JPS5934216B2 - How to operate DL sintering machine - Google Patents

How to operate DL sintering machine

Info

Publication number
JPS5934216B2
JPS5934216B2 JP13605581A JP13605581A JPS5934216B2 JP S5934216 B2 JPS5934216 B2 JP S5934216B2 JP 13605581 A JP13605581 A JP 13605581A JP 13605581 A JP13605581 A JP 13605581A JP S5934216 B2 JPS5934216 B2 JP S5934216B2
Authority
JP
Japan
Prior art keywords
layer
sintered
sintering
red
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13605581A
Other languages
Japanese (ja)
Other versions
JPS5839749A (en
Inventor
一磨 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13605581A priority Critical patent/JPS5934216B2/en
Publication of JPS5839749A publication Critical patent/JPS5839749A/en
Publication of JPS5934216B2 publication Critical patent/JPS5934216B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 この発明は、DL式焼結機の操業方法に関するもので、
とくに焼結過程を敏感に反映する焼結層通過の風量を測
定することによって、該測定風量をもとに赤熱帯分布を
推定し、それにもとづいて安定した焼結鉱品質を確保す
るだめの制御を行うようにした点に特色のある焼結機の
操業方法についての提案である。
[Detailed description of the invention] This invention relates to a method of operating a DL type sintering machine,
In particular, by measuring the air volume passing through the sinter layer, which sensitively reflects the sintering process, the red tropical distribution can be estimated based on the measured air volume, and based on this, the sinter can be controlled to ensure stable sintered ore quality. This is a proposal for a method of operating a sintering machine that is unique in that it performs the following steps.

一般の焼結設備は、原料装入装置によりコークス粉、鉱
石粉をパレット上に装入した後、その装入原料層の表面
に点火し、焼結が上層から下層へと進行するなかで、パ
レットを排鉱部へ向わせ、一方点火と同時にパレット下
方からはウィンドボックス、主排虱機介して原料層を通
過する空気を吸引することにより、排鉱部に至るまでの
間に配合されたコークスの燃焼によって乾燥、燃焼、焼
結、冷却の過程を経て、塊成化焼結鉱を生成させる。
In general sintering equipment, after charging coke powder and ore powder onto a pallet using a raw material charging device, the surface of the charged raw material layer is ignited, and as sintering progresses from the upper layer to the lower layer, The pallet is directed toward the ore discharge section, and at the same time as the pallet is ignited, the air passing through the raw material layer is sucked from below the pallet via the wind box and the main scavenger. By burning coke, agglomerated sintered ore is produced through the processes of drying, combustion, sintering, and cooling.

第1図を用いてこの過程を説明すると、配合槽1、〜1
nから切り出された粉鉱石、コークス、石灰石等の原料
5は、メリック2を経て、ミキサー3で注入混合された
のち、給鉱ホツパ−4内に貯蔵され、その後フィーダ6
でパレット7上へ装入される。
To explain this process using Fig. 1, blending tanks 1, ~1
Raw materials 5 such as fine ore, coke, and limestone cut out from the merrick 2 pass through the merrick 2, are injected and mixed in the mixer 3, are stored in the feed hopper 4, and are then transferred to the feeder 6.
It is then loaded onto the pallet 7.

パレット7上に装入された原料層中のコークスが点火炉
8による点火で燃焼して粉鉱石を焼成する。
The coke in the raw material layer charged onto the pallet 7 is ignited by the ignition furnace 8 and burned to burn ore powder.

一方で、パレット7下には各ウィンドボックス10□〜
10nがあり、それはメインブロワ−11に接続されて
いる。
On the other hand, each wind box 10□ ~ under pallet 7
10n, which is connected to the main blower 11.

このメインブロワ−11を通して前記原料層の下方へは
空気が吸引されることから、赤熱帯域(FFP)なるも
のが順次原料層の上層から下層へと進行し、排鉱部付近
に達すると焼成が完了するようになっている。
Since air is sucked into the lower part of the raw material layer through this main blower 11, the red-hot zone (FFP) progresses sequentially from the upper layer to the lower layer of the raw material layer, and when it reaches the vicinity of the ore discharge area, sintering begins. It is set to be completed.

