JPS59228108A - Distance sensor - Google Patents

Distance sensor

Info

Publication number
JPS59228108A
JPS59228108A JP10456183A JP10456183A JPS59228108A JP S59228108 A JPS59228108 A JP S59228108A JP 10456183 A JP10456183 A JP 10456183A JP 10456183 A JP10456183 A JP 10456183A JP S59228108 A JPS59228108 A JP S59228108A
Authority
JP
Japan
Prior art keywords
light
receiving
spot
receiving surface
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10456183A
Other languages
Japanese (ja)
Inventor
Yoshimasa Fujiwara
祥雅 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP10456183A priority Critical patent/JPS59228108A/en
Publication of JPS59228108A publication Critical patent/JPS59228108A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/10Measuring distances in line of sight; Optical rangefinders using a parallactic triangle with variable angles and a base of fixed length in the observation station, e.g. in the instrument

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To perform the judgment of a distance simply and stably, by positioning a light receiving element, which is divided into two parts, so that the image of a light spot on a reference surface is formed on a boundary line of light receiving surfaces, and comparing the magnitudes of the voltages from the two light receiving surfaces. CONSTITUTION:A spot light beam is projected on an object surface 12 by a light projecting part 11 comprising a spot light source and a light projecting lens. The image of the light spot is formed on the light receiving surfaces of a photodiode 14, whose light receiving surface is divided into two parts, i.e. the upper and lower parts. Current I1 and I2 are obtained as the outputs of the received light beams at the upper part and the lower part of the boundary line on the light receiving surfaces of the photodiode 14, which is divided into the two parts. The current I1 and I2 are converted into voltage V1 and V2 by photoelectric conversion circuits 15 and 16. The magnitudes of the voltages V1 and V2 are compared and judged by a comparator 17. The judged result is inverted by an inverter 18, and a light emitting diode 19 for display is driven. The result is taken out as the judged output.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は光学的三角測量(光切断法)により対象面ま
での距離を所定の距離と比較してその大小判別を行なう
距離センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a distance sensor that compares the distance to a target surface with a predetermined distance by optical triangulation (optical cutting method) to determine the size of the distance.

〔背景技術〕[Background technology]

光切断を用いて距離を測定する距離センサとしては、従
来第1図に示すように、スポット光源および投光レンズ
よシなる投光部1によシ対象面2にスポット光を照射し
、このスポット光による光スポラ)[−受光レンズ3を
通して一次元型半導体装置検出器(Sl 352 : 
浜松テレビ株式会社製)4上に結像させ、光スポツト像
の結像位置を演算によって求め、これによジ基準位置5
から対象面2までの距離Δlを求めるようになっている
。具体的には、基準位置5にある面にスポット光を照射
したときの光スポツト像の結像位置が丁度中央となるよ
うに一次元型半導体装置検出器41を位置決めし、対象
面2にスポット光を照射したときの元スポット像を一次
元型半導体装置検出器4上に結像、させ、このときの−
次元型牛導体位置検出器4の一端および他端からの受光
出力電流■□、■2を光電変換回路6.7により電圧■
□、■2にそれぞれ変換し、距離演算回路8内の演算増
幅器8aによシ和電圧Vよ+V、を求めるとともに演算
増幅器8bによシ差電圧VニーV、を求め、割算器8c
により差電圧V□−v2を和電圧V□+V、で割って正
規化 −この正規化出力vsは基準位置5から対象面2
までの距離Δlに比例することになる。
Conventionally, as shown in FIG. 1, a distance sensor that measures distance using light cutting emits a spot light onto a target surface 2 through a light projecting unit 1 consisting of a spot light source and a light projecting lens. Light spora due to spot light) [-One-dimensional semiconductor device detector (Sl 352:
(manufactured by Hamamatsu Television Co., Ltd.) 4, and the imaging position of the light spot image is determined by calculation, which determines the reference position 5.
The distance Δl from to the target surface 2 is determined. Specifically, the one-dimensional semiconductor device detector 41 is positioned so that when the surface at the reference position 5 is irradiated with spot light, the imaging position of the light spot image is exactly at the center, and the spot light is placed on the target surface 2. The original spot image when the light is irradiated is formed on the one-dimensional semiconductor device detector 4, and the -
The received light output currents ■□, ■2 from one end and the other end of the dimensional type cow conductor position detector 4 are converted into voltage ■ by the photoelectric conversion circuit 6.7.
□ and ■2, the operational amplifier 8a in the distance calculation circuit 8 calculates the sum voltage V +V, and the operational amplifier 8b calculates the difference voltage V +V, and divider 8c
Normalize by dividing the difference voltage V□-v2 by the sum voltage V□+V - This normalized output vs is calculated from the reference position 5 to the target surface 2.
It is proportional to the distance Δl.

