JPS5938538B2 - Structure of leak detection tank of inspected object and its inspection device - Google Patents

Structure of leak detection tank of inspected object and its inspection device

Info

Publication number
JPS5938538B2
JPS5938538B2 JP51156785A JP15678576A JPS5938538B2 JP S5938538 B2 JPS5938538 B2 JP S5938538B2 JP 51156785 A JP51156785 A JP 51156785A JP 15678576 A JP15678576 A JP 15678576A JP S5938538 B2 JPS5938538 B2 JP S5938538B2
Authority
JP
Japan
Prior art keywords
tank
detection
port
inspected
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51156785A
Other languages
Japanese (ja)
Other versions
JPS5381186A (en
Inventor
勝 大河原
俊夫 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsuda Industries Co Ltd
Original Assignee
Tsuda Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsuda Industries Co Ltd filed Critical Tsuda Industries Co Ltd
Priority to JP51156785A priority Critical patent/JPS5938538B2/en
Publication of JPS5381186A publication Critical patent/JPS5381186A/en
Publication of JPS5938538B2 publication Critical patent/JPS5938538B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)

Description

【発明の詳細な説明】 本発明は被検査体の漏洩検査用検出槽に関し、シリンダ
ー、バルブ、コック、圧力タンクなどの気密性の要求さ
れる各種機器、装置の漏洩の有無を水浸手段によること
なく、検出槽内で発生せる上昇気泡の所要部所の通過を
感知検出し得る手段を介して容易に判らしめようとした
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a detection tank for leakage testing of objects to be inspected, and is a method for detecting leakage from various equipment and devices that require airtightness, such as cylinders, valves, cocks, and pressure tanks, by water immersion. This is an attempt to easily detect the passing of rising bubbles generated in the detection tank through a required location through a means capable of sensing and detecting the passage of the rising bubbles.

被検査体の気密性の如何は、機器精度、機器の信頼性、
装置の安全性を維持する上で必須不可決な条件であり、
その為、当該各種機器を対象として水浸法又は非水浸法
をベースとして種々の圧洩れ検査、試験装置が案出実用
化せられ、その内、水浸法Aは密封せる被検査体を空気
で加圧して水槽内で水浸させ、その際の気泡発生の有無
を目視観察する手段による為、1被検査体が鉄系統の場
合には、錆の発生を招いたり、或いは防錆のために乾燥
工程を必要とする。2気泡発生の如何を目視観察するた
め、専属員を配置せしめて凝視する要が存し、その際微
少気泡の漏洩を見逃す虞れがある。
The airtightness of the object to be inspected depends on the accuracy of the equipment, the reliability of the equipment,
This is an essential condition to maintain the safety of the equipment.
For this reason, various pressure leakage inspection and testing devices have been devised and put into practical use for the various devices concerned, based on the water immersion method or the non-water immersion method. Since the method is to pressurize with air and immerse it in water in a water tank and visually observe the presence or absence of air bubbles, if the object to be inspected is a steel system, it may cause rust or prevent rust prevention. Therefore, a drying process is required. 2. In order to visually observe whether bubbles are generated, it is necessary to have a dedicated staff member look at the bubbles, and there is a risk of overlooking the leakage of microbubbles.

3水浸時に被検査体の極少な間隙部からの洩れが表面張
力の影響により上昇気泡となることなく、当該部所への
付着のみである場合に看過され、後記せる非水浸法Bに
比して検出能力、検出精度に欠ける。
3. If the leakage from the very small gap in the inspected object during water immersion does not become bubbles rising due to the influence of surface tension, but only adheres to the part concerned, it is overlooked, and non-water immersion method B, which will be described later, is applied. It lacks detection ability and detection accuracy.

4また、作業環境も悪く工程内検査を行なう場合に支障
が出易い。
4. Also, the working environment is poor, which tends to cause problems when performing in-process inspections.