通常の焼結機の操業は、この焼成が完了する点BTPを
、ウィンドボックスに設けた熱電対で排ガス温度の測定
もしくは排ガス成分値から検出して、上記BTP点が一
定域に入るようにパレットスピード、焼結層厚、メイン
ブロワ−サクションタンパ−開度を調整することにより
制御している。
In normal operation of a sintering machine, the point BTP at which sintering is completed is detected from the exhaust gas temperature measurement or exhaust gas component values with a thermocouple installed in the wind box, and the pallet is set so that the BTP point falls within a certain range. It is controlled by adjusting the speed, sintered layer thickness, and main blower suction tamper opening.

このような従来制御方法を採用すると、製造される焼結
鉱の品質は、製造後の焼結鉱からの試料採取からしか検
知し得す、焼結の品質を制御する上で、その時期的な遅
れが大きな問題となっている。
When such conventional control methods are adopted, the quality of the produced sintered ore can only be detected by sampling the sintered ore after production. Delays are a major problem.

以上説明したように焼結塊成化は、乾燥、燃焼焼結、冷
却等の過程を得て行われるが、いまパレット7上の焼結
層を原料帯、赤熱帯、焼結完了帯に大きく区分すると、
これらの帯域中の赤熱帯域での原料滞溜時間、すなわち
コークス燃焼に伴って高温に保持される時間が焼結鉱成
品品質に太きた影響ば及ぼすことが知られている。
As explained above, sinter agglomeration is carried out through processes such as drying, combustion sintering, and cooling. When divided,
It is known that the residence time of the raw material in the red-hot zone among these zones, that is, the time during which the raw material is maintained at a high temperature due to coke combustion, has a significant effect on the quality of the sintered mineral product.

そのため上記高温保持時間を調節すれば製造過程で焼結
鉱成品品質を制御することが可能となる。
Therefore, by adjusting the above-mentioned high temperature holding time, it becomes possible to control the quality of the sintered ore product during the manufacturing process.

ただ、従来かかる高温保持時間を直接制御する方法は行
われていない。
However, conventional methods for directly controlling the high temperature holding time have not been used.

それは、実機においてかかる高温保持時間を測定するに
は、焼結層内に直接熱電対を挿入して測定する以外に適
当な計測方法がなく、熱電灯保守面の困難性もあって不
可能とされていたためである。
In order to measure such high temperature retention time in an actual machine, there is no suitable measurement method other than inserting a thermocouple directly into the sintered layer, and it is difficult to maintain the thermoelectric lamp, making it impossible. This is because it had been done.

また、焼結層内のコークス焼結速度及び冷却速度は層内
通過風量に律速され、焼結鉱の品質及び生産性に大きな
影響を及ぼすことも良く知られている事実である。
Furthermore, it is a well-known fact that the coke sintering rate and cooling rate in the sintered bed are determined by the amount of air passing through the bed, which greatly affects the quality and productivity of the sintered ore.

この意味において、逆に焼結過程の層内通過風量を検出
できれば層内状況が検知可能となる。
In this sense, if the amount of air passing through the layer during the sintering process can be detected, the situation within the layer can be detected.

この発明は、前述の従来技術の問題を゛解決するために
開発した方法であり、焼結層の層中通過風量を測定する
ことによって、赤熱帯分布を推定し各焼結原料がかかる
赤熱帯域へ滞留する時間を適宜に制御することによって
、所定の焼結鉱品質を得るように操業し、品質の安定し
た焼結鉱を確保するようにしたのである。
This invention is a method developed to solve the above-mentioned problems of the prior art, and by measuring the amount of air passing through the sintered layer, the red-hot zone distribution is estimated and each sintered raw material is placed in the red-hot zone. By appropriately controlling the residence time in the reactor, the operation was carried out to obtain a predetermined quality of sintered ore, and sintered ore of stable quality was ensured.

以下本発明の構成を図面の説明にあわせて詳述する。The configuration of the present invention will be described in detail below in conjunction with the explanation of the drawings.

