JPS5936835B2 - Semiconductor pressure/differential pressure transmitter - Google Patents

Semiconductor pressure/differential pressure transmitter

Info

Publication number
JPS5936835B2
JPS5936835B2 JP9702776A JP9702776A JPS5936835B2 JP S5936835 B2 JPS5936835 B2 JP S5936835B2 JP 9702776 A JP9702776 A JP 9702776A JP 9702776 A JP9702776 A JP 9702776A JP S5936835 B2 JPS5936835 B2 JP S5936835B2
Authority
JP
Japan
Prior art keywords
pressure
semiconductor
silicon
pressure introduction
package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9702776A
Other languages
Japanese (ja)
Other versions
JPS5323286A (en
Inventor
進 君島
正三 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP9702776A priority Critical patent/JPS5936835B2/en
Publication of JPS5323286A publication Critical patent/JPS5323286A/en
Publication of JPS5936835B2 publication Critical patent/JPS5936835B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は流体の圧力を電気量に変換し、標準の電気信号
を作り出す圧力・差圧伝送器に係り、特に圧力変換部に
半導体単結晶からなる起歪板を使用した半導体圧力差圧
伝送器に関する。
[Detailed Description of the Invention] The present invention relates to a pressure/differential pressure transmitter that converts fluid pressure into an electrical quantity and generates a standard electrical signal, and in particular uses a strain plate made of a semiconductor single crystal in the pressure converting section. This invention relates to a semiconductor pressure differential pressure transmitter.

一般に半導体圧力・差圧伝送器は第1図及び第2図に示
す如く構成されている。
Generally, a semiconductor pressure/differential pressure transmitter is constructed as shown in FIGS. 1 and 2.

そしてこの第1図は半導体圧力・差圧センサ部のうちダ
イヤフラム型のもので縦型の断面図、第2図は第1図の
半導体ダイヤフラム型圧力・差力センサを圧力導入部材
に接着回定し、さらに圧力伝送器に装填した部分断面図
である。ここで圧力変換ペレット1には中央部に流体の
圧力によつて歪を生ずる起歪ダイヤフラム2が設けられ
ており、通常この圧力変換ペレット1は数Ωmのn型シ
リコン単結板が用いられている。
Fig. 1 is a vertical cross-sectional view of the diaphragm type semiconductor pressure/differential pressure sensor section, and Fig. 2 shows the semiconductor diaphragm type pressure/differential force sensor shown in Fig. 1 bonded and rotated to a pressure introducing member. FIG. 2 is a partial cross-sectional view of the pressure transmitter loaded. Here, the pressure conversion pellet 1 is provided with a strain diaphragm 2 in the center that causes distortion due to the pressure of the fluid, and normally this pressure conversion pellet 1 is made of an n-type silicon single plate of several Ωm. There is.

該ペレット1は同じ熱膨張係数を有するシリコン台座3
と接着面4においてエポキシ接着又はガラス接着によつ
て固定されている。該シリコン台座3には配線用パッケ
ージ端子板5が配設され、例えばシリコンからなる前記
起歪ダイヤフラム2上に拡散形成された歪抵抗層6には
Al等の金属配線層7を通じてボンデインワイャ8によ
つて結線されている。次に第2図を説明する。
The pellet 1 has a silicon pedestal 3 having the same coefficient of thermal expansion.
and is fixed on the adhesive surface 4 by epoxy adhesive or glass adhesive. A wiring package terminal board 5 is disposed on the silicon pedestal 3, and a bond wire 8 is connected to the strain resistance layer 6, which is formed by diffusion on the strain diaphragm 2 made of, for example, silicon, through a metal wiring layer 7 made of Al or the like. wired together. Next, FIG. 2 will be explained.