上記正規化出力■8をもとにして基準位置5から対象面
2までの距離Δlを所定距離と比較して大小判定するた
めには、距離出力すなわち正規化出力v8を電気的に所
定値と比較する回路が必要となる。この回路が図示の高
精度比較回路9である。
In order to determine the magnitude of the distance Δl from the reference position 5 to the target surface 2 by comparing it with a predetermined distance based on the normalized output ■8, the distance output, that is, the normalized output v8, must be electrically set to a predetermined value. A comparison circuit is required. This circuit is the illustrated high-precision comparison circuit 9.

この高精度比較回路9は、定電流電源9aから給電され
るポテンショメータ9bにより所定の距離に相当する電
圧を設定し、この設定電圧vTHと正規化出力VBとを
コンパレータ9Cで比較し、コンパレータ9cJ:l)
距離の大小比較結果を出力するようになっている。
This high-precision comparison circuit 9 sets a voltage corresponding to a predetermined distance by a potentiometer 9b supplied with power from a constant current power supply 9a, and compares this set voltage vTH with the normalized output VB by a comparator 9C, and compares the set voltage vTH with the normalized output VB. l)
The results of distance comparisons are output.

また、上記正規化出力Vsをもとにして基準位置5から
対象面2までの距離Δlが所定の軒容範囲内にはいって
いるかどうかを比較するためには、上記高精度比較′回
路9に代えてウィンドウ型の高精度比較回路10を用い
る必要がある。このウィンドウ型の高精度比較回路10
は、第2図に示すように、定電流電源10aから給電さ
れる上限設定用ポテンショメータ10bによシ所定の許
容範囲の上限値に相当する上限電圧vTを設定するとと
もに、定電流電源10aから給電される下限設定用ポテ
ンショメータ10cにより所定の許容範囲の下限値に相
当する下限電圧VBを設定し、この上限電圧VTおよび
下限電圧VBと正規化出力VBとを上限コンパレータ1
0dおよび下限コンパレータ10eでそれぞれ比較する
ようになっている。
In addition, in order to compare whether the distance Δl from the reference position 5 to the target surface 2 is within a predetermined eave area range based on the normalized output Vs, the high precision comparison circuit 9 is used. Instead, it is necessary to use a window type high precision comparison circuit 10. This window type high precision comparison circuit 10
As shown in FIG. 2, the upper limit voltage vT corresponding to the upper limit of a predetermined tolerance range is set by the upper limit setting potentiometer 10b supplied with power from the constant current power supply 10a, and the A lower limit voltage VB corresponding to the lower limit value of a predetermined tolerance range is set by the lower limit setting potentiometer 10c, and the upper limit voltage VT, lower limit voltage VB, and normalized output VB are set by the upper limit comparator 1.
0d and a lower limit comparator 10e for comparison.

今、正規化出力V8が上限電圧vTよシ大きいと、上限
コンパレータ10dおよび下限コンハレー / 10e
の出力がそれぞれH,Hでアントゲ−) 10f、lO
g。
Now, if the normalized output V8 is larger than the upper limit voltage vT, the upper limit comparator 10d and the lower limit Conhaler/10e
The outputs are H and H, respectively) 10f, lO
g.

10hの出力がそれぞれH,L、Lとなり、正規化出力
■8が上限電圧VTより小さくかつ下限電圧VBよシ大
キいと、上限コンパレータ10dおよび下限コンパレー
タlOeの出力がそれぞれり、Hでアンドゲー) 10
f 、 10g 、 10hの出力がそれぞれり、H。
If the outputs of 10h become H, L, and L, respectively, and the normalized output ■8 is smaller than the upper limit voltage VT and larger than the lower limit voltage VB, the outputs of the upper limit comparator 10d and the lower limit comparator 1Oe become respectively, and at H, it becomes an AND game) 10
The outputs of f, 10g, and 10h are respectively H.