などの不利益が認められるものであつた。一方、斯る水
浸法Aに伴なう各種欠点を解消すべく、被検査体を水浸
しない手段として差圧検出形aとガス検出形bとに分類
できる非水浸法Bがあるが、その内、差圧検出形aは被
検査体と基準体とを複数個のバルブを介して並列的に連
設し、両者を同時加圧して平衡させた後、所要のバルブ
を閉成して両者間の差圧発生の有無を、例えば、特開昭
50−22685号公報に示す「もれ検査装置」の構成
の一部に認められる圧力電気変換器や圧力増幅器などの
高感度の差圧センサーイの使用、更に併設せるエアー論
理回路口を必要とするのみならず、基準体自体をも要し
複雑且つ高価な装置となり汎用性に乏しく、他方、圧力
変化に伴なう水位変化を光電スイツチや目視観察して差
圧検出せるU字管ハの使用によれば、5水位の厳格な管
理が困難であり、大リーク時には管内液の吹出し現象を
招いたり、ガラス管との関係上着色水とする要があり、
更には、その操作性や保守性にも難点の認められるもの
であつた。
There were recognized disadvantages such as: On the other hand, in order to eliminate various drawbacks associated with the water immersion method A, there is a non-water immersion method B, which can be classified into differential pressure detection type A and gas detection type B, as a means of not immersing the inspected object in water. Among them, the differential pressure detection type a connects the test object and the reference object in parallel via multiple valves, and then pressurizes both at the same time to achieve equilibrium, and then closes the required valves. For example, the presence or absence of differential pressure between the two can be detected using a highly sensitive pressure differential, such as a pressure-electric transducer or a pressure amplifier, which is recognized as part of the configuration of the "leakage inspection device" shown in Japanese Patent Application Laid-open No. 50-22685. Not only does it require the use of a sensor and an air logic circuit port attached to it, but it also requires the reference body itself, making it a complex and expensive device that lacks versatility. Using a U-shaped tube that detects differential pressure through a switch or visual observation, it is difficult to strictly control the water level, and in the event of a large leak, the liquid inside the tube may blow out or become discolored due to the relationship with the glass tube. It is necessary to use water,
Furthermore, there were also difficulties in its operability and maintainability.

他方、真空となした検査室内へ被検査体を内蔵せしめ、
当該被検査体内へ不活性ガスを充填加圧し、ガス洩れの
有無を検知器を介して確認するガス検出形bによれば、
検知精度には優れるが大規模な検査装置を必要とし、当
該装置コストも高価なものとなり、汎用性に乏しいもの
であつた。加うるに、その他の先行技術として散見され
る特開昭49−54086号公報に示す「漏洩目視装置
」や特開昭49−32689号公報に示す「液封式漏洩
目視装置」は、いずれも透明耐圧製の容器又は圧力室内
に密閉封入せる液体内へ細管を下向に挿し込み気泡発生
の有無を目視観察する手段を採用しているため、前記せ
る目視観察に伴なう欠点を未だ排除し得ず、多数の機器
類の圧洩れ検査手段としての有用性に欠け、検出精度の
未だ不充分なものであつた。
On the other hand, the object to be inspected is placed inside a vacuumed inspection chamber,
According to gas detection type B, which fills and pressurizes an inert gas into the subject body and checks whether there is a gas leak through a detector,
Although it has excellent detection accuracy, it requires a large-scale inspection device, the cost of the device is high, and it lacks versatility. In addition, the "leak visual inspection device" shown in JP-A-49-54086 and the "liquid seal type leak-visual device" shown in JP-A-49-32689, which can be found here and there as other prior art, are both The method of visually observing the presence or absence of bubbles by inserting a thin tube downward into the liquid sealed in a transparent pressure-resistant container or pressure chamber is adopted, which eliminates the drawbacks associated with the visual observation described above. However, it lacked usefulness as a pressure leak inspection means for many types of equipment, and its detection accuracy was still insufficient.

本発明では前記諸点に鑑み、水浸法に伴なう欠点の解消
を企図するのみならず、被検査体の外に対比される基準
体、その密封加圧装置などを不要ならしめ、装置自体の
簡素化を図り、操作性、保守性を容易なものとなした特
異な構造の検出槽、並びに一連の検査装置を介して多量
の機器検査を効率よく迅速に検査可能としたものである
In view of the above points, the present invention not only aims to eliminate the drawbacks associated with the water immersion method, but also eliminates the need for a reference body to be compared with the object to be inspected, a sealing pressurizing device for the same, etc., and the device itself It is possible to efficiently and quickly test a large number of devices through a uniquely structured detection tank that simplifies operation and maintainability, and a series of testing devices.