第1図のシリコンダイヤフラム型圧力センサは圧力導入
部材21に面22でエポキシ又はガラス接着により固定
されている。該圧力導入部材21は圧力センサの動作温
度である−30℃〜+150℃の範囲で上記圧力変換ペ
レット1及びシリコン台座3の熱膨張係数と等しい金属
、例えばINLメタルから形成されている。該圧力導入
部材21は他端に形成されたねじ部23で圧力伝送器本
体24と気密にねじ止めされる。測定する流体圧力は、
該伝送器の導入結合部の一端に設けられた薄い金属の可
撓性ダイヤフラム25に伝えられ、該可撓性ダイヤフラ
ム25と前記圧力変換ペレット1間に真空封入されたシ
リコンオイル26を介して伝えられる。一方、流体圧力
による前記圧力変換ペレット1の電気的変化は、前記パ
ッケージ端子5に接続されたコネクタ2Tによつて補償
回路系(図示せず)へ伝達される。ここで、圧力伝送器
本体24は測定用流体および外部の腐蝕性雰囲気でも侵
されないステンレス系統の金属材料が用いられ、圧力変
換ペレツト1およ゜び圧力導入部材21とは熱膨張係数
が大きく異つているが、該圧力導入部材の中間部に設け
られた括れ部28によつて本体24の影響から保護され
ている。以上、第1図、第2図で説明したシリコンダイ
ヤフラム型圧力センサには大き々利点があるが、1つの
欠点を持つている。
The silicon diaphragm type pressure sensor shown in FIG. 1 is fixed to a pressure introducing member 21 at a surface 22 by epoxy or glass bonding. The pressure introduction member 21 is made of a metal, for example, INL metal, which has a coefficient of thermal expansion equal to that of the pressure conversion pellet 1 and the silicon pedestal 3 in the range of -30°C to +150°C, which is the operating temperature of the pressure sensor. The pressure introduction member 21 is airtightly screwed to the pressure transmitter main body 24 through a threaded portion 23 formed at the other end. The fluid pressure to be measured is
The pressure is transmitted to a thin metal flexible diaphragm 25 provided at one end of the inlet joint of the transmitter, and is transmitted via silicone oil 26 vacuum-sealed between the flexible diaphragm 25 and the pressure conversion pellet 1. It will be done. On the other hand, electrical changes in the pressure conversion pellet 1 due to fluid pressure are transmitted to a compensation circuit system (not shown) through a connector 2T connected to the package terminal 5. Here, the pressure transmitter main body 24 is made of a stainless steel metal material that is not corroded by the measuring fluid and the corrosive atmosphere outside, and has a coefficient of thermal expansion that is significantly different from that of the pressure conversion pellet 1 and the pressure introduction member 21. However, it is protected from the influence of the main body 24 by a constricted portion 28 provided at the intermediate portion of the pressure introducing member. Although the silicon diaphragm pressure sensor described above in FIGS. 1 and 2 has many advantages, it also has one drawback.

まず利点は圧力変換ペレット1、シリコン台座3および
圧力導入部材21が素子の使用温度範囲で全て熱膨張係
数が等しくそろえられている点にある。従来のこの種の
センサでは、センサ単体と圧力を実際に導入するための
結合部で熱膨張係数が異つていること、機械的結合時に
歪をセンサに与えてしまうという欠点があつた。第2図
の実施例では、圧力変換素子と同じ熱膨張係数の圧力導
入部材を用いてあり、さらに中間部に括れ部を有してい
るので、この部分で機械的、熱的歪が遮断され圧力変換
素子には取付け筐体や伝送器本体24の影響が伝わらな
い。唯一の大きな欠点は圧力変換素子とシリコン台座の
接着およびシリコン台座と圧力導入部材との接着にガラ
ス接着又はエポキシ接着を用いなければならないことに
ある。接着は流体圧力を圧力変換素子に正しく加えるた
めの気密保持と圧力変換ペレツト1と圧力導入部材21
の電気的絶縁を保つための2つの目的をはたさなければ
ならない。エポキシ接着もガラス接着もシリコンダイヤ
フラム型圧力センサを固定する接着剤としては種々の問
題点を持つている。例えばエポキシ接着は長期間におよ
ぶ耐蝕性に難点があると言われている。又ガラス接着で
は、一般に溶融、接着温度が600℃〜700℃と非常
に高温であるため、圧力変換ペレツト上の金属配線層が
侵される欠点があり、作業上に難点がある。エポキシ系
、ガラス系を問わず一般に接着剤の材料は低温接着のも
のほど耐蝕性が弱く、高温のものほど耐蝕性が優れてい
る。
First, the advantage is that the pressure conversion pellet 1, the silicon pedestal 3, and the pressure introducing member 21 all have the same coefficient of thermal expansion within the operating temperature range of the device. Conventional sensors of this type have the disadvantage that the coefficient of thermal expansion is different between the sensor itself and the joint where pressure is actually introduced, and that strain is applied to the sensor during mechanical connection. In the embodiment shown in Fig. 2, a pressure introduction member having the same coefficient of thermal expansion as the pressure conversion element is used, and it also has a constricted part in the middle, so mechanical and thermal strain is blocked at this part. The influence of the mounting casing and the transmitter main body 24 is not transmitted to the pressure transducer element. The only major drawback is that glass bonding or epoxy bonding must be used to bond the pressure transducer element to the silicon pedestal and to bond the silicon pedestal to the pressure introducing member. The adhesive is used to maintain airtightness in order to properly apply fluid pressure to the pressure conversion element, and to bond the pressure conversion pellet 1 and the pressure introduction member 21.
It must serve two purposes in order to maintain electrical insulation. Both epoxy adhesive and glass adhesive have various problems as adhesives for fixing silicon diaphragm type pressure sensors. For example, epoxy adhesives are said to have problems in long-term corrosion resistance. Furthermore, in glass bonding, the melting and bonding temperatures are generally very high, 600 DEG C. to 700 DEG C., and therefore the metal wiring layer on the pressure conversion pellet is corroded, making the process difficult. In general, adhesive materials, whether epoxy or glass, have lower corrosion resistance when bonded at a lower temperature, and better corrosion resistance when bonded at a higher temperature.

