JPS5932713A - Air flow rate control process for boiler - Google Patents

Air flow rate control process for boiler

Info

Publication number
JPS5932713A
JPS5932713A JP57139878A JP13987882A JPS5932713A JP S5932713 A JPS5932713 A JP S5932713A JP 57139878 A JP57139878 A JP 57139878A JP 13987882 A JP13987882 A JP 13987882A JP S5932713 A JPS5932713 A JP S5932713A
Authority
JP
Japan
Prior art keywords
flow rate
boiler
air
air flow
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57139878A
Other languages
Japanese (ja)
Other versions
JPH0315088B2 (en
Inventor
Akira Sugano
彰 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57139878A priority Critical patent/JPS5932713A/en
Publication of JPS5932713A publication Critical patent/JPS5932713A/en
Publication of JPH0315088B2 publication Critical patent/JPH0315088B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/06Air or combustion gas valves or dampers at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/02Controlling two or more burners

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

PURPOSE:To improve a combustion of entire boiler and improve an efficiency of the boiler by a method wherein a combustion chamber is divided into several sections for each of the burners, an air flow rate for each of the compartments is controlled in the most appropriate way, an air fuel ratio control at a low flow rate ara is improved, and in turn a correction causing an entire air fuel ratio of the boiler to be the most appropriate one is applied. CONSTITUTION:A burner 6 is divided into several units and air flow rate is controlled in response to each of the fuel flow rates, wherein upon energization of boiler, an air flow rate is calculated in reference to a differential pressure 37, a fuel flow rate is calculated at a function generator and proportional integrator in reference to a fuel pressure 54 so as to control the damper 3. In turn, in case of low loading condition, the air flow rate is controlled to a specified value and under a normal loading condition, an entire air flow rate 51 is controlled to the most appropriate value in response to a total fuel volume 52, so that upon energization the total air volume is kept at the desired value by controlling it by a damper 3 and in turn in case of normal operating condition, by correcting it with a function generator, proportional integrator and multiplier in reference to a flow rate of heavy oil 53. In order to improve a controlling of the damper 8, FDF outlet draft is performed by an air register in case of starting an operation and is performed with the damper 3 under a normal operating condition. Thereby, a stable combustion and an efficiency of the boiler are improved.

Description

【発明の詳細な説明】 本発明はボイラの空気流量制御に係フ、特に、バーナ個
別に空燃比を好適に制御する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to air flow rate control in a boiler, and particularly to a method for suitably controlling the air-fuel ratio of each burner.

従来のボイラ空気流量制御方式は、第1図に示すように
ボイラlの合計空気流量(検出器51)を規定値に制御
するもので、バーナ6個別の空燃比は制御されず、特に
、石炭バーナや油とガスの混焼バーナなどで燃焼不安定
の要因となっていた。
The conventional boiler air flow rate control method, as shown in Fig. 1, controls the total air flow rate (detector 51) of the boiler l to a specified value, but the air-fuel ratio of each burner 6 is not controlled. This was a cause of combustion instability in burners and oil and gas mixed combustion burners.

即ち、ボイラ1の合計重油流量(検出器52)に見合っ
て、合計空気光量(検出器51)を押込通風機2(以下
FDP)へロダンパ3によ量制御する方式であり、バー
ナ6個別の空燃比は制御しないため、バーナ6の上段と
下段、又は午前と午後で燃焼状態が異なシ、好適な燃焼
が期待できなかった。
That is, the total amount of air light (detector 51) is controlled by the damper 3 of the forced draft fan 2 (hereinafter referred to as FDP) in accordance with the total heavy oil flow rate (detector 52) of the boiler 1, and Since the air-fuel ratio is not controlled, the combustion conditions differ between the upper and lower stages of the burner 6, or between the morning and the afternoon, and suitable combustion cannot be expected.

一方、プラント起動時は、ボイラ1の保安上から、空気
流量をバーナ6の点火本数如何にかかわらず、規定値以
上に保つ必要があり(第4図)、バーナの燃焼に寄与し
ない空気(11と12の間の量)は点火していないバー
ナのエアレジスタ(第2図の23)から逃がすことによ
り、燃焼バーナ6の空気量を過不足なく制御する必要が
おる。
On the other hand, when starting up the plant, for the safety of the boiler 1, it is necessary to maintain the air flow rate above the specified value regardless of the number of ignitions of the burners 6 (Fig. It is necessary to control the amount of air in the combustion burner 6 to just the right amount by letting the amount between 1 and 12 escape from the air register (23 in FIG. 2) of the burner that is not ignited.

