JPS5928680B2 - Manufacturing method of fiber sheet - Google Patents

Manufacturing method of fiber sheet

Info

Publication number
JPS5928680B2
JPS5928680B2 JP50019636A JP1963675A JPS5928680B2 JP S5928680 B2 JPS5928680 B2 JP S5928680B2 JP 50019636 A JP50019636 A JP 50019636A JP 1963675 A JP1963675 A JP 1963675A JP S5928680 B2 JPS5928680 B2 JP S5928680B2
Authority
JP
Japan
Prior art keywords
latex
aggregates
anionic
solid content
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50019636A
Other languages
Japanese (ja)
Other versions
JPS51105407A (en
Inventor
昌弘 天野
孝司 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP50019636A priority Critical patent/JPS5928680B2/en
Publication of JPS51105407A publication Critical patent/JPS51105407A/en
Publication of JPS5928680B2 publication Critical patent/JPS5928680B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)
  • Paper (AREA)

Description

【発明の詳細な説明】 本発明は繊維シートを公知の湿式抄紙技術或いは湿式不
織布製造技術にて得る方法に於いて、アニオン性ポリ塩
化ビニールラテックス(以下アVCラテックスと略記す
る)を主成分とするアニオン性ラテックスをあらかじめ
粒径100μ以上、500μ以下の大きさに凝集させ、
該凝集物をこれとは別に訓戒された繊維スラリー中に添
加して、抄造、乾燥する事により繊維シートを製造する
、いわゆるラテックスの内添法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for obtaining a fiber sheet using a known wet papermaking technique or wet nonwoven fabric manufacturing technique, in which anionic polyvinyl chloride latex (hereinafter abbreviated as AVC latex) is the main component. The anionic latex is aggregated in advance to a particle size of 100μ or more and 500μ or less,
This invention relates to a so-called latex internal addition method in which a fiber sheet is produced by adding the aggregate to a separately prepared fiber slurry, forming it into paper, and drying it.

ラテックスの内添法は大別して、(1)ラテックスを繊
維スラリー中で凝集させ、繊維表面に沈着せしめる、い
わゆるビーターアデイシヨン法(2)あらかじめラテッ
クスの凝集物をつくり、該凝集物をこれとは別に訓戒さ
れた繊維スラリー中に添加する方法(この場合、ろ過作
用によりシート中に該凝集物が歩留る)があり、本発明
(2)の技術分野に属するもので、今まで困難であつた
アニオン性PVCラテックスを主成分とする凝集物の粒
径コントロールに新規な方法を見い出したものである。
The internal addition method of latex can be roughly divided into (1) the so-called beater addition method, in which latex is aggregated in a fiber slurry and deposited on the fiber surface; (2) latex aggregates are made in advance, and the aggregates are separated from the There is a method of adding the aggregates to the fiber slurry (in this case, the aggregates are retained in the sheet by filtration), which belongs to the technical field of the present invention (2), and which has been difficult until now. We have discovered a new method for controlling the particle size of aggregates whose main component is anionic PVC latex.

従来から紙、板紙の製造分野に於いて、ラテックスをヒ
ーター添加する前述の(1)の方法が行われている。
Conventionally, in the field of manufacturing paper and paperboard, the above-mentioned method (1) of adding latex using a heater has been used.