この点でエポキシ接着には、センサの最高使用温度より
あまり高温のものはなく、高温下でセンサを使用する場
合、長期的信頼性に欠ける難点があった。圧力センサ、
歪センサでは感圧、感歪素子を固定するために接着とい
う作業は不可避である。
In this respect, epoxy adhesives cannot be used at temperatures much higher than the maximum operating temperature of the sensor, and when the sensor is used at high temperatures, it has the disadvantage of lacking long-term reliability. pressure sensor,
In strain sensors, adhesive work is unavoidable in order to fix pressure-sensitive and strain-sensitive elements.

感圧、感歪素子に半導体、とりわけシリコンを用いる場
合には、接着に金−シリコン合金法を用いることができ
れば、長期間の高温使用にも特性の安定化をはかること
ができる。この方法は370℃でシリコンと金の合金化
によつて接着層を形成させるため、エポキシ接着よりは
るかに優れた耐久性、耐クリープ性を有している。しか
しこの接着法の大きな欠点は、シリコン感圧素子の基板
と合金接着される相手の金属との間が電気的導通状態に
なつてしまうことである。例えば第1図で示した、シリ
コンダイヤフラム型圧力センサを金一シリコン合金接着
させると仮定する。先ず、感圧ベレツト1とシリコン台
座3の接着において、接着部分からはあらかじめシリコ
ン酸化膜9を除去しておかなければ、強力な金−シリコ
ン接着は得られない。そのために、感圧ペレツトのシリ
コン基板1とシリコン台座3間は金−シリコン合金層を
介して電気的導通状態になつてしまう。さらに第2図で
示した金属製の圧力導入部材21とシリコン台座3間に
も同じように金一シリコン合金層を介して電気的導通が
生じてしまう。シリコンダイヤフラム型圧力センサでは
、一般にシリコン基板にn型を用い、拡散抵抗層にはp
型を用いるのでこの間にはPn接合が形成されている。
実際の圧力測定においては、このPn接合に逆バイアス
電圧を加え、p型拡散層を電気的にn型基板から絶縁さ
せなければならない。また金属製の圧力導入部材はこれ
が取りつけられる筐体とともにアース電位にしなければ
ならない。感圧ペレツトのn型基板が該圧力導入部材と
導通状態にあると、Pn接合に順方向電位が加わつてし
まう場合も生じてしまう。又センサ部で筐体とともに回
路系の一部がアース電位になることを、2点アースと称
して工業用圧力伝送器のように2線式に統一された計測
器では、使用することができない。本発明は上記かかる
接着技術に関する欠点を改善し、高性能、高信頼性並び
に特性の長期安定性を確立した半導体圧力・差圧伝送器
を提供するものである。
When a semiconductor, especially silicon, is used for the pressure-sensitive or strain-sensitive element, if a gold-silicon alloy method can be used for adhesion, the properties can be stabilized even during long-term high-temperature use. Since this method forms an adhesive layer by alloying silicon and gold at 370°C, it has far superior durability and creep resistance than epoxy adhesive. However, a major drawback of this bonding method is that electrical continuity occurs between the substrate of the silicon pressure-sensitive element and the metal to which it is alloy bonded. For example, assume that the silicon diaphragm type pressure sensor shown in FIG. 1 is bonded to a gold-silicon alloy. First, when adhering the pressure-sensitive beret 1 and the silicon pedestal 3, strong gold-silicon adhesion cannot be obtained unless the silicon oxide film 9 is removed from the adhesion area in advance. Therefore, the silicon substrate 1 of the pressure-sensitive pellet and the silicon pedestal 3 become electrically conductive through the gold-silicon alloy layer. Further, electrical continuity similarly occurs between the metal pressure introducing member 21 and the silicon pedestal 3 shown in FIG. 2 via the gold-silicon alloy layer. In silicon diaphragm pressure sensors, the silicon substrate is generally n-type, and the diffused resistance layer is p-type.
Since a mold is used, a Pn junction is formed between them.
In actual pressure measurement, a reverse bias voltage must be applied to this Pn junction to electrically insulate the p-type diffusion layer from the n-type substrate. Furthermore, the metal pressure introducing member must be at ground potential along with the casing to which it is attached. If the n-type substrate of the pressure-sensitive pellet is in conduction with the pressure introduction member, a forward potential may be applied to the Pn junction. In addition, when a part of the circuit system is at ground potential along with the casing in the sensor section, it is called two-point grounding, and cannot be used in measuring instruments that are standardized to two wires such as industrial pressure transmitters. . The present invention provides a semiconductor pressure/differential pressure transmitter that improves the above-mentioned drawbacks of the adhesive technology and has established high performance, high reliability, and long-term stability of characteristics.

