JPS592454A - Time division omnidirectional mutiplex communication system - Google Patents

Time division omnidirectional mutiplex communication system

Info

Publication number
JPS592454A
JPS592454A JP10976182A JP10976182A JPS592454A JP S592454 A JPS592454 A JP S592454A JP 10976182 A JP10976182 A JP 10976182A JP 10976182 A JP10976182 A JP 10976182A JP S592454 A JPS592454 A JP S592454A
Authority
JP
Japan
Prior art keywords
burst
master station
slave station
station
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10976182A
Other languages
Japanese (ja)
Inventor
Noriyoshi Ikeda
池田 紀芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP10976182A priority Critical patent/JPS592454A/en
Publication of JPS592454A publication Critical patent/JPS592454A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]

Abstract

PURPOSE:To make the initial adjustment easy at the stage of installation while keeping the effective use of frequency, by adding a preamble signal to only a specific burst before an information burst, in a time division omnidirectional multiplex communication system. CONSTITUTION:First, a distance between a master station and a slave station is obtained, the distance between an antenna and a radio equipment is obtained, the transmission timing of the slave station is adjusted coarsely, only a communication telephone burst is transmitted for communication. The master station compares the phase of a clock 17 extracted for the burst while communication with a sample pulse 13 sampling the main data burst, transfers the result to the slave station, the difference information of the transmission timing is transferred to the slave station, where the transmitted timing is tuned minutely. Further, when the main signal burst is transmitted, the main signal burst is made coincident with the timing of the master station.

Description

【発明の詳細な説明】 本発明は時分割多重通信装置に関し、特に周波数の有効
利用を計る為、無駄ビットの挿入は最小限に抑えながら
、初期の建設段階においても連絡用電話の通話を可能に
し、かつ子局から親局へのバーストタイーミング合わせ
を容易にした地上固定無線用時分割多方向多重血信方式
を提供しようとするものである。
[Detailed Description of the Invention] The present invention relates to a time division multiplex communication device, and in particular, in order to effectively utilize frequencies, insertion of useless bits is minimized, and communication telephone calls can be made even during the initial construction stage. The present invention aims to provide a time-division multi-directional multiplex blood transmission system for terrestrial fixed radio, which facilitates burst timing adjustment from a slave station to a master station.

第1図にこの種の通信システムの構成を示す。FIG. 1 shows the configuration of this type of communication system.

親局1は、ある角度の範囲内の地域に点在する複数の子
局4との間を広帯域ビームアンテナ2でカバーし通信を
行なう。親局1からは、一般のディジタル固定無線と同
様にフレーム同期信号と各子局別の信号を時分割多重化
して子局へ放送モードで送出する。各子局は受けた信号
列の中から自局向けの信号のみを、取り出す。
A master station 1 communicates with a plurality of slave stations 4 scattered in an area within a certain angular range by covering them with a wideband beam antenna 2. From the master station 1, a frame synchronization signal and a signal for each slave station are time-division multiplexed and sent to the slave stations in broadcast mode, as in general digital fixed radio. Each slave station extracts only the signal destined for itself from the received signal train.

逆に子局からの場合は、親局からのフレーム同期信号を
時間基準として、第2図のようにあらかしめ自局に割り
当てられた時間領域のみ間歇的に送信を行なう。このよ
うにして親局受信機には、第6図のようにあたかも1つ
の局からの受信波のように時間軸上に一列に並ぶ。親局
は各子局からの信号を分離して取り出すことで通信が行
なわれる。
Conversely, in the case of a slave station, the frame synchronization signal from the master station is used as a time reference, and transmission is performed intermittently only in the time domain allocated to the own station, as shown in FIG. In this way, as shown in FIG. 6, the signals are arranged in a line on the time axis at the master station receiver as if they were received from one station. Communication is performed by the master station separating and extracting signals from each slave station.

このように複数の子局から1つの親局ヘアクセスする時
分割多元接続としては1次の2種類の方法が考えられて
いる。
As described above, two types of methods are considered for time division multiple access for accessing one master station from a plurality of slave stations: the first-order method.

