JPS5935316A - Method of producing crosslinked polyethylene cable - Google Patents

Method of producing crosslinked polyethylene cable

Info

Publication number
JPS5935316A
JPS5935316A JP14497582A JP14497582A JPS5935316A JP S5935316 A JPS5935316 A JP S5935316A JP 14497582 A JP14497582 A JP 14497582A JP 14497582 A JP14497582 A JP 14497582A JP S5935316 A JPS5935316 A JP S5935316A
Authority
JP
Japan
Prior art keywords
voltage
insulating layer
polyethylene cable
crosslinked polyethylene
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14497582A
Other languages
Japanese (ja)
Inventor
花井 節
相原 貢
会田 二三夫
武男 塩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP14497582A priority Critical patent/JPS5935316A/en
Publication of JPS5935316A publication Critical patent/JPS5935316A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は架橋ポリエチレンケーブルの製造方法の改良に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to an improvement in a method for manufacturing a crosslinked polyethylene cable.

(従来技術およびその問題点) 電子線照射を用いた架橋ポリ1ヂレングープルの製造技
術は、化学架橋にくらべると、照射設備を必要どする反
面特に電気特性に優れたケーブルを省資源あるいは省エ
ネルギーなどの要請を満たし、高効率で生産し得るプロ
レスとし−C重視されている。しかしながら絶縁体であ
るポリ1チレンに加速電子が照射されると、目的とりる
架橋改良の照射効果とともに前記ポリエチレンに空間電
荷が蓄積されることどなり、この場合条件にJ:っては
いわゆるソヒテンベルグ像と呼ばれるトリー状の放電破
壊現象を発生し、耐圧を著しく低下させることとなる。
(Prior art and its problems) Compared to chemical crosslinking, the production technology of cross-linked poly-1-dilene groups using electron beam irradiation requires irradiation equipment, but on the other hand, it makes it possible to produce cables with particularly excellent electrical properties in a way that saves resources and energy. -C is emphasized as a professional wrestling that meets the demands and can be produced with high efficiency. However, when accelerated electrons are irradiated onto poly(1-ethylene) ethylene, which is an insulator, space charges are accumulated in the polyethylene along with the irradiation effect aimed at improving crosslinking. This causes a tree-shaped discharge breakdown phenomenon called ``tree-like discharge breakdown'', which significantly lowers the withstand voltage.

又、トリー発生がなくても前記ポリエチレンに空間電荷
が蓄積され、ケーブル耐圧の低下はまぬがれなかった。
Furthermore, even if no trees were generated, space charges were accumulated in the polyethylene, and the cable withstand voltage was inevitably lowered.

このクープル耐圧の低下は絶縁体としては致命的な欠陥
となるものであり、この問題を解明するための研究は活
発であるが、実生産工程にその成果を活用し得る段階に
まで達しておらず、現実にはトリー発生の生起を回避す
るような照射条件あるいは絶縁厚の選択に頼っていたが
、これらはいずれも効率の良い生産の阻害要因となるも
のであった。
This drop in the couple's breakdown voltage is a fatal defect for insulators, and although research is active to solve this problem, it has not yet reached the stage where the results can be utilized in actual production processes. In reality, the selection of irradiation conditions or insulation thickness that avoids the occurrence of trees has been relied upon, but these are all factors that impede efficient production.

(発明の目的) 本発明はこのような点に着目してなされたもので、ケー
ブル絶縁層に直流電圧を印加することにJこり、1〜り
一発生を抑止し、従ってケーブル耐圧を向上させること
のできる架橋ポリエチレンケーブルの製造方法を提供す
るものである。
(Purpose of the Invention) The present invention has been made with attention to the above points, and it is possible to suppress the occurrence of J-resistance and 1 to 1-recurrence when applying a DC voltage to a cable insulating layer, and thus improve the cable withstand voltage. The present invention provides a method for manufacturing a cross-linked polyethylene cable that can be manufactured by using a cross-linked polyethylene cable.

