JPS59229480A - Sputtering device - Google Patents

Sputtering device

Info

Publication number
JPS59229480A
JPS59229480A JP10275783A JP10275783A JPS59229480A JP S59229480 A JPS59229480 A JP S59229480A JP 10275783 A JP10275783 A JP 10275783A JP 10275783 A JP10275783 A JP 10275783A JP S59229480 A JPS59229480 A JP S59229480A
Authority
JP
Japan
Prior art keywords
target
electrode
substrate
film
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10275783A
Other languages
Japanese (ja)
Other versions
JPS6361387B2 (en
Inventor
Tadashi Serikawa
正 芹川
Akio Okamoto
章雄 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10275783A priority Critical patent/JPS59229480A/en
Publication of JPS59229480A publication Critical patent/JPS59229480A/en
Publication of JPS6361387B2 publication Critical patent/JPS6361387B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/225Oblique incidence of vaporised material on substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Abstract

PURPOSE:To provide a titled device which can form a film having particularly high deposition density and good quality with good uniformity by forming an electrode to be used as a cathode electrode or high frequency electrode into plural plane plates having a certain angle relative with each other and installing a flat plate-shaped target on these plural electrodes in tight contact therewith. CONSTITUTION:The above-mentioned electrode 41 is constituted of plural plane plates having a certain angle of inclination relative with each other and a flat plate-shaped target 42 is installed in tight contact with each electrode plate surface. The periphery of the electrode 41 and the target 42 is covered with an electrode shield 43. In the figure, 44 denotes a vacuum vessel, 45 a base plate support, 46 a base plate and 47 a shutter, respectively. When electric disharge is started from the electrode 41, target constituting atoms are driven off from the surface of the target 42 and the film of the atoms is formed on the base plate 46 attached on the support 45. The respective surfaces of the target 42 incline approximately at the same angle of inclination respectively to the surface of the plate 46. The target constituting atoms are therefore made incident at approximately the same quantity from the regions A and B of the target 45 to the entire surface of the plate 46, by which the thickness of the film on the plate 46 is made uniform and further the characteristic is made uniform.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、高エネルギイオンの衝突によりターゲット表
面からターゲット構成原子をたたき出し、この原子を基
板上に堆積させて薄膜を形成するスパッタリング装置、
特に、高堆積速度で良質な膜を均一性良(形成させるこ
とのできる電極、ターゲット構造を備えたスパッタリン
グ装置に関するもので、例えば半導体デバイスの製造に
適用できる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a sputtering apparatus that knocks out target constituent atoms from a target surface by collision with high-energy ions and deposits these atoms on a substrate to form a thin film;
In particular, it relates to a sputtering apparatus equipped with electrodes and a target structure that can form a high-quality film with good uniformity at a high deposition rate, and can be applied, for example, to the manufacture of semiconductor devices.

〔発明の背景〕[Background of the invention]

近年、発展の著しい半導体デバイスの製作に、スパッタ
リング法を用いる場合が急激に増大している。従来のこ
の種のスパッタリング装置は、第1図に示す構成を備え
ている。真空槽11内に、陰極もしくは高周波電極とな
る平板形の電極12と、この電極12」二にターゲット
13を設置し、電極12とターゲット13との周辺部に
電極シールド14が設けてあり、ターゲット13の前面
に、シャッタ17を介して、基板支持台15が配置され
ている。基板支持台15上に基板16を設置した後、真
空槽11を排気し、Ar等の不活性ガスと、02やN2
等の活性ガスとを所定量導入し、電極12に負電圧ある
いは高周波電圧を印加すると、グロー放電が起こり、高
エネルギイオンが生成され、これがターゲット13の表
面に衝突し、ターゲット構成原子がたたき出されする。
In recent years, the use of sputtering methods has rapidly increased in the production of semiconductor devices, which are undergoing rapid development. A conventional sputtering apparatus of this type has a configuration shown in FIG. In the vacuum chamber 11, a flat plate-shaped electrode 12 serving as a cathode or a high-frequency electrode and a target 13 are installed on the electrode 12'', and an electrode shield 14 is provided around the electrode 12 and the target 13. A substrate support stand 15 is placed in front of the substrate support 13 with a shutter 17 in between. After setting the substrate 16 on the substrate support stand 15, the vacuum chamber 11 is evacuated, and an inert gas such as Ar, 02 or N2 is evacuated.
When a predetermined amount of an active gas such as the like is introduced and a negative voltage or a high frequency voltage is applied to the electrode 12, a glow discharge occurs and high-energy ions are generated, which collide with the surface of the target 13 and the target constituent atoms are ejected. It will be done.