■ 子局からの送出バーストを親局で何らがの方法例え
ば、オシロスコープで観測シてフビノト以内及びビット
単位に子局で送出タイミング調整をして親局受信機の必
要とするタイミングに合わせる。
■ What is the method for transmitting bursts from the slave station at the master station? For example, by observing them with an oscilloscope and adjusting the transmission timing at the slave station on a per-bit basis and in bit units to match the timing required by the master station's receiver.

■ 子局からの送出バーストの構成に際し9本来送りた
い信号部の前にプリアンプルと呼ばれる親局受信機のキ
ャリアやクロックの同期回路が立ち上がる迄のトレーニ
ングパターンを付加すると共に、信号部のスタートを示
すユニークワードを付加して構成し、子局からは他局の
バーストと重ならない程度のラフな送出タイミング調整
で送り出し、親局の方ではバースト単位で必要ならキャ
リア同期をとり、かつクロック同期、フレーム同期をと
ることで、各子局の信号を分離して取り出す。
■ When configuring a burst to be transmitted from a slave station, a training pattern called a preamble is added before the signal section that is originally intended to be sent, and the training pattern until the synchronization circuit of the carrier and clock of the master station receiver starts up, and the start of the signal section is added. The slave station transmits the data with a rough transmission timing adjustment that does not overlap with the bursts of other stations, and the master station performs carrier synchronization and clock synchronization if necessary on a burst-by-burst basis. By establishing frame synchronization, the signals of each slave station are separated and extracted.

これらの方法を比較すると、方法■は無、駄どソトが少
なく、情報ビットレイトに対して無線伝送路のクロック
レイトはそれほど」二げなくても良いのて、スペクトラ
ムの広がりを一定量に抑えることが出来る長所がある。
Comparing these methods, method Ⅰ is useless, has few problems, and does not require much increase in the clock rate of the wireless transmission path compared to the information bit rate, so it suppresses the spread of the spectrum to a certain amount. It has the advantage of being able to

このことは方法■に比して隣接チャンイ・ル間周波数を
狭くすることが出来ることを示し9周波数有効利用の点
からは望ましいと言える。しかしその反面。
This shows that the frequency between adjacent channels can be narrowed compared to method (2), which is desirable from the point of view of effective use of nine frequencies. But on the other hand.

本システムの建設段階において親局への送出タイミング
調整が終わる迄は子局からの信号を復調できず、連絡用
の電話器も使えない等の不便さがある。
During the construction stage of this system, there are inconveniences such as the signal from the slave station cannot be demodulated and the telephone for communication cannot be used until the transmission timing adjustment to the master station is completed.

方法■は、その逆にバースト単位に受信側で同期をとっ
ているので、地図における距離から算出したラフな位置
合わせのみで自動的に通信が出来る長所がある。しかし
情報ビットの他にプリアンプル、ユニークワード等余分
な信号を仕加するので、情報ビットレイトに対して無線
伝送路のクロックレイトは、かなり高くなり。
On the contrary, method (2) synchronizes on the receiving side in burst units, so it has the advantage that communication can be performed automatically with only rough positioning calculated from the distance on the map. However, since extra signals such as a preamble and a unique word are added in addition to the information bits, the clock rate of the wireless transmission path becomes considerably higher than the information bit rate.

周波数有効利用の点では劣ると言える。It can be said that it is inferior in terms of effective frequency utilization.

本発明はこの両者の長所を兼ね備えるようにしたことを
特徴としており、第4図に子局から親局方向のフレーム
構成図の一実施例を示す。
The present invention is characterized by combining the advantages of both. FIG. 4 shows an embodiment of a frame configuration diagram from the slave station to the master station.

今、子局の数がA局〜H局迄8局あると仮定この内Aバ
ースト〜Hバーストの主信号バーストはプリアンプル信
号無しで子局より送出する。
Assuming that there are eight slave stations, A to H, the main signal bursts A to H are sent out from the slave stations without a preamble signal.