(発明の概要) 本発明においでは導体上にポリエチレン樹脂組成物を絶
縁層として被覆した後、該絶縁層に電子線を照射して架
橋覆るにあたり、電子線の照射中あるいは照射後に該絶
縁層11Il厚に対し1〜2000Vの直流電圧を印加
することにより前記目的を達成している。
(Summary of the Invention) In the present invention, after coating a conductor with a polyethylene resin composition as an insulating layer, the insulating layer 11Il is cross-linked by irradiating the insulating layer with an electron beam during or after irradiation with the electron beam. The above objective is achieved by applying a DC voltage of 1 to 2000 V to the thickness.

本発明のケーブルに印加する直流電圧を被覆層I n+
v+厚に対して1〜2000Vとしたのは、1Vより小
さい場合には顕著な1−り一発生の抑制をもたらすほど
の効果がないためであり、一方2000Vよりも大きく
なると過剰電圧となり、電圧の大きさ程耐圧の回復効果
が見られないためである。
The DC voltage applied to the cable of the present invention is applied to the coating layer I n+
The reason why the voltage is set to 1 to 2000V for v+ thickness is that if it is smaller than 1V, it is not effective enough to significantly suppress the occurrence of 1-1, whereas if it is larger than 2000V, it becomes excessive voltage, and the voltage This is because the recovery effect of withstand pressure is not seen as the size of .

又、印加1゛る極性はプラスの方が好ましい。Further, it is preferable that the polarity of the applied voltage is positive.

さらに、直流電圧の印加は常温でも良いが、同時に加熱
を行えば耐圧回復効果を増大さけることができる。加熱
温度どしては150℃以トが適当である。これよりも高
いと耐圧の回復効果が見られず、特に、70〜120℃
の範囲好適し−Cいる。
Furthermore, although the direct current voltage may be applied at room temperature, the withstand voltage recovery effect can be avoided by heating at the same time. The appropriate heating temperature is 150°C or lower. If the temperature is higher than this, the recovery effect of withstand pressure will not be seen, especially at temperatures of 70 to 120°C.
The preferred range is -C.

(発明の実施例) 以下実施例および比較例について本発明を具体的に説明
する。
(Examples of the Invention) The present invention will be specifically described below with reference to Examples and Comparative Examples.

[実施例] 絶縁厚0.4〜1.85+nmのポリエチレン絶縁ケー
ブルを表に示すにうな加速電圧0.5又は1MeV、電
流20又は25 yn A(7)条fl’ r照IJ 
L、照射中あるいは照射後に直流電圧を常温〜150℃
の間で絶縁厚1■に対し1〜1000V印加し、架橋ポ
リエチレン絶縁電線とした。
[Example] A polyethylene insulated cable with an insulation thickness of 0.4 to 1.85+nm was heated to an acceleration voltage of 0.5 or 1 MeV and a current of 20 or 25 yn A(7) as shown in the table.
L, DC voltage during or after irradiation at room temperature to 150℃
A voltage of 1 to 1,000 V was applied for an insulation thickness of 1 inch between the wires to obtain a crosslinked polyethylene insulated wire.

ただし、交流破壊電圧の試験法は長さ3 +nの試料絶
縁の中央部1.5mを水中に浸漬し、導体と水どの間に
7 K Vの交流を印加した後、背圧し7〜20KVの
間ではIKV/分の速度で、20に■以上では2KV/
分の昇圧速度で行い、試料が破壊したとぎの電圧を測定
した。
However, the test method for AC breakdown voltage is to immerse the center 1.5 m of a sample insulation with a length of 3 + n in water, apply an AC of 7 KV between the conductor and the water, and then apply a back pressure of 7 to 20 KV. At a speed of IKV/min between 20 and above, 2KV/min.
The voltage was measured at the point at which the sample was destroyed.

[比較例] 上記実施例で直流電圧を印加しな(X架橋71ζ1ノニ
Lヂレン絶縁電線を試料とした。
[Comparative Example] In the above example, a DC voltage was not applied (an X-crosslinked 71ζ1 nony L dylene insulated wire was used as a sample).

それぞれ実施例および比較例の結果を表に示づ。The results of Examples and Comparative Examples are shown in the table.

以下余白 (発明の効果) 以上述べたように本発明の方法を用いればトリーの発生
を抑え、照射架橋による耐圧低下を回復さ°Lることの
でき、信頼性の高いケーブルを提供することができる。
Margins below (Effects of the Invention) As described above, by using the method of the present invention, it is possible to suppress the occurrence of trees, recover the voltage resistance drop caused by irradiation crosslinking, and provide a highly reliable cable. can.