この状態をしばらく続けた後、シャッタ17を除くと、
ターゲット構成原子を主成分とする薄膜が基板16上に
形成される。ターゲット13のみをエツチングし、電極
12のエツチングを阻止するために、通常のスパッタリ
ング装置においては、電極、12の周辺部は電極シール
ド]4でおおわれている。
After continuing this state for a while, if the shutter 17 is removed,
A thin film containing target constituent atoms as a main component is formed on the substrate 16. In order to etch only the target 13 and prevent etching of the electrode 12, in a normal sputtering apparatus, the periphery of the electrode 12 is covered with an electrode shield 4.

平板形の電極上に、平板形のターゲットを設置して用い
る、従来のスパッタリング装置は、発展の著しい半導体
デバイスを製作する上で、多(の問題点を有することが
明らかとなっている。問題点が生じる主な原因は、半導
体基板が大口径化してきていることにある。これを第2
図によって説明する。電極21」二に設置したターゲッ
ト22からたたき出された原子が、基板支持台23」二
の基板24に堆積する。この場合、基板24の中央部の
(a+b)の領域には、ターゲット22の左側のA領域
及び右側のB領域から、ターゲット構成原子がほぼ同量
入射し、さらに、基板面へ入射する角度も、法線に対し
て対称な分布となる。一方、基板24の周辺部のa領域
あるいはb領域では、それぞれ、ターゲット22のA領
域あるいはB領域からのターゲット構成原子が多く入射
し、また、基板面への入射角分布も法線に対して非対称
となる。これらの理由から、基板24上に形成される膜
の厚さは均一でなく、さらに、膜の特性も不均一となる
。第3図は、従来装置により、SiO2膜を形成した時
の厚さの分布を示し、横軸は基板の中心からの距離(c
m)を、縦軸は規格化した膜厚を示している。この第3
図から、基板の中央部の方が厚く堆積し、周辺部になる
に伴って薄くなっていることがわかる、・ 3 ・ さらに、スパッタリング法は、同一電極上に、性質の異
なるターゲットを設置して、各ターゲットの組成から成
る薄膜を形成する場合にも極めて有効である。この場合
、第2図に示すように、電極21上に、性質の異なるタ
ーゲラ) 22A及び22Bを設置することにより、基
板24上には、ターゲット22A及び22Bから成る組
成の薄膜が形成される。
It has become clear that conventional sputtering equipment, in which a flat target is placed on a flat electrode, has a number of problems when manufacturing rapidly evolving semiconductor devices.Problems The main reason why dots occur is that semiconductor substrates are becoming larger in diameter.
This will be explained using figures. Atoms ejected from the target 22 placed on the electrode 21'2 are deposited on the substrate 24 on the substrate support stand 23'2. In this case, approximately the same amount of target constituent atoms are incident on the area (a+b) in the center of the substrate 24 from the A area on the left side and the B area on the right side of the target 22, and the angle of incidence on the substrate surface is also , the distribution is symmetrical with respect to the normal. On the other hand, in region a or region b at the periphery of the substrate 24, many target constituent atoms from region A or region B of the target 22 are incident, respectively, and the incident angle distribution to the substrate surface is also different from the normal. It becomes asymmetrical. For these reasons, the thickness of the film formed on the substrate 24 is not uniform, and furthermore, the properties of the film are also non-uniform. Figure 3 shows the thickness distribution when a SiO2 film is formed using a conventional device, and the horizontal axis is the distance from the center of the substrate (c
m), and the vertical axis indicates the standardized film thickness. This third
From the figure, it can be seen that the deposit is thicker in the center of the substrate and becomes thinner towards the periphery. 3. Furthermore, in the sputtering method, targets with different properties are placed on the same electrode. Therefore, it is also extremely effective when forming a thin film consisting of the composition of each target. In this case, as shown in FIG. 2, targeters 22A and 22B having different properties are placed on the electrode 21, so that a thin film having the composition of the targets 22A and 22B is formed on the substrate 24.