Lとなシ、正規化出力Vsが下限電圧VBより小さいト
、上限コンパレータ10dおよび下限コンノ(レータ1
0eの出力がそれぞれり、Lでアントゲ−F、10f。
When the normalized output Vs is smaller than the lower limit voltage VB, the upper limit comparator 10d and the lower limit converter (lator 1
The outputs of 0e and L are respectively F and 10f.

10g 、 10hの出力がそれぞれり、L、Hとなる
The outputs of 10g and 10h are respectively L and H.

これを表にすれば次表のようになる。If you put this into a table, it will look like the following table.

すなわち、アンドゲート10fよりH出力が現われると
距離過大であり、アンドゲート10gよりH出力が現わ
れると許容範囲内であり、アンドゲート10hよりH出
力が現われると距離過小である。
That is, when an H output appears from the AND gate 10f, the distance is too large; when an H output appears from the AND gate 10g, it is within the allowable range; and when an H output appears from the AND gate 10h, the distance is too small.

なお、10i 、 10jおよび10にはイン/(−夕
である。
Note that 10i, 10j, and 10 are in/(-even).

しかし、このような従来の距離センサは、基準位置5か
ら対象面2までの距離が所定値より太きいか小さいかあ
るいは許容範囲内にあるかどうかを高精度で広範囲かつ
安定に判定するために、距離演算回路8および高精度比
較回路9または10などの複雑な回路構成が必要であっ
た。
However, such conventional distance sensors are difficult to accurately, widely and stably determine whether the distance from the reference position 5 to the target surface 2 is larger or smaller than a predetermined value, or whether it is within an allowable range. , a distance calculation circuit 8, and a high-precision comparison circuit 9 or 10.

〔発明の目的〕[Purpose of the invention]

この発明は簡単な回路構成で高精度で広範囲かつ安定に
距離判定を行うことができる距離センサを提供すること
を目的とする。
An object of the present invention is to provide a distance sensor that can perform distance determination with high precision, over a wide range, and stably with a simple circuit configuration.

〔発明の開示〕[Disclosure of the invention]

第1の発明の距離センサは、対象面にスポット光を照射
する投光部と、前記対象面上の光スポットを収束する受
光レンズと、受光面が一方向に一方および他方に2分割
されその境界線が前記受光レンズによる受光軸の前記対
象面の遠近による振れ方向と直交するように位置決めさ
れ前記受光レンズにより収束された光スポツト像を受光
面に結像させる2分割受光素子と、この2分割受光素子
を前記受光面の境界線と直交する方向でかつ前記受光面
と略平行な方向に移動可能であって基準面上の光スポッ
トによる元スポット像が前記受光面の境界線上に結像す
るように前記2分割受光素子を位置決めする受光素子移
動・位置決め機構と、前記2分割受光素子の一方および
他方、の受光面からの第1および第2の受光出力電流を
それぞれ第1および第2の電圧に変換する第1および第
2の電流電圧変換回路と、前記第1および第2の電圧の
大小を比較するコンパレータとを備える構成によシ、対
象面が基準面より遠いか近いかを判定し、第2の発明は
2分割受光素子、受光素子移動・位置決め機構、電流電
圧変換回路およびコンノくレータを2組設けることによ
り、対象面の距離が許容範囲内に入っているかどうかを
判定するようにしている。
The distance sensor of the first invention includes a light projecting section that irradiates a spot light onto a target surface, a light receiving lens that converges a light spot on the target surface, and a light receiving surface that is divided into two parts in one direction and the other. a two-part light-receiving element that is positioned so that its boundary line is perpendicular to the deflection direction of the light-receiving axis of the light-receiving lens depending on the distance of the target surface, and forms a light spot image converged by the light-receiving lens on the light-receiving surface; The divided light-receiving element is movable in a direction perpendicular to the boundary line of the light-receiving surface and substantially parallel to the light-receiving surface, and an original spot image of the light spot on the reference plane is formed on the boundary line of the light-receiving surface. a light-receiving element movement/positioning mechanism that positions the two-split light-receiving element, and a first and second light-receiving output current from the light-receiving surfaces of one and the other of the two-split light-receiving elements, respectively. The configuration includes first and second current-voltage conversion circuits that convert the voltage into voltages of The second invention determines whether the distance to the target surface is within a permissible range by providing two sets of a two-split light-receiving element, a light-receiving element movement/positioning mechanism, a current-voltage conversion circuit, and a controller. I try to do that.