図面の第2図は、焼結操業過程において、層内通過の風
量を機長方向で連続的に測定する装置の概略を示すもの
で、この通過風量測定装置12はパレット7移動方向に
移送する台車13に風箱14を支持したものによってな
り、この台車13は昇降するとともに、パレット7の長
手方向に往復動するもので、その動きの中で焼結層15
内に吸引される風量:即ぢ通過風量を前記風箱14内を
流れる吸引流速から求めるように構成されている。
FIG. 2 of the drawings schematically shows a device that continuously measures the air flow rate passing through the layer in the machine length direction during the sintering operation process. The cart 13 supports a wind box 14, and this cart 13 moves up and down as well as reciprocates in the longitudinal direction of the pallet 7. During this movement, the sintered layer 15
The amount of air sucked into the air box 14 is configured to immediately determine the amount of air passing through the air box 14 from the suction flow velocity flowing inside the air box 14.

この装置12によれば、焼結機機長方向の層内通過風量
(層中に吸引される空気量)が正確に測定できる。
According to this device 12, the amount of air passing through the layer (the amount of air sucked into the layer) in the longitudinal direction of the sintering machine can be accurately measured.

上記風量測定装置12によって測定した測定例を第3図
−aに示す。
An example of measurements taken by the air volume measuring device 12 is shown in FIG. 3-a.

この第3図−aは、30秒毎の測定値のプロットとそれ
の近似曲線を示している。
FIG. 3-a shows a plot of measured values every 30 seconds and an approximate curve thereof.

この測定通過風量値は、焼結層15中の通気抵抗に従う
ものである。
This measured passing air volume value is based on the ventilation resistance in the sintered layer 15.

そこで、その測定によって得られた通過風量分布から各
焼結帯の通気抵抗指数、および通過風量の指数とを使っ
て、焼結機機長方向の層内の赤熱帯分布を求めることが
できる。
Therefore, from the passing air volume distribution obtained by the measurement, the red tropical distribution within the layer in the longitudinal direction of the sintering machine can be determined using the ventilation resistance index of each sintered zone and the passing air volume index.

この発明は、まさにこの風量から赤熱帯分布を推定する
ところに発徴の第1点がある。
The first feature of this invention lies in estimating the distribution of the red tropics from this wind volume.

以下本発明で採用する通過風量からの赤熱帯分布の推定
方法を述べる。
The method for estimating the distribution of the red tropics from the amount of passing wind adopted in the present invention will be described below.

いま、焼結層内を第6図に示すように、燃焼前線(RF
P)9と焼結前線(HBP)16との2つの線により3
分割し、それぞれ原料帯15a、赤熱帯15b、及び焼
結完了帯15cとする。
Now, inside the sintered layer, as shown in Figure 6, there is a combustion front (RF
3 by two lines: P) 9 and sintering front (HBP) 16.
The zone is divided into a raw material zone 15a, a red zone 15b, and a sintered zone 15c, respectively.

まだ、燃焼前線I(FP9がパレット表面と交わる点を
HFPo とすると、(1)〜(3)式が成り立ち、か
つ各帯の幅H□* H2p H3は、それぞれ(1)〜
(3)式より次式(4)、 (5)、 (6)で表わさ
れる。
Still, if the point where the combustion front I (FP9 intersects with the pallet surface is HFPo), equations (1) to (3) hold true, and the widths of each band H□*H2p H3 are respectively (1) to
From equation (3), it is expressed by the following equations (4), (5), and (6).

すなわち、焼結層の圧損は通過風量の指数乗に比例し任
意の位置の圧損は次式で ΔP=(R1H□+R2H2+R3H3)G”−・・(
1)寸だ、層厚は次式で H−H1+H2+H3・・・・・・・・・・・・・・・
(2)RFPの高さは次式で 示される。
In other words, the pressure loss of the sintered layer is proportional to the exponential power of the passing air volume, and the pressure loss at any position is expressed by the following formula: ΔP=(R1H□+R2H2+R3H3)G"-...(
1) The layer thickness is H-H1+H2+H3 using the following formula:
(2) The height of RFP is expressed by the following formula.

上式(1)〜(3)より各焼結帯の高さH0〜H3は次
式で表わされる。
From the above formulas (1) to (3), the heights H0 to H3 of each sintered zone are expressed by the following formulas.