しかし、その場合、基板24の中央部においてのみ22
Aと22Bの組成が同量となり、周辺部では、一方の組
成が不足してくる。
However, in that case, the 22
The compositions of A and 22B are the same, and one composition becomes insufficient in the peripheral area.

以上のように、従来のスパッタリング装置では、膜の厚
さ、膜特性ならびに膜組成の均一性に問題がある。これ
を解決する目的で、ターゲットの口径を大きくしたり、
あるいは、基板に自転、公転等の複雑な運動を付与する
対策がとられている。
As described above, conventional sputtering apparatuses have problems with the uniformity of film thickness, film characteristics, and film composition. To solve this problem, the caliber of the target can be increased,
Alternatively, measures have been taken to impart complex movements such as rotation and revolution to the substrate.

しかし、前者のターゲットを大口径化する方式は、良質
なターゲットの大口径化は困難であり、大口径化に伴っ
て著しく高価になるという問題点があり、一方、後者の
基板に運動を与える方式では、真空槽を太き(しなけれ
ばならず、その内部を高・ 4 ・ 真空に保つことが困難になることや、膜の形成速度が小
さくなる等の問題が新たに生じてくる。
However, the former method of increasing the diameter of the target has the problem that it is difficult to increase the diameter of a high-quality target and becomes extremely expensive as the diameter increases, while the latter method gives motion to the substrate. In this method, the vacuum chamber must be made thicker, which creates new problems such as difficulty in maintaining the inside of the chamber at a high vacuum and a slowing of the film formation rate.

以上述べたように、従来のスパッタリング装置において
は、高堆積速度で、良質な膜を均一性良く形成すること
が困難であり、これらを改善するためには、さらにター
ゲット口径を太き(したり、真空槽を高真空に排気する
時間を長くする等の必要があり、薄膜の形成に要する費
用が高いものになるという問題があった。
As mentioned above, with conventional sputtering equipment, it is difficult to form a high-quality film with good uniformity at a high deposition rate. However, it is necessary to increase the time required to evacuate the vacuum chamber to a high vacuum, and there is a problem in that the cost required for forming the thin film becomes high.

〔発明の目的〕 本発明の目的は、従来装置での上記した諸問題点を解決
できる構成を備えたスパッタリング装置を提供すること
にある。
[Object of the Invention] An object of the present invention is to provide a sputtering apparatus having a configuration that can solve the above-mentioned problems of conventional apparatuses.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、陰極電極もしくは高周波電極となる電
極を互いにある傾き角をなす複数の平面板で形成してこ
れらの複数電極板上に平板状のターゲットを密着状に設
置する構成とするにある。
A feature of the present invention is that the electrode serving as the cathode electrode or the high-frequency electrode is formed of a plurality of flat plates that are inclined at a certain angle to each other, and a flat target is placed closely on the plurality of electrode plates. be.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面により説明する8第4図は
本発明の一実施例を示す断面図で、陰極電極もしくは高
周波電極(以下電極と呼ぶ)41が、互いにある傾き角
をなす複数の平面板からなり、これらの複数電極板」−
に平板状のターゲット42が、各電極板面に沿って傾き
角を作りながら密着するように設置され、これらの電極
及びターゲットの周辺部は電極シールド43で覆われて
いる。
Hereinafter, embodiments of the present invention will be explained with reference to the drawings.8 Figure 4 is a sectional view showing an embodiment of the present invention, in which a plurality of cathode electrodes or high frequency electrodes (hereinafter referred to as electrodes) 41 are arranged at a certain angle of inclination to each other. These multi-electrode plates are made up of flat plates.
A flat target 42 is installed along each electrode plate surface so as to be in close contact with each other while forming an inclination angle, and the peripheral portions of these electrodes and the target are covered with an electrode shield 43.