しかし、この方法では、特に繊維重量に対して20重量
%(固形分)を越える多量のラテックスを添加して抄造
する事は、抄紙上、種々のトラブルをひき起しやすい。
従つて、多量にラテックスを添加して抄造する事が多い
不織布分野等では、主に前述の(2)の方法が多く採用
されている。しかし、(2)の方法に於いては、ラテッ
クスのシート中への歩留りが単に濾過作用のみに依存す
る事から、ラテックス凝集物の大きさの調節が最も重要
な事は言うまでもない。使用する繊維の太さ、形状等に
より最適粒径に若干差があるが、本乗明者らの種々の実
験では粒径100μ以上500μ以下の凝集物が最適で
ある事が判明した。
However, in this method, adding a large amount of latex, especially in excess of 20% by weight (solid content) based on the weight of the fibers, tends to cause various problems in papermaking.
Therefore, in the field of nonwoven fabrics, where papermaking is often performed with the addition of a large amount of latex, method (2) above is mainly employed. However, in method (2), since the retention of latex in the sheet depends solely on the filtration action, it goes without saying that the most important thing is to control the size of the latex aggregates. Although the optimum particle size varies slightly depending on the thickness, shape, etc. of the fibers used, Akira Honori et al.'s various experiments have revealed that aggregates with a particle size of 100 μm or more and 500 μm or less are optimal.

粒径500μを越える大きい凝集物はシート中への歩留
の点では100%であるが、得られるシートにみにくい
斑点がみられ、ドライヤー表面への粘着等のトラブルが
起りやすい。
Large agglomerates with a particle size exceeding 500 microns have a 100% retention in the sheet, but the resulting sheet has unsightly spots and tends to cause problems such as sticking to the dryer surface.

粒径100μ未満の凝集物では、歩留が不良で必要な強
度が得られないばかりか、排水の汚濁が著しい等欠点が
多い。
Aggregates with a particle size of less than 100 μm have many drawbacks, such as poor yield and failure to obtain the necessary strength, as well as significant contamination of wastewater.

本発明は、従来、凝集物の大きさの調成が困難であつた
アニオン性PVCラテツクスを主体とするアニオン性ラ
テツクスに於いて、新規な凝集条件を見い出したもので
ある。
The present invention is based on the discovery of new agglomeration conditions for anionic latexes, mainly anionic PVC latexes, for which it has been difficult to adjust the size of agglomerates in the past.

尚、凝集物の粒径の測定法であるが、顕微鏡下に該凝集
物を置き、個々の凝集物の中心を通る最大直径をその凝
集物の粒径と定義する。
The particle size of the aggregate is measured by placing the aggregate under a microscope and defining the maximum diameter passing through the center of each aggregate as the particle size of the aggregate.

従来技術によりアニオン性PVCラテツクスを水溶性カ
チオンポリマー又は多価金属塩で凝集せしめる場合、非
常に緩慢な撹拌条件のもとで行つたとしても、微細な粒
径50μ以下、大部分が10乃至20μ程度のものしか
得られない。
When anionic PVC latex is agglomerated with water-soluble cationic polymers or polyvalent metal salts using conventional techniques, even under very slow stirring conditions, fine particles with a diameter of less than 50 μm, most of which are 10 to 20 μm, are produced. You can only get so much.

これを100μ以上500μ以下の安定な凝集物が得ら
れる様に、種々検討した結果、ラテツクスを凝集させる
場合、次に述べる様な段階をへて最終的に安定な凝集物
になる事が判明した。即ち、アニオン性PVCラテツク
スに水溶性カチオンポリマー又は多価金属塩を添加して
凝集物を得ようとするとき、先ず、添加による凝集時の
シヨツクにより数秒間は1羽乃至10眉の大きさの凝集
物に成長し、その後再分散が起り、ぶどうの房状をへて
、さらにぶどうの実が落下する如く10乃至30μ程度
の凝集物になつてしまう事がわかつた。
As a result of various studies to obtain stable aggregates with a size of 100μ to 500μ, it was found that when latex is agglomerated, it goes through the following steps to finally become stable aggregates. . That is, when attempting to obtain an aggregate by adding a water-soluble cationic polymer or a polyvalent metal salt to anionic PVC latex, first, due to the shock of agglomeration caused by the addition, particles of the size of 1 to 10 eyebrows are formed for several seconds. It was found that the particles grew into aggregates, and then redispersed, leaving the shape of a bunch of grapes and becoming aggregates of about 10 to 30 μm, like falling grapes.