塊−H−H,−H2・・・・・・・・・・・・・・〈6
)HJ興暉) ΔP:機長方向任意の点での吸引負圧 (ky/m2) G:機長方向任意の点での吸引風量 (kg/m2・mi n ) θ:給鉱端からの経過時間(min) α:ガス流れの状態に依存する指数 (層流:α=1、乱流:α=2) R1−R3:それぞれ原料帯、赤熱帯、焼結完了帯の圧
損抵抗係数 以上より、風量G、に箱圧力ΔP、層厚H1燃焼前線(
HFP)がパレット表面と交わる点RFPo、各帯の通
気抵抗係数R1〜R3、および層中通過風量指数αがわ
かれば、焼結機機長方向の赤熱帯分布を推定することが
できるのである。
Mass -H-H, -H2・・・・・・・・・・・・・〈6
) HJ Koki) ΔP: Negative suction pressure at any point in the longitudinal direction (ky/m2) G: Suction air volume at any point in the longitudinal direction (kg/m2・min) θ: Elapsed time from the ore feeding end (min) α: Index dependent on the state of gas flow (laminar flow: α = 1, turbulent flow: α = 2) R1-R3: From the pressure drop resistance coefficient of the raw material zone, red zone, and sintering completion zone, respectively, Air volume G, box pressure ΔP, layer thickness H1 combustion front (
If the point RFPo where HFP) intersects with the pallet surface, the ventilation resistance coefficients R1 to R3 of each zone, and the layer passage air volume index α are known, it is possible to estimate the red tropical distribution in the longitudinal direction of the sintering machine.

この点、前記HFPoは各ウィンドボックス10、〜1
0nで測定している排ガス温度推移によって検出可能で
ある。
In this regard, the HFPo is
It can be detected by the exhaust gas temperature transition measured at 0n.

すなわち、各ウィンドボックス101〜10nごとに設
けられた熱電対によって排ガス温度を測定すると、該R
FPがパレット表面に到達するまでは排ガス温度はほぼ
一定に推移し、そして到達前後にその温度は上架を始め
る。
That is, when the exhaust gas temperature is measured by a thermocouple provided for each wind box 101 to 10n, the R
The exhaust gas temperature remains almost constant until the FP reaches the pallet surface, and the temperature begins to rise just before and after reaching the pallet surface.

従って、該HFPoは排ガス温度が変化する点をつかま
え、前記の3分割した各帯域間の境界温度を用いて補正
を行うことで求めることができる。
Therefore, the HFPo can be determined by determining the point at which the exhaust gas temperature changes and performing correction using the boundary temperature between each of the three divided zones.

この発明のHFPoは第4図に示すように、ウィンドボ
ックス10□〜10nで測定している排ガス温度パター
ンから100℃になる点を検出し給鉱端からその点に達
するまでの時間を求め、その値にある値を加えた値をH
FPoとしだ。
As shown in Fig. 4, the HFPo of this invention detects the point at which the temperature reaches 100°C from the exhaust gas temperature pattern measured in the wind boxes 10□ to 10n, and calculates the time from the ore feed end to reach that point. The value obtained by adding a certain value to that value is H
FPo Toshida.

ここで加えるべき匝(θT )は、赤熱帯の温度を何度
にするかで決するものであり焼結層15内に熱電対を挿
入してヒートパターンを測定し、その結果より予め求め
てお(。
The value (θT) to be added here is determined by the temperature of the red tropics, and is determined in advance by inserting a thermocouple into the sintered layer 15 and measuring the heat pattern. (.

例えば、昇温過程での層内温度は第5図に示すように略
直線的に上昇することが確められているので、この図よ
り前記境界温度を1000℃としたときのo、5m1n
をθ1として採用した。
For example, it has been confirmed that the temperature in the layer during the heating process increases approximately linearly as shown in Figure 5, so from this figure, when the boundary temperature is 1000°C, o, 5m1n
was adopted as θ1.