その他の符号は従来のものと同じ構成の部品で、44は
真空槽、45は基板支持台、46は基板、47はシャッ
タである。第5図には、ターゲットと基板との相対的位
置関係が示されている。第5図において、電極51上に
ターゲット52を設置し、放電を開始すると、ターゲッ
ト52の表面からターゲット構成原子がたたき出され、
基板支持台53に取付けた基板54」―に上記原子の膜
が形成される。電極51が互いにある傾き角をなす複数
の平面板で構成されこれらの各電極板のそれぞれが基板
54の面とほぼ同じ傾き角となるように配置することに
より、電極51上に密着状に取付けられるターゲット5
2も電極数に応じた多面体形状となり、その各面がそれ
ぞれ基板54の面に対してほぼ同じ傾き角ずつ傾くこと
になる。このため、基板54の全面にわたり、ターゲッ
ト52の図示A領域ならびにB領域から、ターゲット構
成原子がほぼ同量入射し、さらに、基板面への入射角度
も法線に対して対称な分布となる。この理由から、第1
図及び第2図に示した従来装置に比べて、基板上での膜
の厚さは均一で、さらに、膜の特性も均一となる。第6
図は、電極が2個の平面板から成る場合の膜の厚さ分布
である。この場合の2平面板の間の傾き角は20度であ
する。第3図に示した従来装置による分布と比べて、膜
の厚さは著しく均一となっている。
The other reference numerals are parts having the same structure as the conventional one, and 44 is a vacuum chamber, 45 is a substrate support stand, 46 is a substrate, and 47 is a shutter. FIG. 5 shows the relative positional relationship between the target and the substrate. In FIG. 5, when a target 52 is placed on an electrode 51 and discharge is started, atoms constituting the target are knocked out from the surface of the target 52.
A film of the atoms is formed on the substrate 54 attached to the substrate support 53. The electrode 51 is composed of a plurality of flat plates that are inclined at a certain angle to each other, and each of these electrode plates is arranged so that the angle of inclination is approximately the same as that of the surface of the substrate 54, so that the electrode 51 is closely attached to the electrode 51. target 5
2 also has a polyhedral shape corresponding to the number of electrodes, and each surface thereof is inclined at approximately the same angle with respect to the surface of the substrate 54. Therefore, substantially the same amount of target constituent atoms are incident from the illustrated regions A and B of the target 52 over the entire surface of the substrate 54, and the incident angle onto the substrate surface is also distributed symmetrically with respect to the normal line. For this reason, the first
Compared to the conventional apparatus shown in FIG. 2 and FIG. 2, the thickness of the film on the substrate is uniform, and the characteristics of the film are also uniform. 6th
The figure shows the thickness distribution of the membrane when the electrode consists of two flat plates. In this case, the angle of inclination between the two planar plates is 20 degrees. The thickness of the film is significantly more uniform than the distribution obtained by the conventional device shown in FIG.

上記実施例においては、電極51上に同一のターゲット
を取付けるとして説明したが、さらに、本発明は、複数
の平面板で構成される電極上に、性。
In the above embodiment, the same target is attached on the electrode 51, but the present invention further provides a method for attaching the same target on the electrode 51.