これとは別に、アニオン性アクリル系ラテツクス等につ
いても、水溶性カチオンポリマーによる比較的ゆるやか
な凝集条件のもとでは同様の経過をへる事が確認出来る
が、アニオン性PVCラテツクスと異なる点は、ぶどう
の房状より細かくは再分散しにくく、従つて、粗大な凝
集物(200μ乃至1w!t)のままで安定化する事が
わかつた。
Separately, it can be confirmed that anionic acrylic latex etc. undergo a similar process under relatively gentle aggregation conditions using water-soluble cationic polymers, but the difference from anionic PVC latex is that It was found that particles finer than clusters of grapes are difficult to redisperse, and are therefore stabilized as coarse aggregates (200μ to 1w!t).

又、アルミニウム塩等による急激な凝集の場合は、添加
による凝集時のシヨツクにより生じた1?乃至10?の
凝集物がさらに会合して塊状となる事も判つた。以上の
結果から、ラテツクスの凝集体内部の融着力の大きさが
最終凝集物の大きさに著しい影響力をもち、従つて、該
ラテツクスの最低造膜温度(以下MFTと略記する)が
重要な鍵をに5ぎつている事が判明し、本発明に至つた
ものである。
In addition, in the case of rapid aggregation due to aluminum salt, etc., 1? caused by shock during aggregation due to addition? to 10? It was also found that the aggregates further aggregated and formed into lumps. From the above results, the size of the fusion force inside the latex aggregate has a significant influence on the size of the final aggregate, and therefore, the minimum film forming temperature (hereinafter abbreviated as MFT) of the latex is important. It was discovered that the key was missing, which led to the present invention.

即ち、アニオン性PVCラテツクスにMFTが10℃以
下のアニオン性ラテツクスを、該PVCラテツクス固形
分に対し、少くとも5重量01)(固形分)混合した後
、水溶性カチオンポリマー又は多価金属塩を添加する事
により、粒径100μ以上500μ以下の凝集物を得た
後、これとは別に調成された繊維スラリー中に該凝集物
を添加して、湿式抄紙法により抄造、乾燥する事を特徴
とする繊維シートの製造法である。この方法に於いて、
MFTが10℃以下のアニオン性ラテツクスとは10℃
以下の温度に於いてもラテツクスがフイルム状に皮膜を
形成するラテツクスの事で、しかもアニオン性界面活性
剤により乳化され、水中にてアニオン性を示すラテツク
スである。
That is, after mixing an anionic PVC latex with an MFT of 10°C or less at least 5% by weight (solid content) based on the solid content of the PVC latex, a water-soluble cationic polymer or a polyvalent metal salt is added. By adding it, aggregates with a particle size of 100μ or more and 500μ or less are obtained, and then the aggregates are added to a separately prepared fiber slurry, and the paper is made and dried by a wet papermaking method. This is a method for manufacturing a fiber sheet. In this method,
Anionic latex with MFT of 10℃ or less is 10℃
Latex is a latex that forms a film even at the following temperatures, and is emulsified with an anionic surfactant and exhibits anionic properties in water.

代表的なものをあげると、ポリアクリル酸エステル系ラ
テツクス、合成ゴム系ラテツクス、エチレン・酢酸ビニ
ール共重合ラテツクス、アクリル酸エステル・酢酸ビニ
ール共重合ラテツクスなどがあげられ、これらの内のM
FTが10℃以下のものが適用できる。
Typical examples include polyacrylic ester latex, synthetic rubber latex, ethylene/vinyl acetate copolymer latex, acrylic ester/vinyl acetate copolymer latex, etc.
A material with an FT of 10°C or less can be applied.

もちろん上記ラテツクスの混合物及び変性物(例えば、
カルボキシル変性ラテツクス)も含まれる。添加量はア
ニオン性PVCラテツクス固形分に対し少くとも5重量
%(固形分)以上必要であり、好ましくは10重量%(
固形分)以上が適当である。
Of course, mixtures and modified products of the above latexes (e.g.
It also includes carboxyl-modified latex). The amount added must be at least 5% by weight (solid content) based on the solid content of the anionic PVC latex, preferably 10% by weight (solid content).
Solid content) or higher is appropriate.

