co Of Japan Ltd Plasma reaction apparatus
JPS60143625A (en) * 1983-12-30 1985-07-29 Fujitsu Ltd Manufacture of semiconductor device
JPH01111871A (en) * 1987-10-23 1989-04-28 Nec Corp Plasma vapor phase growing device
JP7290995B2 (en) * 2019-05-24 2023-06-14 三菱重工業株式会社 Specimen holder and cleaning system, corrosion amount measuring method and corrosion amount measuring device

Also Published As

Publication number Publication date
JPS5719034A (en) 1982-02-01

Similar Documents

Publication Publication Date Title
EP0026604B1 (en) A method of vapour phase growth and apparatus therefor
JPH03155625A (en) Manufacture of plasma cvd film
JPH06333857A (en) Device and method for forming film
JPS5941773B2 (en) Vapor phase growth method and apparatus
JPH0377655B2 (en)
JPH0570957A (en) Plasma vapor phase growth device
JPS6012728A (en) Electrode structure for film forming
JP3414934B2 (en) Thin film formation method
JPS6329583B2 (en)
JPS58127331A (en) Plasma chemical vapor growth apparatus
JPH02148843A (en) Manufacture of semiconductor device
JPH0891987A (en) Apparatus for plasma chemical vapor deposition
JPS6316467B2 (en)
JPS6140770Y2 (en)
JP3243816B2 (en) Method of forming insulating film
JPH09298193A (en) Manufacture of passivation film
JPH0633245A (en) Cvd device
JPS59177919A (en) Selective growth of thin film
JPH0745539A (en) Plasma cvd device and electrode used for the same
JPH0546093B2 (en)
JPS6068619A (en) Plasma chemical vapor deposition device
JPS6234139B2 (en)
JP2000082702A (en) Method for plasma reaction
JPH0625859A (en) Cvd film forming device and plasma cleaning method
JPS5893242A (en) Formation of nitride film