本発明の実施態様を添付図面に従つて説明するに、Tは
本発明の本体をなす被検査体Xの漏洩検査用検出槽であ
つて、強化ガラス、合成樹脂などの耐圧性ある透明性素
材にて砂時計の如き形態に一体成型又は連結形成せる下
部槽1、上部槽2、気泡通適用細管3および圧力平衡用
バイパス管4の各部よりなり、上部槽2の適宜な高位ま
で検出液5を封入している。下部槽1と上部槽2とは上
下に相対向して配設され、基台5には上方頭部を半球状
又は次第に小径とするテーパー状(円錐状)の下部槽1
が設置固着され、下方底部を半球状又は次第に小径とす
るテーパー状(円錐状)の上部槽2には蓋部材6が冠着
されて検出槽Tを密閉している。また当該両槽1,2間
の軸芯位置には透明な気泡通適用細管3が介設され、下
部槽1の下端方側壁ポート5と上部槽2液位下の底部方
側壁ポート5との間には圧力平衡用バイパス管4が固着
されている。下部槽1の下端中央部には前記細管3の軸
芯位置と対向せるノズル孔7が上向きに配設され、外部
の送気供給ラインLl,L2に接続され、また上部槽2
の上端側壁部には被検査体側ラインL4に接続される出
口ポート8が設けられている。このとき、ノズル孔7を
介して形成される気泡8の大きさは、上昇気泡Cが細管
3内壁面を触接しながら通過し得る口径、即ち気泡径≧
細管内径としている。Zは下部槽1のノズル孔7より発
生する上昇気泡5の細管3内壁面の通過を光電検知する
検出装置であつて、細管3の両側検知部9、検知ライン
L5、電源増幅装置10を介して漏洩表示装置11を応
動せしめている。
An embodiment of the present invention will be described with reference to the accompanying drawings. T is a detection tank for leakage inspection of the object to be inspected It consists of a lower tank 1, an upper tank 2, a narrow tube 3 for bubble passage, and a bypass pipe 4 for pressure balance, which are integrally molded or connected in an hourglass-like shape, and the detection liquid 5 is supplied to an appropriate height of the upper tank 2. It is enclosed. The lower tank 1 and the upper tank 2 are arranged to face each other vertically, and the base 5 has a tapered (conical) lower tank 1 whose upper head is hemispherical or gradually becomes smaller in diameter.
A lid member 6 is attached to the upper tank 2, which has a tapered (conical) shape with a hemispherical or gradually smaller diameter lower bottom portion, and seals the detection tank T. In addition, a transparent bubble passage thin tube 3 is interposed at the axial position between the two tanks 1 and 2, and connects the lower end side wall port 5 of the lower tank 1 and the bottom side wall port 5 below the liquid level of the upper tank 2. A pressure balancing bypass pipe 4 is fixed between them. At the center of the lower end of the lower tank 1, a nozzle hole 7 is arranged upward facing the axial position of the thin tube 3, and is connected to external air supply lines Ll and L2.
An exit port 8 connected to the test object side line L4 is provided on the upper end side wall portion of the test piece. At this time, the size of the bubble 8 formed through the nozzle hole 7 is a diameter that allows the rising bubble C to pass through while contacting the inner wall surface of the thin tube 3, that is, the bubble diameter ≧
The inner diameter of the tube is the same. Z is a detection device that photoelectrically detects the passage of rising bubbles 5 generated from the nozzle hole 7 of the lower tank 1 through the inner wall surface of the thin tube 3, and detects the passage of the rising bubbles 5 through the inner wall surface of the thin tube 3 through the detection parts 9 on both sides of the thin tube 3, the detection line L5, and the power amplifier 10. This causes the leakage indicator 11 to respond accordingly.

第2図に示す如く細管3の両側検知部9の一方には、微
少孔を穿設せるスリツト板12を介して白熱電球、発光
ダイオードの如き発光体13が、他方には微少孔を穿設
せる板14を介してC濱辻ル、フオトトランジスタなど
の光電変換素子である受光体15が夫々内蔵配置されて
いる。このとき、スリツト板12,14の夫々の微少孔
の口径や発光体13の発生光量は、受光体15への細管
3内壁面を伝わつて消失せる光量、即ち廻り込む光量を
最少に抑え、 また水(検出液)と空気(気泡)の屈折
率の変化による細管3透過光量差を最も効率よく受光体
15に伝え得るように受光体15の特性に対応してその
値が設定される。電源増幅装置10には発光体13に発
光電力を供給し受光体15からの信号を増幅せしめる周
知の回路要素が内蔵されている。漏洩表示装置11は細
管3内壁面を気泡が上昇通過する際に検知ラインL5を
介して警報鳴動又は点灯表示し得る構成としている。次
に、前記せる検出槽Tへの回路構成を説明するに、一次
圧空気の供給ラインL1、二次圧空気の供給ラインL2
を経て下部槽1内のノズル孔7に連結され、上部槽2の
出口ポート8には被検査体側ラインL4を経て被検査装
置Yへと連設され、また二次圧空気の供給ラインL2よ
り分岐せるバイパスラインL3は、検出槽Tを介在する
ことなく被検査体側ラインL4に接続されている。
As shown in FIG. 2, a light emitting body 13 such as an incandescent light bulb or a light emitting diode is connected to one side of the sensing portion 9 of the thin tube 3 through a slit plate 12 in which a fine hole is formed, and a light emitting body 13 such as an incandescent light bulb or a light emitting diode is connected to the other side of the thin tube 3 through a slit plate 12 in which a fine hole is formed. A photoreceptor 15, which is a photoelectric conversion element such as a phototransistor or the like, is installed inside the photoreceptor 15 with a plate 14 interposed therebetween. At this time, the aperture of each microhole in the slit plates 12 and 14 and the amount of light generated by the light emitting body 13 are controlled to minimize the amount of light transmitted to the photoreceptor 15 through the inner wall surface of the thin tube 3, that is, the amount of light that goes around, and The value is set in accordance with the characteristics of the photoreceptor 15 so that the difference in the amount of light transmitted through the thin tube 3 due to a change in the refractive index of water (detection liquid) and air (bubbles) can be most efficiently transmitted to the photoreceptor 15. The power amplifier 10 has built-in well-known circuit elements that supply light emission power to the light emitter 13 and amplify the signal from the photoreceptor 15. The leakage display device 11 is configured to be able to sound an alarm or display a lighting display via the detection line L5 when bubbles rise and pass through the inner wall surface of the thin tube 3. Next, to explain the circuit configuration to the detection tank T, the primary pressure air supply line L1, the secondary pressure air supply line L2
It is connected to the nozzle hole 7 in the lower tank 1 through the outlet port 8 of the upper tank 2, and is connected to the equipment to be inspected Y via the inspection object side line L4, and from the secondary pressure air supply line L2. The branched bypass line L3 is connected to the test object side line L4 without intervening the detection tank T.