一方、連絡用電話バーストに関しては、その時折の発呼
状況に応じて割り当てられた子局は情報ビットの前にプ
リアンプル信号PASとフレームの目印となるユニーク
ワード信号UWSを付加して送出する。
On the other hand, regarding the contact telephone burst, the slave station assigned according to the occasional call situation adds a preamble signal PAS and a unique word signal UWS serving as a frame mark before the information bit and sends it out.

第5図は親局受信機の復調器以降のブロック図を示す。FIG. 5 shows a block diagram of the main station receiver after the demodulator.

復調器5の出力信号16は、A−H主信号バーストの時
はサンプル回路6で送信側と同一クロックを用いて”°
1″“、°“O°゛の判定がなされ。
When the output signal 16 of the demodulator 5 is an A-H main signal burst, the sample circuit 6 uses the same clock as the transmitting side.
1"", °"O°゛ was determined.

伸長バッファメモリ11で各子局用の信号に分離される
。連絡用電話バーストの時は復調器出力信号はクロック
抽出回路7で抽出されたクロックでサンプル回路8にて
°1111.IIQ+”の判定がなされる。前記プリア
ンプル信号PASは。
The decompression buffer memory 11 separates the signal into signals for each slave station. At the time of a contact telephone burst, the demodulator output signal is the clock extracted by the clock extraction circuit 7, and the sampling circuit 8 outputs the signal at 1111.degree. IIQ+'' is determined.The preamble signal PAS is.

このクロック抽出回路7が同期する迄の立」二す必要時
間分だけ刊加される。サンプルされたデータ22は、ユ
ニークワード検出回路9で情報部分のスタート位置を示
すユニークワードを見つけてから伸長バッファメモリ1
0に書き込まれる。ユニークワードゲートパルス24は
、親局の欲するタイミングにラフに入っているかどうか
の判定の為に使われ、±2〜3ビット程度の許容範囲を
持たせている。そして伸長バッファメモリ10を親局の
読み出しパルス48で読み出せば連絡用電話信号が分離
される。
The clock is added for the necessary time until the clock extraction circuit 7 is synchronized. The sampled data 22 is sent to the decompression buffer memory 1 after a unique word detection circuit 9 finds a unique word indicating the start position of the information portion.
Written to 0. The unique word gate pulse 24 is used to determine whether the timing desired by the master station is roughly within the range, and has a tolerance range of about ±2 to 3 bits. When the expansion buffer memory 10 is read out using the read pulse 48 of the master station, the contact telephone signal is separated.

次に2本発明の有効性を具体的に説明する為に2本発明
による時分割多方向多重通信システムの建設段階におけ
る子局から親局へのバースト送出タイミング合わせの作
業手順を説明する。
Next, in order to specifically explain the effectiveness of the present invention, a working procedure for synchronizing the timing of burst transmission from a slave station to a master station during the construction stage of a time division multiplex communication system according to the present invention will be described.

まず地図」二より親局と子局間の距離を求め。First, find the distance between the master station and slave station from Map 2.

それぞれの局の無線機からアンテナ迄の距離を算出すれ
ばだいたい正しいタイミングの予想がつく。それで子局
の送出タイミングを粗調してまず連絡用電話バーストの
みを送出する。連絡用電話バーストは、バースト同期を
とっている為上敷ビット内の到着タイミング誤差は許容
して受信する事が出来るので、初期粗調の計算がだいた
い合っていれば最初から親局、子局間の通話が可能とな
る。
By calculating the distance from each station's radio to the antenna, you can roughly predict the correct timing. Therefore, the transmission timing of the slave station is roughly adjusted and first only the contact telephone burst is transmitted. Since contact telephone bursts are synchronized with bursts, it is possible to receive them while allowing arrival timing errors in the overlay bits, so if the initial rough adjustment calculations are approximately correct, the communication between the master station and the slave stations can be made from the beginning. You will be able to make calls.