以下、この発明の実施例を図面に基づいて詳細に説明す
る。
Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

この発明のMlの実施例を第3図に示す。すなわち、こ
の距離センサは、スポット光源および投光レンズよりな
る投光部11によシ対象面12にスポット光を照射し、
このスポット光による光スポツト像を受光レンズ13を
通して受光面が上下に2分割された2分割ホトダイオー
ド14の受光面上に結像させ、2分割ホトダイオード1
4の受光面上の境界線の上側部分および下側部分の受光
出力電流11.12を光電変換回路15.16によシミ
圧V工、■2にそれぞれ変換し、この電圧V工、■、の
大小をコンパレータ17で比較判定し、この判定結果を
インバータ18で反転して表示用の発光ダイオード19
を駆動するとともに判定出力として取シ出すようになっ
ている。
An embodiment of Ml of this invention is shown in FIG. That is, this distance sensor irradiates a target surface 12 with a spot light using a light projecting unit 11 consisting of a spot light source and a light projecting lens,
A light spot image of this spot light is formed through a light receiving lens 13 onto the light receiving surface of a two-part photodiode 14 whose light receiving surface is divided into two parts, upper and lower.
The light receiving output currents 11.12 at the upper and lower parts of the boundary line on the light receiving surface of 4 are converted by photoelectric conversion circuits 15.16 to stain voltages V, 2, respectively, and these voltages V, 2, A comparator 17 compares and determines the magnitude of
It is designed to drive and output as a judgment output.

上記2分割ホトダイオード14は、受光面を受光レンズ
13に向けた状態で受光素子移動・位置決め機構20に
よシ移動自在に構成している。この2分割ホトダイオー
ド14の移動軌跡はシャインプルーグ条件に合致するよ
うに設けている。すなわち、2分割ホトダイオード14
の受光面を投光軸上で受光レンズ13を含む面と交差す
る面上で投光軸21を中心とする径方向に移動させるよ
うにし、、2分割した受光面の境界線は上記径方向と直
交するようにしている。このように、2分割ホトダイオ
ード14の移動軌跡を設定することで常にピントの合っ
たスポット光の反射光像が受光面上に得られることにな
シ、受光面の分割部の境界での識別精度を向上させるこ
とができる。
The two-part photodiode 14 is configured to be movable by the light-receiving element moving/positioning mechanism 20 with its light-receiving surface facing the light-receiving lens 13 . The movement locus of this two-divided photodiode 14 is set so as to meet the Scheimpflug condition. That is, the two-split photodiode 14
The light-receiving surface of the light-receiving surface is moved in the radial direction centered on the light-emitting axis 21 on a plane that intersects the surface containing the light-receiving lens 13 on the light-emitting axis, and the boundary line between the two divided light-receiving surfaces is in the radial direction. It is made to be orthogonal to In this way, by setting the movement locus of the two-split photodiode 14, a reflected light image of the spot light that is always in focus can be obtained on the light receiving surface, and the identification accuracy at the boundary between the divided parts of the light receiving surface can be improved. can be improved.

ぞして、基準面22に照射された光スポツト像が一点鎖
線で示すように2分割された受光面の境界線上に位置す
るように2分割ホトダイオード14を位置決めしている
。対象面12が基準面22より遠距離にある場合は、光
スポツト像が実線で示すように2分割された受光面上に
おいて境界線より上方に位置することになり、2分割ホ
トダイオード14の光出力電流!、は光出力電流I2よ
シ大きくなシ、したがって電圧V工が電圧v2よシ大き
くなる。その結果、コンパレータ17がH出力を発生し
、インバータ18が判定出力としてL出力を発生するこ
とになシ、表示用の発光ダイオード19を点灯させる。
Therefore, the two-split photodiode 14 is positioned so that the light spot image irradiated onto the reference plane 22 is located on the boundary line of the two-divided light-receiving surface as shown by the dashed line. When the target surface 12 is farther away than the reference surface 22, the light spot image will be located above the boundary line on the two-divided light-receiving surface as shown by the solid line, and the light output of the two-divided photodiode 14 will decrease. Current! , is larger than the optical output current I2, so the voltage V is larger than the voltage v2. As a result, the comparator 17 generates an H output, the inverter 18 generates an L output as a judgment output, and the display light emitting diode 19 is turned on.