一次圧空気の供給ラインL,には、順次検査圧力以上の
圧力を有するエアー供給装置とのエアー源接続口16、
エアー源の圧力が検査圧力以下に低下した場合に検査装
置自体を停止させる機能を有する圧力制御スイツチ17
、エアー中のオイルシスト、水滴、粉塵等を除去し、ひ
いては検出液5の汚濁を防止せるエアーフイルタ一18
、二次圧力安定度が精密な検査圧力設定用減圧弁19、
検査圧力設定およびチエツク用の圧力計20、減圧弁1
9を安定動作させ検査圧力の安定度を高めるに足る最少
値に設定させる機能の排気用絞り弁21を連設して二次
圧空気の供給ラインL2に接続されている。該供給ライ
ンL2には検査時のみ検査装置にエアーを供給する主切
換弁22、検出液5への給水用切換弁23、逆止弁24
の順序で連結されて下部槽1内へ導通せしめている。給
水用切換弁23には検出槽Tの液位が一定量以下に低下
した場合に貯水タンク25又は水道栓自体から給水管2
6を経て直接補給し得る給水装置を附設している。上部
槽2の出口ポート8に接続される被検査体側ラインL4
には、被検査体Xの大リーク発生時における検出液5の
沸騰と外部への吹出しを防止せるために設けた絞り弁2
7、予圧検出用切換弁28、被検査体xへの予圧・検出
のエアーを供給する検査開始用切換弁29を順次連設し
て被検査装置Yへ導通せしめている。
The primary pressure air supply line L has an air source connection port 16 with an air supply device having a pressure higher than the inspection pressure,
Pressure control switch 17 that has the function of stopping the inspection device itself when the pressure of the air source drops below the inspection pressure
, an air filter 18 that removes oil cysts, water droplets, dust, etc. from the air and prevents contamination of the detection liquid 5.
, pressure reducing valve 19 for inspection pressure setting with precise secondary pressure stability;
Pressure gauge 20 for inspection pressure setting and checking, pressure reducing valve 1
An exhaust throttle valve 21 is connected to the secondary pressure air supply line L2, and the exhaust throttle valve 21 has a function of setting the pressure to the minimum value that is sufficient to stably operate the test pressure 9 and increase the stability of the test pressure. The supply line L2 includes a main switching valve 22 for supplying air to the inspection device only during testing, a switching valve 23 for supplying water to the detection liquid 5, and a check valve 24.
They are connected in this order to provide conduction into the lower tank 1. The water supply switching valve 23 is connected to the water supply pipe 2 from the water storage tank 25 or the water faucet itself when the liquid level in the detection tank T drops below a certain level.
The facility is equipped with a water supply system that can be directly supplied via water pipe 6. Test object side line L4 connected to the outlet port 8 of the upper tank 2
, a throttle valve 2 is provided to prevent the detection liquid 5 from boiling and blowing out to the outside when a large leak occurs from the test object X.
7. A preload detection changeover valve 28 and an inspection start changeover valve 29 for supplying preload and detection air to the object x to be inspected are successively installed and connected to the apparatus Y to be inspected.