質の異なるターゲットを複数個設置して、それらのター
ゲットの組成から成る薄膜を得る場合にも極めて有効で
ある。即ち、第5図において、A領域に設置するターゲ
ットとB領域に設置するターゲットとを、組成を異にす
るターゲットとするこ・ 7 ・ とで、基板54上には、A領域の組成とB領域の組成と
の両者を含む薄膜が得られる。この場合、A領域のター
ゲットとB領域のターゲットとが、それぞれほぼ同じ傾
き角で基板54に対向しているため、基板54の全面に
わたってAとBの組成が同量となり、均一組成の膜が得
られる。
It is also extremely effective when a plurality of targets of different quality are installed and a thin film made of the compositions of those targets is obtained. That is, in FIG. 5, the target installed in area A and the target installed in area B are targets with different compositions. A thin film containing both the composition of the region and the composition of the region is obtained. In this case, since the target in area A and the target in area B face the substrate 54 at approximately the same angle of inclination, the compositions of A and B are the same over the entire surface of the substrate 54, and a film with a uniform composition is formed. can get.

以」二のように、第4図実施例によれば、膜の厚さ、膜
特性ならびに膜組成の著しい均一性が実現し、この結果
、従来法で必要とした、基板に複雑な運動を付与する必
要がなく、膜の形成速度を高めることができる利点があ
る。さらに、本実施例によれば、小さなターゲットによ
り良質な膜を均一に形成できることから、ターゲット形
成に必要な費用を低減できる利点がある。
As shown in Fig. 4, remarkable uniformity in film thickness, film properties, and film composition is achieved according to the embodiment shown in Fig. 4, and as a result, it is no longer possible to apply complex movements to the substrate, which were required in the conventional method. There is no need to apply it, and there is an advantage that the film formation rate can be increased. Furthermore, according to this embodiment, a high-quality film can be uniformly formed using a small target, so there is an advantage that the cost required for target formation can be reduced.

スパッタリング装置では、プラズマを集束し、膜形成速
度を向上する目的で、外部から磁界を印加することが一
般に行なわれている。磁界の印加方法により、スパッタ
リング装置は、ダイオード方式とマグネトロン方式とに
区別されている。前者方式は、ターゲットの表面にほぼ
垂直な磁界を・ 8 ・ 印加する方式であり、一方、後者は平行に印加する方式
である。本発明においても、ダイオード方式を採用する
場合は、永久磁石もしくはヘルムホルツコイルによる電
磁石を用いて、一括して磁界を印加することができる。
In sputtering apparatuses, a magnetic field is generally applied from the outside in order to focus the plasma and improve the film formation rate. Depending on the method of applying a magnetic field, sputtering apparatuses are classified into diode type and magnetron type. The former method applies a magnetic field approximately perpendicular to the surface of the target, while the latter method applies a magnetic field parallel to the surface of the target. In the present invention, when a diode system is employed, a magnetic field can be applied all at once using an electromagnet using a permanent magnet or a Helmholtz coil.

一方、マグネトロン方式を採用する場合には、第7図に
一実施例を示すように、ターゲット71の裏面に複数対
の永久磁石72が配置されるように、電極に永久磁石群
を内蔵させる。この状態でスパッタリングを行なうと、
ターゲット表面に平行磁界が印加され、この磁界領域の
ターゲット表面73が顕著にエツチングされ、膜の形成
速度が増大する。
On the other hand, when the magnetron system is employed, as shown in an embodiment in FIG. 7, a group of permanent magnets is built into the electrode so that a plurality of pairs of permanent magnets 72 are arranged on the back surface of the target 71. If sputtering is performed in this state,
A parallel magnetic field is applied to the target surface, and the target surface 73 in this field region is significantly etched, increasing the rate of film formation.