しかし、従来方式は、多数のバーナを一括して制御する
方式であp、バーナの入口共通母管圧力からバーナの合
計燃料量を求め、バーナの空気流量’1FDF出口と火
炉の差圧から求めて空燃比を制御し、バーナ個別の空燃
比は必ずしも適切に制御できない欠点がある。さらに、
従来方式は、この流量側#1を第3図に示すように、バ
ーナ個別の最適空燃比曲線14に対し、上限値13と下
限値15を設定し2、バーナ母管圧力に対し、I” D
 F出口と火炉の圧力差が上限設定値を越えfc場合に
エアレジスタを開き、下限設定値以下になった場合に、
閉じるもので、いわゆる0N−OFF制御によりバー 
すの空気流蓋を制御しているため、バーナ部の空燃比が
適正に維持できず、バーナ燃焼不安定と’x D s煙
色や未燃分がボイラから排出され、第2次公害全誘発さ
せる要因となっていた。
However, in the conventional method, a large number of burners are controlled at once, and the total amount of fuel in the burners is determined from the common header pressure at the inlet of the burners, and the air flow rate of the burners is calculated from the differential pressure between the FDF outlet and the furnace. However, the air-fuel ratio of each burner cannot necessarily be controlled appropriately. moreover,
In the conventional system, as shown in Fig. 3, the upper limit value 13 and the lower limit value 15 are set for the optimum air-fuel ratio curve 14 for each burner on the flow rate side #1, and the burner main pipe pressure is set at I''. D
If the pressure difference between the F outlet and the furnace exceeds the upper limit set value fc, open the air register, and if the pressure difference falls below the lower limit set value,
The bar is closed by so-called 0N-OFF control.
Since the airflow lid of the boiler is controlled, the air-fuel ratio in the burner section cannot be maintained properly, resulting in unstable burner combustion, smoke color, and unburned matter being discharged from the boiler, resulting in secondary pollution. It was a triggering factor.

本発明の目的に、各バーナ部の燃焼を安定に維持するた
め、数台のバーナ単位に燃焼部を分割して各々を独立し
て制御することによp、バーナ部の最適燃焼を図る空気
光量制御方法を提供するにある。
For the purpose of the present invention, in order to maintain stable combustion in each burner section, the combustion section is divided into several burner units and each is controlled independently. The present invention provides a light amount control method.

本発明は、バーナ個別に空燃比を制御する手段として、
数個のバーナ単位に燃焼室を分離し、コンパートメント
即位の空気流量を最適に制御するものであり、鉤に、低
流並域での151を量計測の難しさの問題を克服する手
段として、バーナ燃料母管圧力とコンパートメント/火
炉差圧t(圧力信号として)計測して、これらから流量
を求め低流量域での空燃比制御を改善する一方、ボイラ
全体の空燃比を求め、これが最適となるような補正を加
えることによシポイラ全体の燃焼と効率向上ヲ崗るもの
である。
The present invention provides means for controlling the air-fuel ratio of individual burners,
It separates the combustion chamber into several burner units and optimally controls the air flow rate in each compartment, and as a means to overcome the problem of difficulty in measuring the amount of 151 in the low flow area. The burner fuel main pipe pressure and the compartment/furnace differential pressure t (as a pressure signal) are measured, and the flow rate is determined from these to improve air-fuel ratio control in the low flow range. At the same time, the air-fuel ratio of the entire boiler is determined, and this is the optimal one. By adding such corrections, the overall combustion and efficiency of the sipoiler can be improved.

また、コンパートメント人口ダンパによる空気流量制御
を改善するため、人口圧力を規定値に制御できる手段と
して、起動時はIPレジスタを開閉操作することにより
、また、通常時i、J: 1” D F入ロダンバで制
御する方式を付加する。
In addition, in order to improve the air flow control by the compartment population damper, as a means to control the population pressure to a specified value, by opening and closing the IP register at startup, and by opening and closing the IP register at normal times, Add a method to control with Rodanba.

以下、本発明の一実施例を第5図および第6図を用いて
説明する。
An embodiment of the present invention will be described below with reference to FIGS. 5 and 6.

ボイラ燃焼系統図(第5図)において、バーナ6の燃焼
部Xe台のバーナ単位に分割し、各々のコンパートメン
トに対して、空気流量調節用ダンパ8と空気流量7、及
び燃料流!検出器53を設けて、各コンパートメントの
燃料#Lftに見合って空気流itt制御する方式とし
ている。
In the boiler combustion system diagram (Fig. 5), the combustion section of the burner 6 is divided into Xe burner units, and each compartment has an air flow rate adjustment damper 8, an air flow rate 7, and a fuel flow! A detector 53 is provided to control the air flow itt according to the fuel #Lft in each compartment.