尚、出口ポート8と前記絞り弁28との間には、ライン
L4より分岐せるラインに排気用切換弁30が設けられ
ている。これは検出槽T内への給水時に当該切換弁30
を開成せしめて上部槽2内の滞留空気を放出し、給水用
切換弁23を切換操作して給水させる際に使用する。バ
イパスラインL3は出切換弁22と給水用切換弁23間
で分岐されて被検査体側ラインL4の予圧・検査用切換
弁28との間に設けられ、被検査体Xへの予圧用エアー
を送気供給せるラインとしている。また、被検査装置Y
は送気供給ラインL6上に順次エアー源接続口31、フ
イルタ一32、減圧弁33、圧力計34、ルプリケータ
35、切換弁36を介してシリンダー37のロツド端5
とヘツド端5とに回路構成されており、ピストンロツド
38端の押圧頭部39にはシール部材40が埋設され、
その中央部と側部を連通せる管路41が穿設されて被検
査側ラインL4末端と連結している。
Incidentally, between the outlet port 8 and the throttle valve 28, an exhaust switching valve 30 is provided in a line branching from the line L4. This is the switching valve 30 when water is supplied to the detection tank T.
It is used when the valve is opened to release the accumulated air in the upper tank 2, and the water supply switching valve 23 is switched to supply water. The bypass line L3 is branched between the output switching valve 22 and the water supply switching valve 23, and is provided between the preload/inspection switching valve 28 of the inspection object side line L4, and sends preload air to the inspection object X. It is a line that can supply air. In addition, the device to be inspected Y
The rod end 5 of the cylinder 37 is connected to the air supply line L6 through the air source connection port 31, filter 32, pressure reducing valve 33, pressure gauge 34, luplicator 35, and switching valve 36.
and the head end 5, and a sealing member 40 is embedded in the pressing head 39 at the end of the piston rod 38.
A conduit 41 is bored through which the central part and the side part communicate with each other, and is connected to the end of the line L4 on the side to be inspected.

42はシール部材43を埋設せる検査用治具であつて、
上部筒部材44と下部筒部材45の嵌合部46がろう付
されてなる被検査体Xを内蔵支持している。
42 is an inspection jig in which the seal member 43 is embedded;
A fitting part 46 between an upper cylinder member 44 and a lower cylinder member 45 is brazed to internally support an object to be inspected.

47は当該被検査体Xのクランプ完了を検出するマイク
ロスイツチである。
47 is a micro switch that detects the completion of clamping of the object to be inspected.

次に、本発明に係る検査、検出装置の作動工程を第1図
の全体概要図に示す如く構成し、且つ各エアー源接続口
16,31にエアー供給装置(図示せず)を接続せしめ
た状態で説明する。
Next, the operating process of the inspection and detection device according to the present invention was configured as shown in the overall schematic diagram of FIG. 1, and an air supply device (not shown) was connected to each air source connection port 16, 31. Explain by condition.

先ず、検査準備指令により主切換弁22を開成し減圧弁
19にて適宜圧の検査圧力に設定する。
First, the main switching valve 22 is opened in response to an inspection preparation command, and the pressure reducing valve 19 is set to an appropriate inspection pressure.

これにより、二次圧空気の供給ラインL2を経てノズル
孔7より多量の気泡群が発生上昇し検出槽T内を経て、
またバイパスラインL3を経て被検査体側ラインL4の
検査開始用切換弁29までの間を検査設定圧力まで高め
て検査準備を完了する(第1工程)。それを被検査装置
Yの切換弁36に伝えてピストンロツド38端の押圧頭
部39を下降動せしめ、被検査体Xをシール部材40,
42間でクランプする(第2工程)。クランプ完了をマ
イクロスイツチ47で検知し検査開始用切換弁29に伝
えて開成せしめて被検査体X内を検査圧力まで加圧する
(第3工程)。
As a result, a large number of bubbles are generated from the nozzle hole 7 through the secondary pressure air supply line L2, rise up, and pass through the detection tank T.
Further, the pressure in the line L4 on the side of the object to be inspected up to the inspection start switching valve 29 via the bypass line L3 is increased to the inspection setting pressure to complete the inspection preparation (first step). This is transmitted to the switching valve 36 of the device to be inspected Y, and the pressing head 39 at the end of the piston rod 38 is moved downward, thereby moving the object to be inspected
42 (second step). Completion of clamping is detected by the micro switch 47, and is transmitted to the inspection start switching valve 29 to open it and pressurize the inside of the inspected object X to the inspection pressure (third step).