MFTが10゜C以下のアニオン性ラテツクスの混合に
よる作用効果は、アニオン性PVCラテツクスとMFT
が10℃以下の該アニオンラテツクスが共凝集する結果
、前述のラテツクス凝集体の内部融着力を高め、撹拌に
よる該凝集体の再分散を防止するのに役立ち抄紙に好適
な粒径100μ以上500μ以下の凝集物が得られやす
くなる事である。
The effect of mixing anionic latex with MFT of 10°C or less is that anionic PVC latex and MFT
As a result of the co-aggregation of the anionic latex whose temperature is 10°C or less, the internal fusing force of the latex aggregate is increased, and the particle size suitable for paper making is 100μ or more and 500μ, which helps to prevent redispersion of the aggregate due to stirring. This makes it easier to obtain the following aggregates.

ここに云うアニオン性PVCラテツクスとはアニオン性
界面活性剤で乳化したラテツクスをさし、水溶性カチオ
ンポリマー又は多価金属塩により凝集するものをいう。
The anionic PVC latex referred to herein refers to a latex emulsified with an anionic surfactant, which is aggregated by a water-soluble cationic polymer or a polyvalent metal salt.

アニオン性PVCラテツクスの中には、塩化ビニール単
独重合体ばかりでなく、他のビニールモノマ一(例えば
、酢酸ビニール、アクリル酸エステル、塩化ビニリデン
等)或いは不飽和酸(例えば、マレイン酸等)との共重
合体も含まれる。
Some anionic PVC latexes contain not only vinyl chloride homopolymers but also other vinyl monomers (e.g., vinyl acetate, acrylic esters, vinylidene chloride, etc.) or unsaturated acids (e.g., maleic acid, etc.). Also included are copolymers.

さらに外部可塑剤を添加したものも含まれる。アニオン
性PVCラテツクスを主成分とするアニオン性ラテツク
スとは、前記アニオン性PVCラテツクスに、MFTが
10℃以下のアニオン性ラテツクスを、該PVCラテツ
クス固形分に対し少くとも5重量%(固形分)以上混合
したものを云い、このものは、凝集に先立つて0.5乃
至10重量%(固形分)に稀釈する事が好ましく、濃度
が高すぎると凝集粒の衝突が過大となり、粗大塊となり
やすい。次に、水溶性カチオンポリマーであるが、本発
明に適用できるものは、水中にてカチオン性を示す樹脂
すべてをさし、中でも、ポリアミド・ポリアミン・・エ
ピクロロヒドリン系樹脂、ポリエチレンイミン系樹脂、
カチオン変性されたメラミン・ホルマリン系樹脂、カチ
オン変性された尿素ホルマリン系樹脂等は特に有用であ
る。
Furthermore, those to which an external plasticizer is added are also included. Anionic latex whose main component is anionic PVC latex means that anionic latex with an MFT of 10°C or less is added to the anionic PVC latex in an amount of at least 5% by weight (solid content) based on the solid content of the PVC latex. This refers to a mixture, which is preferably diluted to 0.5 to 10% by weight (solid content) prior to agglomeration; if the concentration is too high, the collision of agglomerated particles becomes excessive and coarse lumps tend to form. Next, regarding water-soluble cationic polymers, those applicable to the present invention refer to all resins that exhibit cationic properties in water, including polyamides, polyamines, epichlorohydrin resins, and polyethyleneimine resins. ,
Cation-modified melamine-formalin resins, cation-modified urea-formalin resins, and the like are particularly useful.