ところで、ボイラ起動時、バーナ点火本数が少なく、各
コンパートメントの空気流量の計測が難かしいため、コ
ンパートメントと火炉の差圧37がら空気がtii’e
、バーナ母管燃料圧力54から燃料流量を関数発生器3
2により求めて、この偏差信号を比例積分器34により
演算して、FDP人ロダンバ3を制御している。
By the way, when the boiler is started, the number of burners ignited is small and it is difficult to measure the air flow rate in each compartment.
, the fuel flow rate from the burner main pipe fuel pressure 54 to the function generator 3
2, and this deviation signal is calculated by the proportional integrator 34 to control the FDP robot 3.

一方、ボイラは低負荷時は、空気流量を規定値に通常、
負荷時は、ボイラ全体の空気流量51を合ハ1゛燃料量
52に見合って最適値にそれぞれ制御する必要があるた
め、起動時はFDP人ロダンノ<3により1.l+!!
常時Cユコンパートメント入ロダンノく制御のコンパー
トメント重油流量53から関数発生器34で求めた空気
流量要求値を、合計空気流祉の偏差信号を比例積分器3
4で演算した信号によp1掛算器42を介して補正する
ことによp、合t1空気量ヲ目標値に推持できるように
する。第7図に重油流値に対する空気流量の関係を示す
On the other hand, when the load is low, the boiler usually adjusts the air flow rate to the specified value.
When under load, it is necessary to control the air flow rate 51 of the entire boiler to the optimum value according to the total fuel amount 52, so at startup, the FDP is set to 1. l+! !
The required air flow rate value obtained by the function generator 34 is calculated from the compartment heavy oil flow rate 53 controlled by the constant C unit, and the deviation signal of the total air flow is calculated by the proportional integrator 3.
By correcting the signal calculated in step 4 via the p1 multiplier 42, the total air amount p and t1 can be maintained at the target value. FIG. 7 shows the relationship between the air flow rate and the heavy oil flow value.

また、コンパートメント人口ダンパの制御性を改善する
には、FDP出口圧力を規定値に維持する必要があり、
起動時はFDP出ロドロドラフトエアレジスタ23で、
通常時はFDP人ロメロダンパ3り行なう。なお、図中
4は重油ポンプ、5は重油流量調節弁、9μF’DF出
ロドラフト検出器、10はコンパートメント火炉差圧検
出器、16は安定燃焼特性図線、31はバーナ母管圧力
、21はランドボックス、22は炉内、37はコンパー
トメント火炉差圧、40は切替器、41ii:イJ号発
生器、42μ掛算器、53はコンパートメント重油流量
、54はコンバートメントノ仁−す母管圧力である。
In addition, to improve the controllability of the compartment damper, it is necessary to maintain the FDP outlet pressure at a specified value.
At startup, FDP output rod draft air register 23,
Normally, the FDP person performs 3 Romero dampers. In addition, in the figure, 4 is a heavy oil pump, 5 is a heavy oil flow rate control valve, 9 μF' DF output draft detector, 10 is a compartment furnace differential pressure detector, 16 is a stable combustion characteristic diagram line, 31 is a burner main tube pressure, and 21 is a Land box, 22 is the inside of the furnace, 37 is the compartment furnace differential pressure, 40 is the switch, 41ii: A J generator, 42μ multiplier, 53 is the compartment heavy oil flow rate, 54 is the conversion header pressure. be.

本発明によれば、ボイラの1・−タル空燃比、並びに、
バーナ個別の空燃比が、プラント起動から通常負荷帯ま
で安定してii制御できるので、ボイラの安定燃焼とプ
ラントの効率向上の効果があり、また、ボイラの燃焼が
安定して行なえるため負荷変化率の向上も期待できる。
According to the present invention, the 1-tal air-fuel ratio of the boiler, and
The air-fuel ratio of each burner can be controlled stably from plant start-up to normal load range, resulting in stable boiler combustion and improved plant efficiency.Also, since boiler combustion can be performed stably, load changes can be achieved. We can also expect the rate to improve.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来方式のボイラ燃焼系統図、第2図は、バ
ーナの燃焼部の断面図、第3図μ、重油バーナの安定燃
焼特性図、@4図は、ボイラの合言1空気流量設定因、
第5図は、本発明のコンパートメント燃焼ボイラの系統
図、第6図は、本発明の空気流量制御系統図、第′7図
は、ボイラの安定燃焼曲線図である。 7・・・コンパートメント人口燃料流値検出器、8・・
・U 7 バー トメント入ロダンパ、9・・・コンパ
ートメント人口燃料流値検出器、37・・・コンハート
メント火炉差圧、53・・・コンハートメント重油流量
、≠1胆 茅3 目 −−ハ゛〜1母管吏油圧力 $4 目 ホ呵う菓竹 め!;囚
Figure 1 is a conventional boiler combustion system diagram, Figure 2 is a sectional view of the combustion section of the burner, Figure 3 μ is a diagram of stable combustion characteristics of a heavy oil burner, and Figure 4 is a boiler code 1 air Flow rate setting factor,
FIG. 5 is a system diagram of the compartment combustion boiler of the present invention, FIG. 6 is a system diagram of the air flow control system of the present invention, and FIG. '7 is a stable combustion curve diagram of the boiler. 7... Compartment artificial fuel flow value detector, 8...
・U 7 Rod damper with bartment, 9... Compartment artificial fuel flow value detector, 37... Conhartment furnace differential pressure, 53... Conhartment heavy oil flow rate, ≠1 3rd--high ~1 Master pipe oil pressure $4 You idiot! ;prisoner