加圧完了を予圧・検出用切換弁28に伝えて回路切換操
作を行ない、供給エアーが検出槽T内を経て被検査体X
へ送気せしめる回路となす(第4工程)。斯る状態とし
たとき被検査体Xの嵌合部46に洩れが生じておれば、
当該洩れ量に相当して検出槽T内の圧力低下を招き、ひ
いてはノズル孔7側との間の圧力均衡が破れ、当該ノズ
ル孔7より圧力低下分に相当する気泡8の発生するとこ
ろとなる。この気泡8は下部槽1を上昇して気泡通適用
細管3に至るが、その際当該細管3内壁面を上昇気泡が
当接状態で通過するに、下部槽1内には気泡8の容積分
に相当する負圧が発生し、気泡8の上昇通過を阻止する
ように働く。しかし、下部槽1と上部槽2との間に圧力
均衡用バイパス管4が固設され、その内、上部槽2液位
下の側壁ポート5より気泡8の容積分に相当する検出液
Qを下向きに補給、循環させるので、気泡8の細管3内
壁面の当接通過が円滑に行ない得、当該部所での上昇停
止を防止している。従つて、気泡8が斯る検知部9を通
過する際、気泡8の影響で光の屈折率が変化し、無気泡
時に受光体15に到達していた発光体13からの透過光
が減少し、その変化を電気量の変化に変換し増幅装置1
0で増幅した後、漏洩表示装置11に伝達されて警報鳴
動せしめる。これにより、被検査体Xの漏洩の如何が検
知できる。また、被検査体Xに洩れのない場合には一定
の検査時間終了後に検査開始用切換弁29を閉成し、同
時に予圧・検出用切換弁28、切換弁36を元位置に復
帰操作せしめる。すると、ピストンロツド38も上昇動
して復帰せられる(第5工程)。斯る一連の検査工程を
介して被検査体Xの漏洩如何が自動的に検査されるので
ある。尚、本発明の検出槽Tを介在せしめた変形例とし
て、バイパスラインL3、給水用切換弁23、予圧・検
出用切換弁28を設けることなく回路構成して、前記と
略同様な工程で被検査体Xの漏洩検査を行なうことも可
能である。また、本発明では下部槽1のノズル孔7に外
部の送気供給(エアー)ラインLl,L2を接続したが
、これとは逆に、上部槽2の出口ポート8に接続した被
検査体側のエアーラインL4側から真空吸引して、前記
と同様な漏洩検査に供することもできる。
The completion of pressurization is communicated to the preload/detection switching valve 28 and a circuit switching operation is performed, and the supplied air passes through the detection tank T to the object to be inspected
(4th step). If there is a leak in the fitting part 46 of the object to be inspected X in such a state,
This causes a pressure drop in the detection tank T corresponding to the amount of leakage, and as a result, the pressure balance with the nozzle hole 7 side is broken, and bubbles 8 corresponding to the pressure drop are generated from the nozzle hole 7. . The air bubbles 8 rise through the lower tank 1 and reach the bubble passage application capillary tube 3, but at this time, as the rising bubbles pass through the inner wall surface of the capillary tube 3 in contact with each other, the volume of the air bubbles 8 remains in the lower tank 1. A negative pressure corresponding to . However, a pressure balancing bypass pipe 4 is fixedly installed between the lower tank 1 and the upper tank 2, and the detection liquid Q corresponding to the volume of the bubbles 8 is supplied from the side wall port 5 below the liquid level of the upper tank 2. Since the air bubbles are replenished and circulated downward, the air bubbles 8 can smoothly pass through contact with the inner wall surface of the thin tube 3, thereby preventing the air bubbles 8 from stopping at that point. Therefore, when the bubbles 8 pass through the detection unit 9, the refractive index of light changes due to the influence of the bubbles 8, and the transmitted light from the light emitter 13, which would have reached the photoreceptor 15 when there were no bubbles, decreases. , the change is converted into a change in the amount of electricity, and the amplifier 1
After being amplified by 0, the signal is transmitted to the leakage display device 11 and an alarm is sounded. Thereby, it is possible to detect whether or not the object to be inspected is leaking. Further, if there is no leakage in the object X to be inspected, the inspection start switching valve 29 is closed after a certain inspection time, and at the same time, the preload/detection switching valve 28 and the switching valve 36 are operated to return to their original positions. Then, the piston rod 38 also moves upward and returns (fifth step). Through this series of inspection steps, the leakage of the object X to be inspected is automatically inspected. As a modification in which the detection tank T of the present invention is interposed, the circuit is configured without providing the bypass line L3, the water supply switching valve 23, and the preload/detection switching valve 28, and the detection tank T is installed in substantially the same process as described above. It is also possible to perform a leakage test on the test object X. In addition, in the present invention, external air supply (air) lines Ll and L2 are connected to the nozzle hole 7 of the lower tank 1, but conversely, the test object side connected to the outlet port 8 of the upper tank 2 is connected to the nozzle hole 7 of the lower tank 1. It is also possible to apply vacuum suction from the air line L4 side and perform a leakage test similar to that described above.

本発明は前記の如く気泡通適用管体に検出液を入れ、当
該管体内を上昇通過する気泡を光電検知すべく構成した
被検査体の漏洩検査装置において、前記管体の上部に、
外部のエアーラインに接続される上方ポートを有する上
部槽を、また管体の下部に、外部のエアーラインに接続
されるノズル孔を有する下部槽を夫々連結固定し、当該
両槽間に設けた管体を、前記ノズル孔で発生した気泡が
当該管体内壁面に摺接して上昇通過する口径の気泡通適
用細管として構成し、前記下部槽のポートと上部槽のポ
ートとを圧力平衡用バイパス管で連結し、少なくとも上
部槽のポート位置の上まで前記検出液を封入構成せしめ
た特異な構造の漏洩検出槽としたので、水浸法に伴なう
各種欠点が解消でき、また被検査体Xの外に対比される
基準体、その密封加圧装置などが不要となり、装置自体
の簡素化ができ操作性、保守性にも優れ、また多量の機
器検査を効率よく迅速に行ない得る。
The present invention provides a leakage testing device for an object to be inspected, which is configured to put a detection liquid into a tube for bubble passage as described above and photoelectrically detect the bubbles rising and passing through the tube, in which:
An upper tank having an upper port connected to an external air line and a lower tank having a nozzle hole connected to an external air line are connected and fixed to the lower part of the pipe body, and provided between the two tanks. The tubular body is configured as a bubble passage thin tube having a diameter through which the bubbles generated in the nozzle hole slide upwardly and pass through the inner wall surface of the tubular body, and the port of the lower tank and the port of the upper tank are connected to a pressure balancing bypass pipe. Since the leak detection tank has a unique structure in which the detection liquid is sealed up to at least the port position of the upper tank, various drawbacks associated with the water immersion method can be solved, and the test object This eliminates the need for a reference body to be compared with, a sealing pressurizing device for the same, etc., the device itself can be simplified, has excellent operability and maintainability, and can efficiently and quickly test a large number of devices.