一方、対象面12が基準面22よシ遠距離にある場合は
、光スポツト像が2分割された受光面上において境界線
より下方に位置することになり、2分割ホトダイオード
14の光出力電流I2が光出力電流Iよより大きくなる
。その結果コンパレータ17がL出力を発生し、インノ
く一タ18が判定出力としてH出力を発生することにな
り、表示用の発光ダイオード19が消灯する。
On the other hand, if the target surface 12 is located at a far distance from the reference surface 22, the light spot image will be located below the boundary line on the two-divided light-receiving surface, and the light output current I2 of the two-divided photodiode 14 will be becomes larger than the optical output current I. As a result, the comparator 17 generates an L output, the innocent output 18 generates an H output as a determination output, and the display light emitting diode 19 turns off.

このように構成した結果、従来例のような距離演算回路
8や高精度比較回路9を必要とせず、単に大小を比較す
るコンパレータ17だけで、対象面12が基準面22よ
シ遠いか近いかを判定することができ、しかも2分割ホ
トダイオード14の移動軌跡をシャインプルーグ条件に
合致させるようにしているため、2分割ホトダイオード
14の受光面の境界での識別精度が向上し、判定を高精
度で行うことができる。また、2分割ホトダイオード1
4を受光素子移動・位置決め機構20によシ移動させる
だけでよいため、広い範囲にわたって安定に判定するこ
とができる。
As a result of this configuration, there is no need for a distance calculation circuit 8 or a high-precision comparison circuit 9 as in the conventional example, and the comparator 17 that simply compares the size can determine whether the target surface 12 is farther or closer than the reference surface 22. Moreover, since the movement locus of the two-part photodiode 14 is made to match the Scheimpflug condition, the identification accuracy at the boundary of the light-receiving surface of the two-part photodiode 14 is improved, making the judgment highly accurate. It can be done with In addition, the 2-split photodiode 1
4 only needs to be moved by the light-receiving element moving/positioning mechanism 20, stable determination can be made over a wide range.

この発明の第2の実施例を第4図に示す。すなわち、こ
の距離センサは、スポット光源および投光レンズよシな
る投光部41によシ対象面42にスポット光を照射し、
このスポット光による光スポツト像を受光レンズ43を
通して受光面が2分割された2分割ホトダイオード45
受光面上に結像させ、また受光レンズと2分割ホトダイ
オード45との間にハーフミラ−44を配置し、このハ
ーフミラ−45による反射光を受光面が上下に2分割さ
れた2分割ホトダイオード46の受光面上に結像させる
ようにしている。そして、2分割ホトダイオード45の
受光面上の境界線の上側部分および下側部分の受光出力
電流i□、i、を光電変換回路47.48によシミ圧V
工、v2にそれぞれ変換し、この電圧v1.■2の大小
を上限コンパレータ49で比較判定するようにし、また
2分割ホトダイオード46の受光面上の境界線の上側部
分および下51により電圧Vよ′、v、′にそれぞれ変
換し、この電圧V工′、■2′の大小を下限コンパレー
タ52で比較判定するようにしている。
A second embodiment of the invention is shown in FIG. That is, this distance sensor irradiates a target surface 42 with a spot light using a light projecting section 41 consisting of a spot light source and a light projecting lens,
A light spot image from this spot light is transmitted through a light receiving lens 43 to a two-split photodiode 45 whose light receiving surface is divided into two.
A half mirror 44 is arranged between the light receiving lens and the 2-split photodiode 45, and the reflected light from the half mirror 45 is received by the 2-split photodiode 46 whose light receiving surface is divided into upper and lower halves. The image is formed on a surface. Then, the light receiving output current i
and v2 respectively, and this voltage v1. (2) The upper limit comparator 49 compares and determines the magnitude of 2, and the upper and lower portions 51 of the boundary line on the light-receiving surface of the two-split photodiode 46 convert the voltages V', v, and ', respectively. A lower limit comparator 52 compares and determines the magnitude of 1' and 2'.