Claims (1)

【特許請求の範囲】[Claims] 1、多数のバーナからなるボイラの燃焼部を数台のバー
ナ単位に燃焼室ヲ分割したコンパートメント燃焼ボイラ
において、コンパートメントの燃料流社と空気流量を計
測する手段と、前記コンパートメントの空気流mを制御
するダンハラ設は前記バーナの空燃比が最適になるよう
コンパートメント人ロダンバを制御することを特徴とす
るボイラの空気流量制御方法。
1. In a compartmental combustion boiler in which the combustion chamber of a boiler consisting of a large number of burners is divided into units of several burners, a means for measuring the fuel flow rate and air flow rate in the compartment, and a means for controlling the air flow m in the compartment. The Danhara installation is a method for controlling the air flow rate of a boiler, characterized by controlling a compartment rotor so that the air-fuel ratio of the burner is optimized.
JP57139878A 1982-08-13 1982-08-13 Air flow rate control process for boiler Granted JPS5932713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57139878A JPS5932713A (en) 1982-08-13 1982-08-13 Air flow rate control process for boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57139878A JPS5932713A (en) 1982-08-13 1982-08-13 Air flow rate control process for boiler

Publications (2)

Publication Number Publication Date
JPS5932713A true JPS5932713A (en) 1984-02-22
JPH0315088B2 JPH0315088B2 (en) 1991-02-28

Family

ID=15255667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57139878A Granted JPS5932713A (en) 1982-08-13 1982-08-13 Air flow rate control process for boiler

Country Status (1)

Country Link
JP (1) JPS5932713A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03163298A (en) * 1989-11-07 1991-07-15 Babcock & Wilcox Co:The Heat insulating pipe structure
US7950919B2 (en) * 2004-10-14 2011-05-31 Shell Oil Company Method and apparatus for monitoring and controlling the stability of a burner of a fired heater
CN112797437A (en) * 2021-02-03 2021-05-14 华能武汉发电有限责任公司 Intelligent air supply control method, equipment and storage medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03163298A (en) * 1989-11-07 1991-07-15 Babcock & Wilcox Co:The Heat insulating pipe structure
US7950919B2 (en) * 2004-10-14 2011-05-31 Shell Oil Company Method and apparatus for monitoring and controlling the stability of a burner of a fired heater
CN112797437A (en) * 2021-02-03 2021-05-14 华能武汉发电有限责任公司 Intelligent air supply control method, equipment and storage medium
CN112797437B (en) * 2021-02-03 2022-03-22 华能武汉发电有限责任公司 Intelligent air supply control method, equipment and storage medium

Also Published As

Publication number Publication date
JPH0315088B2 (en) 1991-02-28

Similar Documents

Publication Publication Date Title
US5391074A (en) Atmospheric gas burner and control system
US4716858A (en) Automatic firing rate control mode means for a boiler
JP3101823B2 (en) Control method for low NOx combustion system
US4373897A (en) Open draft hood furnace control using induced draft blower and exhaust stack flow rate sensing
JPS5886323A (en) Forced exhaust airtight gas boiler through microprocessor control
JPS5932713A (en) Air flow rate control process for boiler
JPH08200015A (en) Method for operating combined plant
AU2007330307B2 (en) Batch waste gasification process
JP2620638B2 (en) Pulse combustor ignition control device
US4644904A (en) Gas fired heating boiler
JP3561309B2 (en) Boiler combustion control method
JP3242239B2 (en) Fuel gas control method and device
JP2002130606A (en) Control device for drum level of boiler
JPS6023717A (en) Method of controlling amount of combustion air in coal burning boiler
JPS62138619A (en) Combustion device
JPH0637972B2 (en) Combustion control device
JPH04136611A (en) Combustion control
JPH06180102A (en) Controller for amount of boiler feedwater
JPS633205B2 (en)
JPS602806A (en) Pulse burner with variable combustion amount
JP2651342B2 (en) Control method of combustion type superheater
JPH0799245B2 (en) Boiler start control device
JP3033806B2 (en) Combustion stop device for incomplete combustion of combustion equipment
JPS58110918A (en) Operation of boiler
JPH0223766B2 (en)