しかも、本発明では下部槽と上部槽との間に圧力平衡用
バイパス管を固設したので、当該バイパス管のない場合
には、発生した気泡通適用細管の内壁面を当接状態で通
過するに、下部槽内には気泡の容積分に相当する負圧が
発生し、気泡の上昇通過を阻止するように働くが、前記
の如くバイパス管を設けたことにより、上部槽液位下の
側壁ポートより気泡の容積分に相当する検出液を下向き
に補給循環させるので、上昇気泡の細管内壁面の当接通
過が円滑に行なわれ、当該部所での気泡の上昇停止を防
止する。特に、本発明では、気泡通適用細管の口径を、
ノズル孔で発生した気泡が管体内壁面に摺接して上昇通
過する口径として構成したので、単に管体内壁面を摺接
しないで通過する場合の気泡の検出手段に比して、発光
体の発生光量が細管内壁面を伝つて消失する光量損失を
最少に抑えるのみならず、検出液(水)と気泡(空気)
の屈折率の変化による細管透過光量差を効率よく受光体
側へ伝えるため、検出ミスをなくし、検査精度の飛曜的
な向上に寄与する等の諸効果を齋らす。
Moreover, in the present invention, since the pressure balancing bypass pipe is fixedly installed between the lower tank and the upper tank, if the bypass pipe is not provided, the generated air bubbles pass through the inner wall surface of the thin pipe for passing through while being in contact with the inner wall surface of the thin pipe. In this case, a negative pressure corresponding to the volume of the bubbles is generated in the lower tank, which acts to prevent the bubbles from rising and passing through. However, by providing the bypass pipe as described above, Since the detection liquid corresponding to the volume of the bubbles is supplied and circulated downward from the port, the rising bubbles can smoothly pass through contact with the inner wall surface of the thin tube, and the bubbles can be prevented from stopping at that point. In particular, in the present invention, the diameter of the capillary tube for air bubble passage is
Since the aperture is configured such that the bubbles generated in the nozzle hole rise and pass through sliding contact with the inner wall surface of the tube, the amount of light generated by the luminous body is lower than that of bubble detection means that simply passes through the inner wall surface of the tube without sliding contact. This not only minimizes the loss of light quantity caused by the loss of light as it travels along the inner wall surface of the tube, but also minimizes the
In order to efficiently transmit the difference in the amount of light transmitted through the capillary tube due to the change in the refractive index of the light to the photoreceptor side, it has various effects such as eliminating detection errors and contributing to a dramatic improvement in inspection accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施態様を例示し、第1図は検査装置の
全体概要図、第2図は気泡通適用細管の両側に形成せる
検知部の平断面図である。
The drawings illustrate embodiments of the present invention, and FIG. 1 is an overall schematic view of the inspection device, and FIG. 2 is a plan cross-sectional view of the detection portions formed on both sides of the bubble passage application capillary.

Claims (1)