一ヒ記上限および下限コンパレータ49,52の出力は
、それぞれそのままナントゲート53に入力し、このナ
ントゲート53のL出力を距離過大を示す出力とすると
ともに、このL出力で距離過大を表示する発光ダイオー
ド54を点灯させるようにし、また上限コンパレータ4
9の出力をそのままナントゲート55に入力するととも
に下限コンパレータ52の出力をインバータ56で反転
してナントゲート55に入力し、このナントゲート55
のL出力を許容範囲内を示す出力とするとともに、この
L出力で許容範囲内を表示する発光ダイオード57を点
灯させるようにし、さらに上限および下限コンパレータ
49,52の出力をインバータ58.59でそれぞれ反
転してナントゲート60に入力し、このナントゲート6
0のL出力を距II!過小を示す出力とするとともに、
このL出力で距離過小を表示する発光ダイオード61を
点灯させるようにしている。
The outputs of the upper and lower limit comparators 49 and 52 are input as they are to the Nantes gate 53, and the L output of this Nantes gate 53 is used as an output indicating an excessive distance, and this L output emits light to indicate an excessive distance. The diode 54 is turned on, and the upper limit comparator 4
The output of the lower limit comparator 52 is inverted by the inverter 56 and inputted to the Nant gate 55.
The L output of is used as an output indicating that it is within the permissible range, and the light emitting diode 57 is turned on to indicate that the permissible value is within the permissible range. Invert it and input it to the Nantes gate 60.
The L output of 0 is distance II! In addition to producing an output that indicates an undervalue,
This L output lights up a light emitting diode 61 which indicates that the distance is too short.

′上記2分割ホトダイオード45.46は受光素子移動
・位置決め機162 、63により移動自在に構成して
いる。この2分割ホトダイオード45゜46の移動軌跡
はシャインプルーグ条件に合致するように設けている。
'The two-divided photodiodes 45 and 46 are configured to be movable by light-receiving element moving/positioning devices 162 and 63. The locus of movement of this two-part photodiode 45.degree. 46 is set so as to meet the Scheimpflug condition.

すなわち、2分割ホトダイオード46の受光面を投光軸
64上で受光レンズ43を含む面と交差する面上で投光
軸64を中心とする径方向に移動させるようにし、2分
割した受光面の境界fIiJI/′i上記径方向と直交
するようにしている。もう一つの2分割ホトダイオード
45は移動軌跡がハーフミラ−44を含む面に対して2
分割ホトダイオード45の移動軌跡と対称となるように
移動させ、受光面の配置も2分割ホトダイオード46の
受光面と上記ハーフミラ−44を含む面に対して対称と
なるようにしている。このように、2分割ホトダイオー
ド45.46の移動軌跡を設定することで常にピントの
合った光スポツト像が2分割ホトダイオード45.46
の受光面上に得られることになり、受光面の分割部の境
界での識別精度を向上させることができる。
That is, the light-receiving surface of the two-split photodiode 46 is moved in the radial direction centered on the light-emitting axis 64 on a plane that intersects the plane containing the light-receiving lens 43 on the light-emitting axis 64, and the light-receiving surface of the two-split photodiode 46 is The boundary fIiJI/'i is perpendicular to the radial direction. Another two-divided photodiode 45 has a moving locus that is divided into two parts with respect to the plane including the half mirror 44.
The photodiode 45 is moved symmetrically with respect to the locus of movement of the divided photodiode 45, and the light-receiving surface is arranged symmetrically with respect to the light-receiving surface of the two-part photodiode 46 and the plane including the half mirror 44. In this way, by setting the movement locus of the two-split photodiode 45.46, the light spot image that is always in focus is created by the two-split photodiode 45.46.
Therefore, the identification accuracy at the boundary between the divided parts of the light receiving surface can be improved.