Claims (1)

【特許請求の範囲】 1、導体上にポリエヂレン樹脂組成物を絶縁層として被
覆した後、該絶縁層に電子線を照射して架橋】るにあた
り、電子線の照射中あるいは照射後に該絶縁層1 am
厚に対し1〜2000Vの直流電圧を印加Jることを特
徴とりる架橋ポリエチレンケーブルの製造方法。 2、直流電圧の印加は絶縁層の加熱と同■、′1に行な
われる特許請求の範囲第1項記載の架橋ポリエチレンケ
ーブルの!ll造り法。
[Claims] 1. After coating a conductor with a polyethylene resin composition as an insulating layer, the insulating layer is irradiated with an electron beam to crosslink the insulating layer 1 during or after irradiation with the electron beam. am
A method for manufacturing a crosslinked polyethylene cable, characterized by applying a DC voltage of 1 to 2000 V to the thickness. 2. The cross-linked polyethylene cable according to claim 1, wherein the application of the DC voltage is carried out in the same steps as the heating of the insulating layer. ll construction method.
JP14497582A 1982-08-21 1982-08-21 Method of producing crosslinked polyethylene cable Pending JPS5935316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14497582A JPS5935316A (en) 1982-08-21 1982-08-21 Method of producing crosslinked polyethylene cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14497582A JPS5935316A (en) 1982-08-21 1982-08-21 Method of producing crosslinked polyethylene cable

Publications (1)

Publication Number Publication Date
JPS5935316A true JPS5935316A (en) 1984-02-27

Family

ID=15374550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14497582A Pending JPS5935316A (en) 1982-08-21 1982-08-21 Method of producing crosslinked polyethylene cable

Country Status (1)

Country Link
JP (1) JPS5935316A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293078U (en) * 1988-12-27 1990-07-24
US8727206B2 (en) 2008-01-21 2014-05-20 Ptm Packaging Tools Machinery Pte. Ltd. Cup made of a paper material
US9180995B2 (en) 2009-06-23 2015-11-10 Toppan Printing Co., Ltd. Retort cup

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293078U (en) * 1988-12-27 1990-07-24
US8727206B2 (en) 2008-01-21 2014-05-20 Ptm Packaging Tools Machinery Pte. Ltd. Cup made of a paper material
US9238524B2 (en) 2008-01-21 2016-01-19 Ptm Packaging Tools Machinery Pte. Ltd. Cup made of a paper material
US9260220B2 (en) 2008-01-21 2016-02-16 Ptm Packaging Tools Machinery Pte. Ltd. Cup made of a paper material
US9180995B2 (en) 2009-06-23 2015-11-10 Toppan Printing Co., Ltd. Retort cup

Similar Documents

Publication Publication Date Title
JPS5935316A (en) Method of producing crosslinked polyethylene cable
CN109438807B (en) Insulating material and preparation method and application thereof
JPS59148207A (en) Crosslinked polyethylene insulated cable
JPS64768B2 (en)
JPS6016688B2 (en) Method for manufacturing radiation irradiated crosslinked insulated wire
JPS598209A (en) Electrically insulated cable
JPS598211A (en) Electrically insulated cable
JP2705008B2 (en) Insulated wire
JPS59103214A (en) Method of producing electric wire and cable
JPS59154711A (en) High voltage cable
JPS58209812A (en) Method of producing insulating wire for underwater motor
JPS6014713A (en) Method of producing high pressure insulated wire
JPS5999614A (en) Electrically insulating cable
JPS586244B2 (en) Denkizetstsuenyoujiyushisoseibutsu
JPS58220304A (en) Electrically insulating composition and wire, cable coated with same composition
JPS5947404B2 (en) insulated wire
JPH01128312A (en) Electric wire-cable
JPS598210A (en) Electrically insulated cable
JPS5999607A (en) Electrically insulating cable
JPS5999615A (en) Electrically insulating cable
JPH0917234A (en) Electric insulating composition and electric wire/cable
JPH057802B2 (en)
JPH08241624A (en) Semiconductor resin composition for power cable
JPS5999612A (en) High voltage cable
JPH0625482A (en) Semiconductor resin composition and power cable produced using the same