次に、(4)〜(6)式を使って、通過風量分布から赤
熱帯15b分布を推算した本発明の具体例を第3図すに
示す。
Next, FIG. 3 shows a specific example of the present invention in which the Red Tropical 15b distribution is estimated from the passing air volume distribution using equations (4) to (6).

この図は第3図−aに対応した通過風量分布の近似曲線
を用いて計算した赤熱帯15b分布である。
This figure shows the Red Tropical 15b distribution calculated using the approximate curve of the passing air volume distribution corresponding to Fig. 3-a.

なお、図中の斜線部分の囲みは同時測定したヒートパタ
ーンから求めた赤熱帯15b分布を表わす。
Note that the shaded box in the figure represents the Red Tropical 15b distribution obtained from the simultaneously measured heat patterns.

両者は良く合致しており、本発明赤熱帯分布モデルの妥
当性が示されている。
The two agree well, demonstrating the validity of the red tropics distribution model of the present invention.

要するに、第3図−bを利用すれば赤熱帯15bの領域
を任意の焼結層高さで切断することによって、その切断
した部分がその高さにおける高温保持時間である。
In short, by using FIG. 3-b, by cutting the region of the red zone 15b at an arbitrary sintered layer height, the cut portion corresponds to the high temperature retention time at that height.

即ち、平均高温保持時間は、焼結ストランド任意の位置
での赤熱帯幅(H2)から次式により求めることができ
る。
That is, the average high temperature retention time can be determined from the red zone width (H2) at any position of the sintered strand using the following equation.

ここで、 HT:平均高温保持時間(min) H:焼結層厚(→ H2:赤熱帯幅(→ θ:ストランド給鉱端からの経過時間(win)このH
Tと焼結鉱成品強度(SI)との間には、第7図に示す
ような相関関係があり、かつパレットスピードコークス
配合比との間にも第8図に示すような相関関係が認めら
れる、 そこで、狙いとする焼結鉱成品強度(SI)を保障する
適正HT値を操業実績を示す第7図から予め設定してお
き、前述のようにして得られる通過風量分布から計算し
て得られる平均高温保持時間HTをして、その設定値の
範囲に入るようにパレットスピード等を制御すれば、所
定の品質の焼結鉱が得られる。
Here, HT: Average high temperature holding time (min) H: Sintered layer thickness (→ H2: Red zone width (→ θ: Elapsed time from the strand feeding end (win)) This H
There is a correlation between T and sintered ore product strength (SI) as shown in Figure 7, and a correlation as shown in Figure 8 is also observed between pallet speed coke blending ratio. Therefore, the appropriate HT value that guarantees the target sintered mineral strength (SI) is set in advance from Figure 7, which shows the operational results, and calculated from the passing air volume distribution obtained as described above. By taking the obtained average high temperature holding time HT and controlling the pallet speed etc. so that it falls within the set value range, sintered ore of a predetermined quality can be obtained.

第9図はその制御フローの図である。FIG. 9 is a diagram of the control flow.

この制御法は第1図に示すように、風量測定装置12か
ら得られるデータと、各ウィンドボックス10□〜10
nの温度から赤熱帯分布を推定し平均高温保持時間を求
める。
As shown in FIG. 1, this control method uses data obtained from the air volume measuring device 12 and
Estimating the red tropical distribution from the temperature of n and finding the average high temperature retention time.

求めた平均高温保持時間と、予め設定した適正範囲の高
温保持時間とを比較することにより、アクションをとる
かどうかを判断し制御すれば良い。
By comparing the obtained average high temperature retention time with a preset appropriate range of high temperature retention time, it may be determined whether or not to take an action, and the control may be performed.

なお、燃焼前線RFPは直線だけでなく、通過風量に応
じて曲線とすることもできる。
Note that the combustion front RFP is not limited to a straight line, but can also be a curved line depending on the amount of passing air.

また、各帯の通気抵抗指数R1〜R3、通過風量の指数
αは試験で求めてもよいし、計算で求めてもよいが本発
明の実施例では基礎式としてΔP/H−RGαを採用し
て機長方向の数個所での圧損式から計算により求めたも
のを用いた。
In addition, the ventilation resistance index R1 to R3 of each band and the index α of passing air volume may be determined by tests or calculations, but in the embodiment of the present invention, ΔP/H-RGα is adopted as the basic formula. The pressure drop equation was calculated at several points along the length of the aircraft.