次に本発明の一実施例を図面を参照して具体的に説明す
る。
Next, one embodiment of the present invention will be specifically described with reference to the drawings.

第3図は断面図を示すもので、31は中央部にp型拡散
抵抗層32を設け中央部に感圧ダイヤフラム33を有し
、周辺部34で肉厚としたn型シリコン単結晶基板より
なる感圧ペレツト、35は周辺部にハーメチツクシール
等36で端子37を埋め込んだパツケージ部材である。
該パツケージ部材の中央部には、一端にフランジ状水端
部38を有し、貫通した圧力導入窓39を有する圧力導
入部材40が前記パツケージ部材35と41部でロウ付
け又はネジ止めされ気密保持されている。該圧力導入部
材40は圧力の測定温度範囲、例えば−30℃〜+12
0℃でシリコンと同じ熱膨張係数を有するメタル、例え
ばINLメタルあるいはシリコン形成される。しかしパ
ツケージ部材35の材料としては特に指定する必要はな
い。上記1NLメタルからなる圧力導入部材40のフラ
ンジ状平端部38には金−シリコン合金12を介して感
圧ペレツト31を取り付けてある。
FIG. 3 shows a cross-sectional view, and 31 is an n-type silicon single crystal substrate with a p-type diffused resistance layer 32 in the center, a pressure-sensitive diaphragm 33 in the center, and a thick peripheral part 34. The pressure sensitive pellet 35 is a package member in which a terminal 37 is embedded in the periphery with a hermetic seal or the like 36.
In the center of the package member, a pressure introduction member 40 having a flange-like water end 38 at one end and a pressure introduction window 39 extending therethrough is brazed or screwed to the package members 35 and 41 to maintain airtightness. has been done. The pressure introduction member 40 has a pressure measurement temperature range of, for example, -30°C to +12°C.
A metal having the same coefficient of thermal expansion as silicon at 0° C., such as INL metal or silicon, is formed. However, the material of the package member 35 does not need to be specified in particular. A pressure-sensitive pellet 31 is attached to the flange-shaped flat end portion 38 of the pressure introducing member 40 made of 1NL metal via a gold-silicon alloy 12.