さらに、本発明において、シャッタを複数個設けること
も有効である。第8図は、2個のシャッタ84.85を
、それぞれが基板87に対してほぼ同じ傾き角となるよ
うに配置した場合である。第8図において、電極81上
に、性質の異なるターゲット82.83を設置した後、
放電を開艙し、シャッタ84゜85を開閉することによ
って、基板支持台86上の基板87に膜形成が行なわれ
る。この際、シャッタ84゜85の開閉を時間的に制御
することによって、基板87上には、ターゲット82.
83から成る組成の膜を形成でき、その組成を容易に制
御できる。さらに、第8図に示すように、ターゲット8
2.83の表面もそれぞれ基板87の面に対して、はぼ
同じ傾き角で傾いているために、形成される膜の組成を
基板87の全面にわたって均一にすることができる。
Furthermore, in the present invention, it is also effective to provide a plurality of shutters. FIG. 8 shows a case where two shutters 84 and 85 are arranged so that they have approximately the same inclination angle with respect to the substrate 87. In FIG. 8, after placing targets 82 and 83 with different properties on the electrode 81,
A film is formed on the substrate 87 on the substrate support 86 by opening and closing the shutters 84 and 85. At this time, by temporally controlling the opening and closing of the shutters 84 and 85, the target 82.
A film having a composition of 83 can be formed, and the composition can be easily controlled. Furthermore, as shown in FIG.
Since the surfaces 2.83 are also inclined at approximately the same angle with respect to the surface of the substrate 87, the composition of the formed film can be made uniform over the entire surface of the substrate 87.

本発明の電極を構成する複数の平面板の相互間の傾き角
は10度乃至90度(即ち、基板に対してはそれぞれの
平面板の傾き角が5度乃至45度)が最適である。10
度以下であると、本発明の効果が現われない。一方、9
0度以上にすると、膜の形成速度が減少するなどの問題
点が生じてくる。さらに、本発明の電極における平面板
の個数、大きさ、形状は、目的に応じて任意に選ぶこと
ができる。
The optimal inclination angle between the plurality of planar plates constituting the electrode of the present invention is 10 degrees to 90 degrees (that is, the inclination angle of each planar plate to the substrate is 5 degrees to 45 degrees). 10
If it is less than 100%, the effect of the present invention will not be achieved. On the other hand, 9
When the temperature exceeds 0 degrees, problems such as a decrease in the film formation rate arise. Furthermore, the number, size, and shape of the flat plates in the electrode of the present invention can be arbitrarily selected depending on the purpose.

なお、上述した実′hm例では、いずれも基板は固定と
して説明したが、従来装置と同様に基板を運動させて薄
膜を形成する場合にも、本発明は適用可能であり、大き
な効果を生じさせることができる。
In addition, in the above-mentioned practical examples, the explanation has been made assuming that the substrate is fixed, but the present invention can also be applied to the case where a thin film is formed by moving the substrate as in the conventional apparatus, and a great effect can be produced. can be done.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、高品質の薄膜が
均一な膜厚で高速度で形成でき、また、その製作費を低
減させることができる利点がある。
As explained above, according to the present invention, there is an advantage that a high-quality thin film can be formed with a uniform thickness at high speed, and that the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置の説明図、第2図は従来装置における
膜形成機構の説明図、第3図は従来装置により形成した
膜の厚さの分布図、第4図は本発明の一実施例の断面図
、第5図は第4図における膜形成機構の説明図、第6図
は本発明実施例装置により形成した膜の厚さの分布図、
第7図は本発明の他の実施例を示す断面図、第8図はシ
ャッタを複数個とした本発明の実施例図である。 符号の説明 11.44・・・真空槽 12、2]、 41 、51 、74.81・・・電極
13、22.42.52.71.82・・・ターゲット
14.43・・・電極シールド 15、23.45.53.86・・・基板支持台16.
24 、46 、54 、87・・・基板17 、4.
7.84 、85・・・シャッタ72・・・永久磁石 73・・・ターゲット表面 特許出願人 日本電信電話公社 代理人弁理士 中村純之助 38 矛5図 53 ?6図 中1(1J′l31y)距*# (c肩)矛7図 7゜ づ ゐシー “′
Fig. 1 is an explanatory diagram of a conventional apparatus, Fig. 2 is an explanatory diagram of a film forming mechanism in the conventional apparatus, Fig. 3 is a distribution diagram of the thickness of a film formed by the conventional apparatus, and Fig. 4 is an embodiment of the present invention. A sectional view of the example, FIG. 5 is an explanatory diagram of the film forming mechanism in FIG. 4, and FIG. 6 is a distribution diagram of the thickness of the film formed by the apparatus of the embodiment of the present invention.
FIG. 7 is a sectional view showing another embodiment of the present invention, and FIG. 8 is a diagram showing an embodiment of the present invention in which a plurality of shutters are provided. Explanation of symbols 11.44...Vacuum chamber 12, 2], 41, 51, 74.81...Electrode 13, 22.42.52.71.82...Target 14.43...Electrode shield 15, 23.45.53.86...Substrate support stand 16.
24, 46, 54, 87...substrate 17, 4.
7.84, 85...Shutter 72...Permanent magnet 73...Target surface Patent applicant Nippon Telegraph and Telephone Public Corporation patent attorney Junnosuke Nakamura 38 Spear 5 Figure 53? 1 in figure 6 (1J'l31y) distance*# (c shoulder) spear figure 7 7゜zusii "'