実施例 通常の焼結原料(コークス含有量4.9%、水分6%)
を用いて層厚530龍、パレット速度2.7m/min
で焼結操業を開始した。
Example Normal sintering raw material (coke content 4.9%, moisture 6%)
using a layer thickness of 530 mm and a pallet speed of 2.7 m/min.
Sintering operations have begun.

この焼結操業中、点火炉以降、排出方向に層中通過(吸
引)風量測定装置を走行させて通過風量を測定した。
During this sintering operation, the flow rate of passing air through the layer was measured by running an in-layer passing (suction) air flow measuring device in the discharge direction after the ignition furnace.

この時のHFPoは、焼結機長中應15ウィンドボック
ス位置配置の熱電対部分で排ガス温度上昇が検出された
ことから、赤熱帯境界温度を1000℃として補正を行
い20.8m1nとしれ上記通過風量測定装置の測定時
間に対応する風箱圧力ΔPは−21301mH2Oであ
り、その値と焼結層の各通気度R1〜R3、ここでは鍋
試験で求めた各5.65,24.36,3.04(直を
用いてH2を算出し、上記パレット速度で求捷る平均高
温保持時間HTは2.4m1nであった。
At this time, HFPo was corrected by setting the red zone boundary temperature to 1000℃ because an increase in exhaust gas temperature was detected at the thermocouple part located at the 15th wind box position in the sintering machine head, and the above passing air volume was calculated as 20.8 m1n. The wind box pressure ΔP corresponding to the measurement time of the measuring device is -21301 mH2O, and that value and the air permeability R1 to R3 of the sintered layer, here 5.65, 24.36, 3. H2 was calculated using 04 (direct), and the average high temperature holding time HT obtained by refining at the above pallet speed was 2.4 m1n.

焼結成品品質SIは91%以上を目標としていたので第
7図、第8図の関係から、パレット速度を2.3m/m
inに変更して、焼結操業を行ったところ、実際に得ら
れた成品の品質SIは91,2%であり、目標通りであ
った。
Since the sintered product quality SI was targeted at 91% or higher, the pallet speed was set at 2.3 m/m based on the relationship shown in Figures 7 and 8.
When the sintering operation was carried out by changing the temperature to 100.degree., the quality SI of the product actually obtained was 91.2%, which was as expected.

以上のべたように本発明によれば、次のような効果が期
待できる。
As described above, according to the present invention, the following effects can be expected.

すなわち、オンラインで焼結鉱品質を推定し、適正なア
クションを迅速にとることができるので焼結鉱品質のバ
ラツキが小さくなり、良質の焼結鉱を得ることができる
That is, since the quality of sintered ore can be estimated online and appropriate actions can be taken quickly, variations in the quality of sintered ore can be reduced and high-quality sintered ore can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図面の第1図は、焼結設備の路線図、第2図は層中通過
風量測定装置の斜視図、第3図は焼結機機長方向の吸引
風量(通過風量)分布aとその分布から推定した赤熱帯
分布すを示す線図、第4図は排ガス温度分布図、第5図
は各帯域境界温度と補正係数θ工との関係を示す線図、
第6図は焼結層内分割モデルの線図、第7図は高温保持
時間(HT)と成品強度SIとの関係を示す線図、第8
図はパレット速度と平均高温保持時間との関係を示す線
図、第9図は本発明実施例の制御フロー図である。
Figure 1 of the drawings is a route map of the sintering equipment, Figure 2 is a perspective view of the air flow measuring device passing through the layer, and Figure 3 is the suction air volume (passing air volume) distribution a in the longitudinal direction of the sintering machine and its distribution. A line diagram showing the estimated red tropical distribution, Figure 4 is an exhaust gas temperature distribution diagram, Figure 5 is a diagram showing the relationship between each zone boundary temperature and the correction coefficient θ,
Figure 6 is a diagram of the sintered layer division model, Figure 7 is a diagram showing the relationship between high temperature holding time (HT) and product strength SI, and Figure 8 is a diagram showing the relationship between high temperature holding time (HT) and product strength SI.
The figure is a diagram showing the relationship between pallet speed and average high temperature holding time, and FIG. 9 is a control flow diagram of an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 パレットの焼結層上に移動可能に設置した風量測定
装置を使って機長方向の焼結層中通過風量を測定し、そ
の層中通過風量測定値から焼結層内赤熱帯分布を推定し
、その推定赤熱帯分布をもとに平均高温保持時間を計算
し、その平均高温保持時間が成品品質から求められる予
め設定した適正値の範囲内になるように焼結機制御を行
うことを特徴とするDL焼結機の操業方法。
1. Measure the airflow passing through the sintered layer in the longitudinal direction using an airflow measurement device movably installed on the sintered layer of the pallet, and estimate the Red Tropical distribution within the sintered layer from the measured airflow passing through the layer. The feature is that the average high temperature retention time is calculated based on the estimated red tropical distribution, and the sintering machine is controlled so that the average high temperature retention time is within a preset appropriate value range determined from the product quality. How to operate a DL sintering machine.
JP13605581A 1981-09-01 1981-09-01 How to operate DL sintering machine Expired JPS5934216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13605581A JPS5934216B2 (en) 1981-09-01 1981-09-01 How to operate DL sintering machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13605581A JPS5934216B2 (en) 1981-09-01 1981-09-01 How to operate DL sintering machine