したがって通話しながらこのバーストの抽出したクロッ
ク17と主データバーストをサンプルするのに使う親局
送信側と同じサンプルパルス13とを位相比較した結果
を子局へ転送すると共に、ユニークワード到着時間位置
と主信号バーストの送出タイミングについて本来ある。
Therefore, while making a call, the result of a phase comparison between the extracted clock 17 of this burst and the same sample pulse 13 used on the master station transmitting side used to sample the main data burst is transferred to the slave station, and the unique word arrival time position and There is an original timing for sending out the main signal burst.

べき位置との差情報を子局へ転送し、子局において手動
又は自動で送出タイミングを微調する。
The information on the difference between the desired position and the desired position is transferred to the slave station, and the slave station finely adjusts the transmission timing either manually or automatically.

この後主信号バーストを送出すれば連絡用電話バースト
と主信号バーストは元々同一クロック。
If you send out the main signal burst after this, the contact telephone burst and the main signal burst will originally have the same clock.

同一フレームカウンタから作られたものなので。Because they are made from the same frame counter.

主信号バーストは親局としであるべきタイミングに一致
することとなる。
The main signal burst coincides with the timing that should be used as the master station.

本方式においては、連絡用電話バーストにプリアンプル
信号イマ]加による無駄ビットが付いているものの、主
信号も含めた全体の増加率から考えれば、かなり小さく
9周波数の有効利用は保ちつつ、建設段階の初期調整は
従来例に比して容易になる長所がある。
In this method, although there are wasted bits due to the addition of preamble signal imma to the contact telephone burst, it is quite small considering the overall increase rate including the main signal, and while maintaining the effective use of nine frequencies, the construction This has the advantage that the initial stage adjustment is easier than in the conventional example.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は地」−固定無線用時分割多方向多重】重信シス
テム構成図、第2図は各子局の送出バースト図、第5図
は親局受信バースト図、第4図は本発明の実施例の子局
→親局フレーム構成図。 第5図は親局受信部における復調部以降のブロック図。 5:復調器、6:サンプル回路、7:クロツク抽出回路
、8:サンプル回路、9:ユニークワ=ド検出回路、1
0:伸長ノくツノアメモリ。 11 : 伸長バッファメモリ、13:サンプルパルス
、14:書き込みタイミングパルス、15:読み出しタ
イミングパルス、17:抽出されたクロックパルス、1
8:読み出しパルス。 19;サンプル後データ、20:A−H局用主信号デー
タ、21:連絡用電話情報、22:サンプル後データ、
  23 : 書き込みタイミングパルス、24:ユニ
ークワ−1”7’−)/”ルヌ。 第2図 第3図
Figure 1 is a block diagram of a multiplex transmission system (time division multiplexing for fixed wireless), Figure 2 is a transmission burst diagram of each slave station, Figure 5 is a reception burst diagram of the master station, and Figure 4 is a diagram of the transmission burst diagram of the present invention. FIG. 3 is a diagram showing the configuration of a frame from a slave station to a master station according to an embodiment. FIG. 5 is a block diagram of the demodulator and subsequent parts in the master station receiver. 5: Demodulator, 6: Sample circuit, 7: Clock extraction circuit, 8: Sample circuit, 9: Unique word detection circuit, 1
0: Extendable horn memory. 11: Extension buffer memory, 13: Sample pulse, 14: Write timing pulse, 15: Read timing pulse, 17: Extracted clock pulse, 1
8: Read pulse. 19: Post-sample data, 20: Main signal data for A-H stations, 21: Contact phone information, 22: Post-sample data,
23: Write timing pulse, 24: Unique word 1"7'-)/"Lune. Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、親局から各子局へは時分割多重化した連続波モード
で送出し、各子局から親局へは親局への到達時に一列の
時分割信号になるよう各子局が間歇的に送出する多方向
多重通信システムにおいて、子局は親局向けのフレーム
構成1各子局が共通に使いうる特定のバーストのみにプ
リアンプル信号を情報バーストの前に付加した形で送出
し、その他の主信号バーストはプリアンプル信号無しで
送出し、親局においては復調後プリアンプル付のバース
トはクロック抽出回路で取り出したクロックで伸長メモ
リの書き込み動作を行ない、プリアンプル信号無しの主
信号バーストは親局の送信と同一クロックでサンプルし
、かつ伸長メモリの書き込み動作を行なうように構成し
た時分割多方向多重通信方式。
1. The master station transmits time-division multiplexed continuous wave mode to each slave station, and each slave station transmits intermittently in a time-division multiplexed continuous wave mode so that when it reaches the master station, it becomes a line of time-division signals. In a multidirectional multiplex communication system that transmits information to The main signal burst is sent without a preamble signal, and at the master station, after demodulation, the burst with a preamble is used to write into the expansion memory using the clock extracted by the clock extraction circuit, and the main signal burst without a preamble signal is sent out. A time-division multidirectional multiplex communication system configured to sample at the same clock as the transmission from the master station and write data to the expansion memory.
JP10976182A 1982-06-28 1982-06-28 Time division omnidirectional mutiplex communication system Pending JPS592454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10976182A JPS592454A (en) 1982-06-28 1982-06-28 Time division omnidirectional mutiplex communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10976182A JPS592454A (en) 1982-06-28 1982-06-28 Time division omnidirectional mutiplex communication system