Claims (3)

【特許請求の範囲】[Claims] (1)基板支持台に設置した基板と陰極電極もしくは高
周波電極に設置したターゲットとがシャッタを介して向
き合って真空槽内に配置され、上記電極への電圧印加で
生成される高エネルギイオンの衝突によりターゲット表
面からターゲット構成原子をたたき出しこの原子を基板
上に堆積させて薄膜を形成するスパッタリング装置にお
いて、上記電極を互いにある傾き角をなす複数の平面板
で形成してこれらの複数電極板上に平板状のターゲット
を密着状に設置したことを特徴とするスパッタリング装
置。
(1) A substrate placed on a substrate support stand and a target placed on a cathode electrode or high-frequency electrode are placed in a vacuum chamber, facing each other via a shutter, and collision of high-energy ions generated by applying voltage to the electrodes occurs. In a sputtering device that forms a thin film by ejecting atoms constituting the target from the target surface and depositing these atoms on a substrate, the electrodes are formed from a plurality of flat plates that are inclined at a certain angle to each other, and the electrodes are formed on these multiple electrode plates. A sputtering device characterized by flat targets placed in close contact with each other.
(2)前記各平面板電極が、前記ターゲットに磁界を供
給する複数個の永久磁石もしくは電磁石をそれぞれ内蔵
する平面板電極であることを特徴とする特許請求の範囲
第1項記載のスパッタリング装置。
(2) The sputtering apparatus according to claim 1, wherein each of the planar plate electrodes is a planar plate electrode that includes a plurality of permanent magnets or electromagnets that supply a magnetic field to the target.
(3)前記シャッタが、それぞれが前記基板に対して同
じ傾き角ずつ傾いた複数のシャツタ板より成るシャッタ
であることを特徴とする特許請求の範囲第1項記載のス
パッタリング装置。
(3) The sputtering apparatus according to claim 1, wherein the shutter is composed of a plurality of shutter plates, each of which is inclined at the same angle with respect to the substrate.
JP10275783A 1983-06-10 1983-06-10 Sputtering device Granted JPS59229480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10275783A JPS59229480A (en) 1983-06-10 1983-06-10 Sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10275783A JPS59229480A (en) 1983-06-10 1983-06-10 Sputtering device

Publications (2)

Publication Number Publication Date
JPS59229480A true JPS59229480A (en) 1984-12-22
JPS6361387B2 JPS6361387B2 (en) 1988-11-29

Family

ID=14336072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10275783A Granted JPS59229480A (en) 1983-06-10 1983-06-10 Sputtering device