Publications (2)

Publication Number Publication Date
JPS5839749A JPS5839749A (en) 1983-03-08
JPS5934216B2 true JPS5934216B2 (en) 1984-08-21

Family

ID=15166123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13605581A Expired JPS5934216B2 (en) 1981-09-01 1981-09-01 How to operate DL sintering machine

Country Status (1)

Country Link
JP (1) JPS5934216B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01140401U (en) * 1988-03-18 1989-09-26
JPH0345044Y2 (en) * 1986-03-19 1991-09-24

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4566782A (en) * 1983-12-22 1986-01-28 Xerox Corporation Very high speed duplicator with finishing function using dual copy set transports
US4558942A (en) * 1983-12-22 1985-12-17 Xerox Corporation Very high speed duplicator with finishing function for duplex copying doing immediate inversion of copy sheets

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0345044Y2 (en) * 1986-03-19 1991-09-24
JPH01140401U (en) * 1988-03-18 1989-09-26

Also Published As

Publication number Publication date
JPS5839749A (en) 1983-03-08

Similar Documents

Publication Publication Date Title
JPS5934216B2 (en) How to operate DL sintering machine
JPS6035413B2 (en) Method for controlling belt movement speed in sintering equipment
JPH055589A (en) Operating method for sintering machine
KR101400337B1 (en) Apparatus and method for producting sinter
KR101462548B1 (en) Apparatus for manufacturing sintered ore and method for manufacturing sintered ore using the same
JP2720653B2 (en) Sinter production method
JPS59129379A (en) Method of operating dwight-lloyd sintering machine
JP6527306B2 (en) Calculation method of sintering temperature history
KR100836448B1 (en) Apparatus for manufacturing the sintered ore
JPS58133329A (en) Method and apparatus for preparing sintered ore
JPS6017007B2 (en) Method for detecting firing completion point in DL type sintering machine
JPH0663047B2 (en) Operating method of sintering machine
JP2669200B2 (en) Situation measuring method in sintering raw material layer
KR20190076675A (en) Apparatus and mehtod for manufacutring sintered ore
JPS5837135A (en) Production of sintered ore
JPH06330193A (en) Operation of sintering machine
JPS6126731A (en) Method for measuring heat pattern during sintering
JPH089740B2 (en) Operating method of sintering machine
JPS586898B2 (en) Temperature detection method of sintered raw material layer
JPS6223939A (en) Method for controlling heat pattern in continuous sintering machine
JPS58144432A (en) Operation for sintering
JPH06256862A (en) Method for controlling pallet velocity in sintering machine
JPS5938289B2 (en) Method for producing sintered ore
JPS61250119A (en) Operating method for sintering
JPH0288724A (en) Method for operating sintering machine