【特許請求の範囲】 1 気泡通過用管体に検出液を入れ、当該管体内を上昇
通過する気泡を光電検知すべく構成した被検査体の漏洩
検査装置において、前記管体の上部に、外部のエアーラ
インに接続される上方ポートを有する上部槽を、また管
体の下部に、外部のエアーラインに接続されるノズル孔
を有する下部槽を夫々連結固定し、当該両槽間に設けた
管体を、前記ノズル孔で発生した気泡が当該管体内壁面
に摺接して上昇通過する口径の気泡通過用細管として構
成し、前記下部槽のポートと上部槽のポートとを圧力平
衡用バイパス管で連結し、少なくとも上部槽のポート位
置の上まで前記検出液を封入構成せしめたことを特徴と
する被検査体の漏洩検出槽。 2 特許請求の範囲第1項に記載の被検査体の漏洩検査
装置において、下部槽の上方頭部を半球状又は円錐状と
し、当該下部槽の下方底部に基台を固着し、上部槽の下
方底部を半球状又は円錐状とし、当該上部槽の上方頭部
に蓋部材を固着し、当該上部槽の底部中心と下部槽の頭
部中心とを気泡通過用細管で連通自在に構成したことを
特徴とする被検査体の漏洩検出槽。 3 特許請求の範囲第1項又は第2項に記載の被検査体
の漏洩検査装置において、圧力平衡用バイパス管を、下
部槽の下端方側壁ポートと上部槽の液位下の底部方側壁
ポートとの間に連通自在に固着したことを特徴とする被
検査体の漏洩検出槽。
[Scope of Claims] 1. In a leakage testing device for a test object configured to fill a tube for bubble passage with a detection liquid and photoelectrically detect bubbles rising and passing through the tube, an external An upper tank having an upper port connected to the air line of The body is configured as a bubble passage thin tube having a diameter through which the bubbles generated in the nozzle hole slide upwardly and pass through the inner wall surface of the tube, and the port of the lower tank and the port of the upper tank are connected by a bypass pipe for pressure equalization. A leakage detection tank for an object to be inspected, characterized in that the detection liquid is sealed up to at least a port position of the upper tank. 2. In the leak testing device for a test object as set forth in claim 1, the upper head of the lower tank is hemispherical or conical, a base is fixed to the lower bottom of the lower tank, and the upper head of the lower tank is fixed to the lower bottom of the lower tank. The lower bottom part is hemispherical or conical, a lid member is fixed to the upper head of the upper tank, and the center of the bottom of the upper tank and the center of the head of the lower tank are configured to freely communicate with each other through a thin tube for passing air bubbles. A leakage detection tank for a test object, characterized by: 3. In the leakage testing device for an inspected object according to claim 1 or 2, the pressure balancing bypass pipe is connected to a side wall port on the lower end side of the lower tank and a side wall port on the bottom side below the liquid level of the upper tank. A leak detection tank for an object to be inspected, characterized in that the tank is fixed in a manner that allows communication between the tank and the tank.
JP51156785A 1976-12-25 1976-12-25 Structure of leak detection tank of inspected object and its inspection device Expired JPS5938538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51156785A JPS5938538B2 (en) 1976-12-25 1976-12-25 Structure of leak detection tank of inspected object and its inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51156785A JPS5938538B2 (en) 1976-12-25 1976-12-25 Structure of leak detection tank of inspected object and its inspection device

Publications (2)

Publication Number Publication Date
JPS5381186A JPS5381186A (en) 1978-07-18
JPS5938538B2 true JPS5938538B2 (en) 1984-09-18

Family

ID=15635247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51156785A Expired JPS5938538B2 (en) 1976-12-25 1976-12-25 Structure of leak detection tank of inspected object and its inspection device

Country Status (1)

Country Link
JP (1) JPS5938538B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56131416U (en) * 1980-03-10 1981-10-06
JPS6446785U (en) * 1987-09-18 1989-03-22
JPH01143929A (en) * 1987-12-01 1989-06-06 Kayaba Ind Co Ltd Leak detecting method using air bubble signal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS493680A (en) * 1972-03-15 1974-01-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS493680A (en) * 1972-03-15 1974-01-12

Also Published As

Publication number Publication date
JPS5381186A (en) 1978-07-18

Similar Documents

Publication Publication Date Title
US4872974A (en) Apparatus for testing membrane filters, and for sterilizing liquids with use of membrane filter
JP2643440B2 (en) Leak inspection device
US4813268A (en) Leakage detection apparatus for drum wheels and method therefore
JP2003517598A (en) Method for inspecting leaks and locating leaks and apparatus suitable for performing the method
US3578758A (en) Orifice gross leak tester
US6732571B1 (en) Film leak detector
US4402214A (en) Filter element test method and apparatus
US3516284A (en) Leak detector
US3771366A (en) Device for collection and measurement of liquid volumes
JPH06201046A (en) O-ring testing device for air flow-rate sensor
JPS5938538B2 (en) Structure of leak detection tank of inspected object and its inspection device
JP2000283879A (en) Inspection device for waterproofness of electronic equipment
US4924694A (en) Apparatus for leak testing a fluid containing chamber
JPH09145525A (en) Leak detector and detection method
JP3850273B2 (en) Work air tightness inspection apparatus and air tightness inspection method
US5237856A (en) Bubble emission volume quantifier
JPH01285834A (en) Inspecting apparatus of leak
EP0041530B1 (en) Fluid-tightness testing of large vessels
JP3670773B2 (en) Air leak test device
JPH01308937A (en) Leak inspection apparatus
JPH01308935A (en) Leak inspection apparatus
US3659453A (en) Fluid system leak detector
US3661009A (en) Gas quality indicator and method for determining gas quality
JPH04369448A (en) Apparatus and method for inspecting leakage of fluid controller
CN113176043B (en) Gas leakage detection system and method