これらはいずれも反応初期縮合物が多く利用さへ製紙用
の歩留向上剤、湿潤強力剤、済水度調整剤としても有用
なものである。又、カチオン変性された澱粉も利用でき
る。多価金属塩としては、アルミニウム塩、カルシウム
塩、マグネシウム塩が特に有用である。
All of these are useful as retention aids, wetting strength agents, and finished water content regulators for papermaking since they are often used as condensates at the initial stage of the reaction. Cationically modified starch can also be used. As polyvalent metal salts, aluminum salts, calcium salts, and magnesium salts are particularly useful.

上記カチオンポリマー又は多価金属塩の添加量は、ラテ
ツクスの化学的安定性に差があるので一概に云えないが
、該ラテツクス混合液を完全に凝集させるに必要な最小
量を添加すれば十分である。多くとも必要最小量の1.
5倍を越えて添加すべきではない。次に、使用する繊維
についてであるが、天然繊維、再生繊維、合成繊維、無
機繊維、金属繊維、コラーゲン繊維等いずれの繊維でも
よく、これらの混合物であつてもかまわない。
The amount of the above-mentioned cationic polymer or polyvalent metal salt to be added cannot be determined unconditionally because the chemical stability of the latex varies, but it is sufficient to add the minimum amount necessary to completely coagulate the latex mixture. be. At most, the minimum amount required is 1.
Should not be added in excess of 5 times. Next, regarding the fibers to be used, any fibers such as natural fibers, regenerated fibers, synthetic fibers, inorganic fibers, metal fibers, and collagen fibers may be used, or a mixture thereof may be used.

又、これらの繊維スラリー中にサイズ剤、填料、炉水度
調整剤、分散調整剤等を配合する事も同様にさしつかえ
ない。以下実施例にて説明する。実施例 1 ゼオン576(日本ゼオン製、PVCラデンクス)を9
Kf(固形分)とニポールL×811(日本ゼオン訊製
、アクリル系ラテツクス、MFT約3℃)を1K9(固
形分)とを混合し、500tに稀釈後、泡立たない程度
に攪拌しつつ、ポリフイツクス201(昭和高分子版製
、ポリアミド・ポリアミン・エピクロロヒドリン系水溶
性カチオンポリマー)の2重量%(固形分)の水溶液を
32Kf添加して、粒径100μ以上500μ以下の安
定な凝集物分散液を得た。
It is also possible to blend sizing agents, fillers, furnace water temperature regulators, dispersion regulators, etc. into these fiber slurries. This will be explained below using examples. Example 1 Zeon 576 (manufactured by Nippon Zeon, PVC Radenx) at 9
Kf (solid content) and Nipol L×811 (manufactured by Nippon Zeon Corporation, acrylic latex, MFT approx. 3°C) were mixed with 1K9 (solid content), diluted to 500 t, and while stirring to avoid foaming, polyfix was added. Add 32Kf of a 2% by weight (solid content) aqueous solution of 201 (manufactured by Showa Kobunshi Hanban Co., Ltd., polyamide/polyamine/epichlorohydrin water-soluble cationic polymer) to stably disperse aggregates with a particle size of 100μ or more and 500μ or less. I got the liquid.

このものは攪拌下で数10時間放置しても安定なもので
あつた。
This product remained stable even after being left under stirring for several tens of hours.

別に調成された繊維スラリー中に該凝集物を所定量添加
した後公知の湿式抄紙法により抄造、乾燥して繊維シー
トを得た。
A predetermined amount of the aggregate was added to a separately prepared fiber slurry, and then paper-formed by a known wet paper-making method and dried to obtain a fiber sheet.