Country Status (1)

Country Link
JP (1) JPS59229480A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287524A (en) * 1992-04-09 1993-11-02 Anelva Corp Target for magnetron sputtering
JPH0616461U (en) * 1992-01-29 1994-03-04 ライボルト アクチエンゲゼルシヤフト Target for cathode sputtering equipment
US5919345A (en) * 1994-09-27 1999-07-06 Applied Materials, Inc. Uniform film thickness deposition of sputtered materials
JP2001064770A (en) * 1999-06-24 2001-03-13 Ulvac Japan Ltd Sputtering equipment
SG85732A1 (en) * 1999-10-28 2002-01-15 Applied Komatsu Technology Inc Tilted sputtering target with shield to block contaminants
JP2011061063A (en) * 2009-09-11 2011-03-24 Sharp Corp Method of manufacturing aluminum-containing nitride intermediate layer, method of manufacturing nitride layer, and method of manufacturing nitride semiconductor element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776185A (en) * 1980-10-30 1982-05-13 Ulvac Corp Sputtering device
JPS57141930A (en) * 1981-02-27 1982-09-02 Hitachi Ltd Device for formation of thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776185A (en) * 1980-10-30 1982-05-13 Ulvac Corp Sputtering device
JPS57141930A (en) * 1981-02-27 1982-09-02 Hitachi Ltd Device for formation of thin film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616461U (en) * 1992-01-29 1994-03-04 ライボルト アクチエンゲゼルシヤフト Target for cathode sputtering equipment
JPH05287524A (en) * 1992-04-09 1993-11-02 Anelva Corp Target for magnetron sputtering
US5919345A (en) * 1994-09-27 1999-07-06 Applied Materials, Inc. Uniform film thickness deposition of sputtered materials
JP2001064770A (en) * 1999-06-24 2001-03-13 Ulvac Japan Ltd Sputtering equipment
SG85732A1 (en) * 1999-10-28 2002-01-15 Applied Komatsu Technology Inc Tilted sputtering target with shield to block contaminants
JP2011061063A (en) * 2009-09-11 2011-03-24 Sharp Corp Method of manufacturing aluminum-containing nitride intermediate layer, method of manufacturing nitride layer, and method of manufacturing nitride semiconductor element

Also Published As

Publication number Publication date
JPS6361387B2 (en) 1988-11-29

Similar Documents

Publication Publication Date Title
US6562200B2 (en) Thin-film formation system and thin-film formation process
JP2000144399A (en) Sputtering device
SG176182A1 (en) Film-forming method and film-forming apparatus
JPH11229132A (en) Sputter film forming device and sputter film forming method
US6471831B2 (en) Apparatus and method for improving film uniformity in a physical vapor deposition system
JPS59229480A (en) Sputtering device
JPS627852A (en) Formation of thin film
JP3254782B2 (en) Double-sided sputter film forming method and apparatus, and sputter film forming system
US6620298B1 (en) Magnetron sputtering method and apparatus
JPH11106914A (en) Counter magnetron composite sputtering device
JPS63282263A (en) Magnetron sputtering device
JPS60200962A (en) Planar magnetron sputtering method
JPH0931637A (en) Small-sized sputtering target and low-pressure sputtering device using the same
JPS6067668A (en) Sputtering apparatus
JPH01116068A (en) Bias sputtering device
JPH0867981A (en) Sputtering device
JPH05339726A (en) Magnetron sputtering device
WO2002040736A1 (en) Conical sputtering target
US20230060047A1 (en) Pvd system and collimator
JP3414667B2 (en) Magnetron sputtering method
JPH0681146A (en) Magnetron sputtering device
JPH05339725A (en) Sputtering device
JP2001207258A (en) Rotating magnet, and inline type sputtering system
JPH05271924A (en) Simultaneous formation of films by sputtering on plural substrates and device therefor and system for simultaneously forming films on plural substrates
JPS60131967A (en) Sputtering method