一方、上記パツケージ部材35は筐体44に絶縁材料4
3を介して気密に取付けられる。この取付け方法により
上記感圧ペレツト31と筐体44とは電気的に完全に絶
縁される。このパツケージ法を用いれば、感圧ペレツト
31上に設けられたp型拡散層32と外部への取り出し
用・・−メチツク端子37とは同じ高さに揃えることが
でき通常の半導体、IC素子のパツケージング法と同じ
ように熱ボンデイング法又は、超音波ボンデイング法に
よつて感圧ペレツトの配線を行うことができる。
On the other hand, the package member 35 has an insulating material 4 on the housing 44.
3 to be airtightly installed. By this mounting method, the pressure sensitive pellet 31 and the housing 44 are completely electrically insulated. By using this packaging method, the p-type diffusion layer 32 provided on the pressure-sensitive pellet 31 and the mesh terminal 37 for taking out to the outside can be aligned at the same height. The pressure-sensitive pellets can be wired by a thermal bonding method or an ultrasonic bonding method, similar to the packaging method.

他の実施例として、圧力導入部材40とパツケージ部材
35とをガラス接着して感圧ペレツト31と筐体44と
を絶縁してもよい。
As another embodiment, the pressure-sensitive pellet 31 and the housing 44 may be insulated by bonding the pressure introduction member 40 and the package member 35 with glass.

また圧力導入部材とパツケージ部材とを高分子系絶縁材
カラス・セラミツク、マイカなどの絶縁材料で間隙を設
け、エポキシなどの接着剤で取付けてもよい。すなわち
本発明の特徴は該感圧ペレツトを前記圧力導入部材のフ
ランジ状底部に例えば金−シリコン合金のような金属一
半導体合金で接着し、該感圧ペレツトと該圧力導入部材
との間を積極的に電気的導通状態にせしめ、感圧ペレツ
ト基板と筐体間の電気的絶縁は該圧力導入部材とパツケ
ージ部材との間若しくはパツケージ部材とこのパツケー
ジ部材を取り付ける筐体との間の少なくともいずれか一
方にカラス、セラミツク、高分子系絶縁材、絶縁性接着
剤或いは、これらの組み合わせのものを設けることによ
り確立することにある。
Alternatively, the pressure introducing member and the package member may be attached using an adhesive such as epoxy after providing a gap between them using an insulating material such as a polymeric insulating material such as glass, ceramic, or mica. That is, the feature of the present invention is that the pressure-sensitive pellet is bonded to the flange-shaped bottom of the pressure-introducing member with a metal-semiconductor alloy such as gold-silicon alloy, and the pressure-sensitive pellet and the pressure-introducing member are positively connected. electrical continuity between the pressure-sensitive pellet substrate and the housing, and electrical insulation between the pressure-sensitive pellet substrate and the housing at least between the pressure introducing member and the package member or between the package member and the housing to which the package member is attached. This is established by providing glass, ceramic, polymeric insulating material, insulating adhesive, or a combination thereof on one side.

この手法を用いることによつて感圧ペレツトの基板電極
は、前記筐体とは絶縁を保つたまま、前記フランジ底部
から直接ハーメチツクシール端子べ取り出しが可能とな
るだけでなく、ペレット製作上の工程も省略できる2つ
のメリツトが生れる。従来、n基板電極の形式には、露
光、n+拡散、金属蒸着等の工程が不可欠であつたが、
本発明を用いることによつてn基板に前記フランジ部が
合金接着されるため、これらの工程が全て省略できる。
また、金−シリコン合金接着によつて耐蝕性、クリープ
特性の向上がはかれる。さらに真空をりファレンズとし
て微圧を測定する場合にも有効である。真空をりファレ
ンズとする場合、感圧ペレツトの片側を真空にする必要
があり、真空容器の排気には、300℃以上の高温排気
処理を施さねば、長期的真空の保持は不可能である。こ
の気密保持にエポキシを用いると高温排気処理ができず
、長期間の真空保持はできなかつた。また圧力導入部材
にセンサ動作温度領域でシリコン感圧ペレツトと同じ熱
膨張係数を有するINLメタルを用い、しかも該ペレツ
トを接着するフランジ底部以外は肉薄となつている為に
、パツケージ部材の材料を問わず感圧ペレツトには熱歪
の影響と取付け時の機械的歪の影響から遮断される。第
3図の絶縁材料43の気密取付け方法は、例えば絶縁材
料としてセラミツクを用い、このセラミツクの両端をメ
タル化し、一方をパツケージ部材に他方を筐体にロウ付
けしてもよい。
By using this method, the hermetic seal terminal can be removed directly from the bottom of the flange while maintaining insulation from the casing. There are two advantages in that this process can also be omitted. Conventionally, processes such as exposure, n+ diffusion, and metal vapor deposition were indispensable for forming n-substrate electrodes.
By using the present invention, since the flange portion is alloy-bonded to the n-type substrate, all of these steps can be omitted.
Furthermore, the gold-silicon alloy adhesion improves corrosion resistance and creep characteristics. Furthermore, it is also effective when measuring minute pressures using a vacuum filter lens. When using a vacuum reflux lens, it is necessary to evacuate one side of the pressure-sensitive pellet, and it is impossible to maintain a vacuum for a long time unless the vacuum container is evacuated at a high temperature of 300° C. or higher. If epoxy was used to maintain the airtightness, high-temperature exhaust treatment would not be possible, and long-term vacuum maintenance would not be possible. In addition, the pressure introducing member is made of INL metal, which has the same coefficient of thermal expansion as the silicon pressure-sensitive pellet in the sensor operating temperature range, and since the wall is thin except for the bottom of the flange to which the pellet is bonded, the material of the package member may be selected. The pressure-sensitive pellets are insulated from the effects of thermal strain and mechanical strain during installation. A method for airtightly attaching the insulating material 43 shown in FIG. 3 may be, for example, by using ceramic as the insulating material, metalizing both ends of the ceramic, and brazing one end to the package member and the other end to the casing.