得られたものの物性を表1に示す。強度が大きく、耐水
性があり、シート表面に見にくい樹脂斑点も認められな
い良好なものであつた。勿論、抄紙上のトラブルは全く
なかつた。比較例 1 ゼオン576単独ラテツクスの2重量%(固形分)液を
ポリフイツクス201にて凝集した凝集物を適用してつ
くつた不織布(配合比はすべて実施例1の不織布に同じ
)は該凝集物が粒径20乃至30μときわめて微細な為
、抄造時歩留りが悪く、従つて強度が弱く、実用に耐え
られないものであつた。
Table 1 shows the physical properties of the obtained product. The sheet had good strength, water resistance, and no hard-to-see resin spots on the sheet surface. Of course, there were no paper-making problems at all. Comparative Example 1 A nonwoven fabric (all blending ratios are the same as the nonwoven fabric of Example 1) made by applying aggregates obtained by agglomerating a 2% by weight (solid content) liquid of Zeon 576 single latex using Polyfix 201 had the following properties: Since the grain size is extremely fine with a particle size of 20 to 30 μm, the yield during paper making is poor, and therefore the strength is low, making it unsuitable for practical use.

物性は秤量46.37/M2、引張強度は乾時0.5K
P/15W1巾、湿時0.1KV/1577111巾で
あつた。
Physical properties: weight 46.37/M2, tensile strength 0.5K when dry
P/15W1 width, wet 0.1KV/1577111 width.

実施例 2ゼオン351(日本ゼオン製、PVCラテツ
クス)の9Kf(固形分)とポリラツクML−520(
三井東圧製、メチルメタアクリレート・ブタジエン共重
合ラテックス、MFT約5℃)1Kf(固形分)とを混
合し1001!.に稀釈後、泡立たない程度に攪拌しつ
つ、0.5モル濃度の塩化カルシウム水溶液を8Kg添
加して、粒径100μ以上500μ以下の安定な凝集物
分散液を得た。
Example 2 9Kf (solid content) of Zeon 351 (manufactured by Nippon Zeon, PVC latex) and Polylac ML-520 (
Made by Mitsui Toatsu, methyl methacrylate/butadiene copolymer latex, MFT approx. 5°C) 1Kf (solid content) is mixed with 1001! .. After diluting the mixture, 8 kg of a 0.5 molar calcium chloride aqueous solution was added while stirring to avoid foaming, to obtain a stable aggregate dispersion having a particle size of 100 μm or more and 500 μm or less.

このものは攪拌下で数10時間放置しても安定なもので
あつた。次に実施例1の不織布の場合と同一配合の繊維
スラリー中に該凝集物を繊維重量に対し30重量%(固
形分)添加して抄造乾燥した。得られたものは実施例1
の不織布とほぼ同等の物性を有しており、満足出来るも
のであつた。シート表面に樹脂斑点もみられず、又、抄
造上何らトラブルはなかつた。比較例 2 ゼオン351単独ラテツクスを塩化カルシウム水溶液で
凝集したものは、凝集物が粒径20乃至30μの微細な
粒子であり、これを配合して得られた不織布は物理強度
が著しく劣り、実用に耐えないものであつた。
This product remained stable even after being left under stirring for several tens of hours. Next, the aggregate was added in an amount of 30% by weight (solid content) based on the weight of the fibers into a fiber slurry having the same composition as in the case of the nonwoven fabric of Example 1, and then paper-formed and dried. What was obtained is Example 1
It had almost the same physical properties as the nonwoven fabric, which was satisfactory. No resin spots were observed on the surface of the sheet, and there were no problems during papermaking. Comparative Example 2 When Zeon 351 single latex was aggregated with a calcium chloride aqueous solution, the aggregates were fine particles with a particle size of 20 to 30 μm, and the nonwoven fabric obtained by blending this was extremely poor in physical strength and could not be put into practical use. It was unbearable.