Publications (1)

Publication Number Publication Date
JPS592454A true JPS592454A (en) 1984-01-09

Family

ID=14518558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10976182A Pending JPS592454A (en) 1982-06-28 1982-06-28 Time division omnidirectional mutiplex communication system

Country Status (1)

Country Link
JP (1) JPS592454A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991008623A1 (en) * 1989-11-24 1991-06-13 British Telecommunications Public Limited Company Passive optical network
US5757785A (en) * 1995-02-01 1998-05-26 Nec Corporation Multi-directional multiple access communication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991008623A1 (en) * 1989-11-24 1991-06-13 British Telecommunications Public Limited Company Passive optical network
US5757785A (en) * 1995-02-01 1998-05-26 Nec Corporation Multi-directional multiple access communication system

Similar Documents

Publication Publication Date Title
US5654955A (en) Network entry channel for CDMA systems
EP0848508A3 (en) TDMA cellular communication system using a receiver station for detecting a timing difference between adjacent base stations
KR100272431B1 (en) Device for expanding coverage of cdma mobile communication system and method thereof
US6845085B1 (en) Synchronization method for a processing communication satellite
US5854784A (en) Power-saving method for providing synchronization in a communications system
US6516199B1 (en) Reducing interference in telecommunications systems
US5983111A (en) Adaptive constant false alarm rate system for detecting CDPD bursts
JP2001502134A (en) Improved synchronization of receiver with transmitter using early and late tests during coarse synchronization
JPS592454A (en) Time division omnidirectional mutiplex communication system
US6990093B1 (en) Method of transmitting synchronized channel in radio transmitter
JP4008506B2 (en) Acquisition method of spot beam beacon frequency in satellite communication system
KR100554042B1 (en) Satellite communication system, receiving earth station and communication satellite hand-over method
JP3369066B2 (en) Mobile communication base station system
WO1998016032A2 (en) Improved synchronization of a receiver with a transmitter using nonlinear transformation metrics
US6735222B1 (en) System and method for time slot offset evaluation in an asynchronous TDMA network
JP2788902B2 (en) Group communication synchronization method
US20080248806A1 (en) Cellular Radiotelephone Signal Permitting Synchronization of a Supplementary Channel by Means of a Principal Channel and Corresponding Method, Terminal and Base Station
JPH10313483A (en) Radio base station
JPS5934738A (en) Automatic delay time controlling system of multi-direction multiplex communication system
KR100288197B1 (en) Apparatus for extending traffic coverage in mobile communication system
JPS58131842A (en) Synchronism system by satellite
JP2000513911A (en) Base station
JP2001144666A (en) Synchronization method in satellite communication network
JPS63292838A (en) Propagation delay adjusting system
KR100311349B1 (en) Apparatus for extending traffic coverage in mobile communication system