あるいは、一方をメタル化し、これを筐体にロウ付けし
、他方にネジを設け、パツケージ部材に設けたネジとで
気密にネジ止めしてもよい。このネジとメタル化は逆で
もよい。また筐体とパツケージ部材とをガラス接着して
もよい。また、例えば先に述べたように真空をりファレ
ンズとする場合の高温排気処理のような、高温処理を特
に必要としない場合には、パツケージ部材と筐体との間
に、例えばマイラ一などの高分子系絶縁材、ガラス・セ
ラミツク、マイカなどの絶縁材料で間隙を設け、エポキ
シなどの接着剤で取り付けてもよい。
Alternatively, one side may be made of metal, this may be brazed to the housing, screws may be provided on the other side, and the screws may be airtightly secured to the screws provided on the package member. This screw and metalization can be reversed. Alternatively, the casing and the package member may be bonded to glass. In addition, in cases where high-temperature treatment is not particularly required, such as the high-temperature exhaust treatment when using a vacuum filter lens as mentioned above, a material such as mylar, etc., may be used between the package member and the housing. A gap may be provided using an insulating material such as a polymeric insulating material, glass/ceramic, or mica, and the gap may be attached using an adhesive such as epoxy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の半導体圧力センサの構造断面図、第2図
は第1図の半導体センサを装填した圧力伝送器の部分断
面図、第3図は本発明による圧力センサの一実施例の構
造断面図である。 31は感圧ペレツト、32はp型拡散抵抗層、33はダ
イヤフラム、35はパツケージ部材、36はハーメチッ
クシール、37は端子、38はフランジ状平端部、39
は圧力導入窓、40は圧力導入部材、42は金−シリコ
ン合金、43は絶縁材料、44は筐体である。
FIG. 1 is a structural sectional view of a conventional semiconductor pressure sensor, FIG. 2 is a partial sectional view of a pressure transmitter loaded with the semiconductor sensor of FIG. 1, and FIG. 3 is a structure of an embodiment of a pressure sensor according to the present invention. FIG. 31 is a pressure sensitive pellet, 32 is a p-type diffused resistance layer, 33 is a diaphragm, 35 is a package member, 36 is a hermetic seal, 37 is a terminal, 38 is a flange-like flat end, 39
4 is a pressure introduction window, 40 is a pressure introduction member, 42 is a gold-silicon alloy, 43 is an insulating material, and 44 is a housing.