Claims (1)

【特許請求の範囲】[Claims] 1 アニオン性ポリ塩化ビニールラテックスに最低造膜
温度が10℃以下のアニオン性ラテックスを該ポリ塩化
ビニールラテックスの固形分に対し少くとも5重量%(
固形分)混合した後、水溶性カチオンポリマー又は、多
価金属塩を添加する事により粒径100μ以上500μ
以下の凝集物を得た後、これとは別に調成された繊維ス
ラリー中に該凝集物を添加して、湿式抄紙法により抄造
、乾燥する事を特徴とする繊維シートの製造法。
1 Anionic latex with a minimum film forming temperature of 10°C or less is added to anionic polyvinyl chloride latex in an amount of at least 5% by weight (based on the solid content of the polyvinyl chloride latex).
After mixing (solid content), by adding a water-soluble cationic polymer or polyvalent metal salt, the particle size can be increased from 100μ to 500μ.
A method for producing a fiber sheet, which comprises obtaining the following aggregates, adding the aggregates to a separately prepared fiber slurry, forming the aggregates by a wet papermaking method, and drying the aggregates.
JP50019636A 1975-02-17 1975-02-17 Manufacturing method of fiber sheet Expired JPS5928680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50019636A JPS5928680B2 (en) 1975-02-17 1975-02-17 Manufacturing method of fiber sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50019636A JPS5928680B2 (en) 1975-02-17 1975-02-17 Manufacturing method of fiber sheet

Publications (2)

Publication Number Publication Date
JPS51105407A JPS51105407A (en) 1976-09-18
JPS5928680B2 true JPS5928680B2 (en) 1984-07-14

Family

ID=12004688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50019636A Expired JPS5928680B2 (en) 1975-02-17 1975-02-17 Manufacturing method of fiber sheet

Country Status (1)

Country Link
JP (1) JPS5928680B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562297A (en) * 1978-10-27 1980-05-10 Kindai Kagaku Kogyo Kk Sizing method for cationic paper making
JPS56148999A (en) * 1980-04-16 1981-11-18 Riyouji Kimura Production of adsorbing sheet
US7914647B2 (en) * 2004-08-25 2011-03-29 Omnova Solutions Inc. Paper manufacturing using agglomerated hollow particle latex

Also Published As

Publication number Publication date
JPS51105407A (en) 1976-09-18

Similar Documents

Publication Publication Date Title
US3321425A (en) Vinyl chloride polymers containing fatty acid and fatty acid salts
JP5044074B2 (en) Thermally foamable microsphere and method for producing the same
EP2026902B1 (en) Microspheres
US4520172A (en) Method for coating medicaments
EP1981630B1 (en) Microspheres
AU710273B2 (en) Emulsifier system for rosin sizing agents
EP1981631B1 (en) Microspheres
US8388809B2 (en) Microspheres
US7956096B2 (en) Microspheres
JP2680134B2 (en) Method for preparing inorganic filler
MX2008015688A (en) Composites of inorganic and/or organic microparticles and nano-calcium carbonate particles.
FI58507C (en) FOER LIMNING AV PAPPER AVSETT HARTSLIMPREPARAT I FORM AV EN STABIL VATTENSUSPENSION OCH FOERFARANDE FOER DESS FRAMSTAELLNING
US4271213A (en) Fused, thermoplastic partitioning agent and preparation of crumb rubber coated therewith
US5028482A (en) Latex coated inorganic fillers and process for preparing same
US3928272A (en) Process of making urea-formaldehyde solid microspheres
EP0886664B1 (en) Flocculating or viscosifying compositions and their production and use
JPH042304B2 (en)
US3776812A (en) Process for making paper containing latex with carboxyl group
CA1142811A (en) Natural kaolin pigment surface modified with anionic al.sub.2o .sub.3-sio.sub.2 hydrate gel and polymeric binder
JPH09169812A (en) Production of polymer powder, polymer powder and binder containing the polymer powder
JPH0253455B2 (en)
JP2000509430A (en) Aqueous dispersion of hydrophobic material
JPS5928680B2 (en) Manufacturing method of fiber sheet
US4366285A (en) Process for the production of an elastomer-filler mixture optionally containing extender oils
NO139448B (en) PROCEDURE FOR MANUFACTURING A NON-WOVEN FIBROEST MATERIAL PATH