Claims (1)

【特許請求の範囲】[Claims] 1 中心部に圧力導入窓が設けられ半導体とほぼ同じ熱
膨張係数を示す圧力導入部材と、該圧力導入部材の周辺
部にハーメチックシールで形成された複数個のリード端
子を有するパッケージ部材と前記圧力導入部材に電気的
に導通状態で接着されかつ前記圧力導入部材の前記圧力
導入窓部を封止するごとく取付けられた第1の導電型の
半導体感圧ペレットと、該半導体感圧ペレットのダイヤ
フラム部に設けられた第2の導電型の複数個の歪計と、
該歪計に取付けられた金属配線層と該配線層と前記ハー
メチックシール端子の頭部とをほぼ同じ面上で配線する
手段と、前記圧力導入部材と前記パッケージ部材との間
若しくは前記パッケージ部材と該パッケージ部材を取付
ける筐体との間の少なくともいずれか一方に絶縁部材を
備えたことを特徴とした半導体圧力・差圧伝送器。
1. A pressure introduction member having a pressure introduction window in the center and having a coefficient of thermal expansion that is almost the same as that of a semiconductor, a package member having a plurality of lead terminals formed with a hermetic seal around the pressure introduction member, and the pressure introduction member. A semiconductor pressure-sensitive pellet of a first conductivity type that is adhered to the introduction member in an electrically conductive state and is attached so as to seal the pressure introduction window portion of the pressure introduction member, and a diaphragm portion of the semiconductor pressure-sensitive pellet. a plurality of strain gauges of a second conductivity type provided in the
means for wiring a metal wiring layer attached to the strain gauge, the wiring layer and the head of the hermetic seal terminal on substantially the same plane, and between the pressure introduction member and the package member or between the package member and A semiconductor pressure/differential pressure transmitter comprising an insulating member on at least one side between the package member and a casing to which the package member is attached.
JP9702776A 1976-08-16 1976-08-16 Semiconductor pressure/differential pressure transmitter Expired JPS5936835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9702776A JPS5936835B2 (en) 1976-08-16 1976-08-16 Semiconductor pressure/differential pressure transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9702776A JPS5936835B2 (en) 1976-08-16 1976-08-16 Semiconductor pressure/differential pressure transmitter

Publications (2)

Publication Number Publication Date
JPS5323286A JPS5323286A (en) 1978-03-03
JPS5936835B2 true JPS5936835B2 (en) 1984-09-06

Family

ID=14180945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9702776A Expired JPS5936835B2 (en) 1976-08-16 1976-08-16 Semiconductor pressure/differential pressure transmitter

Country Status (1)

Country Link
JP (1) JPS5936835B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6327847U (en) * 1986-08-08 1988-02-24
JP2574393B2 (en) * 1988-05-24 1997-01-22 松下電器産業株式会社 Pressure sensor
IL106790A (en) * 1992-09-01 1996-08-04 Rosemount Inc Pedestal mount capacitive pressure sensor and a process of manufacturing same
JP5200947B2 (en) * 2009-01-14 2013-06-05 株式会社デンソー Manufacturing method of sensor device and sensor device

Also Published As

Publication number Publication date
JPS5323286A (en) 1978-03-03

Similar Documents

Publication Publication Date Title
US4040297A (en) Pressure transducer
US3817107A (en) Semiconductor pressure transducer
US5186055A (en) Hermetic mounting system for a pressure transducer
US3800264A (en) High temperature transducers and housing including fabrication methods
US4168630A (en) Semiconductor pressure converter
EP0354479B1 (en) Semiconductor pressure sensor
US7703329B2 (en) Pressure sensor
US3697917A (en) Semiconductor strain gage pressure transducer
US6450039B1 (en) Pressure sensor and method of manufacturing the same
US3930823A (en) High temperature transducers and housing including fabrication methods
US8196476B2 (en) Flat planar pressure transducer
US6122974A (en) Semiconductor type pressure sensor
US5264820A (en) Diaphragm mounting system for a pressure transducer
JPS5936835B2 (en) Semiconductor pressure/differential pressure transmitter
JPS6155789B2 (en)
CN215893878U (en) High-temperature-resistant oil-filled pressure detection device
JPS594868B2 (en) semiconductor equipment
CN113624368A (en) High-temperature-resistant oil-filled SOI pressure sensor
JPS62226031A (en) Pressure sensor unit
JP2625225B2 (en) Semiconductor pressure sensor
JPH11160179A (en) Semiconductor pressure sensor
JPS5854676A (en) Semiconductor pressure converter
JP3375533B2 (en) Semiconductor pressure transducer
JPS5828754B2 (en) Pressure-electric conversion device
JPH0566979B2 (en)