そして、上限面65に照射された光スポツト像が一点鎖
線で示すように、2分割ホトダイオード45の受光面の
境界線上に位置するように2分割ホトダイオード45を
位置決めするとともに、下限面66に照射された光スポ
ツト像が二点鎖線て示すように2分割ホトダイオード4
6の受光面の境界線上に位置するように2分割ホトダイ
オード46を位置決めしている。
Then, the two-split photodiode 45 is positioned so that the light spot image irradiated onto the upper limit surface 65 is located on the boundary line of the light-receiving surface of the two-split photodiode 45, as shown by the dashed line, and the light spot image irradiated onto the lower limit surface 66 is positioned. The light spot image is divided into two photodiodes 4 as shown by the two-dot chain line.
The two-split photodiode 46 is positioned so as to be located on the boundary line of the light receiving surface 6.

対象面42が上限面65より遠距離にある場合は、光ス
ポツト像が2分割ホトダイオード45の受光面上の境界
線より下側に結像し、受光出力電流iよが受光出力電流
i2よシ小さくなり、電圧Vlが電圧v2よシ小さくな
って上限コンパレータ49が、H出力を発生し、また光
スポツト像が2分割ホトダイオード46の受光面上の境
界線より上側に結像し、受光出力電流1□(が受光出力
電流、/よシ大きくなり、電圧V′が電圧v2′より大
きくなって下限コンパレータ52がH出力を発生し、ナ
ンドグー)53.55.60の出力がそれぞれり、H。
When the target surface 42 is farther away than the upper limit surface 65, the light spot image is formed below the boundary line on the light-receiving surface of the two-split photodiode 45, and the light-receiving output current i is smaller than the light-receiving output current i2. As the voltage Vl becomes smaller than the voltage v2, the upper limit comparator 49 generates an H output, and the light spot image is formed above the boundary line on the light receiving surface of the two-split photodiode 46, and the light receiving output current increases. 1□(receives light output current, / becomes larger, voltage V' becomes larger than voltage v2', lower limit comparator 52 generates H output, outputs of 53, 55, 60 respectively become H).

Hとなシ、発光ダイオード54のみが点灯し距離過大を
表示する。
When H is selected, only the light emitting diode 54 lights up to indicate an excessive distance.

対象面42が上限面65よシ近距離でかつ下限面66よ
シ遠距離にあって許容範囲内にある場合は、光スポツト
像が実線で示すように2分割ホトダイオード45の受光
面上の境界線より上−側に結像し、受光出力電流I:L
が受光出力電if2よシ太きくなシ、電圧Vが電圧v2
よシ大きくなって上限コンパレータ49がL出力を発生
し、また光スポツト像が実線で示すように2分割ホトダ
イオード46の受光面上の境界線より上側に納置し、受
光出力電流i□′が受光出力電流12′よシ大きくなり
、電圧V′が電圧v2′よシ大きくなって下限コンパレ
−タ52がH出力を発生し、ナントゲート53゜55.
60の出力がそれぞれH,L、Hとなり、発光ダイオー
ド57のみが点灯し、許容範囲内を表示する。
When the target surface 42 is close to the upper limit surface 65 and far from the lower limit surface 66 and is within the allowable range, the light spot image is located at the boundary on the light-receiving surface of the two-part photodiode 45 as shown by the solid line. The image is formed above the line, and the received light output current I:L
is larger than the received light output voltage if2, and the voltage V is the voltage v2
The upper limit comparator 49 generates an L output due to the larger size, and the light spot image is placed above the boundary line on the light receiving surface of the two-split photodiode 46, as shown by the solid line, so that the light receiving output current i□' The received light output current 12' becomes larger, the voltage V' becomes larger than the voltage v2', the lower limit comparator 52 generates an H output, and the Nant gates 53, 55.
The outputs of 60 become H, L, and H, respectively, and only the light emitting diode 57 lights up, indicating that it is within the permissible range.

対象面42が下限面66よシ近距離である場合は、元ス
ポット像が2分割ホトダイオード45の受光面上の境界
線より上側に結像し、受光出力電流i工が受光出力電流
+2よル大きくな力、電圧V□が電圧v2よシ大きくな
って上限コンパレータ49がL出力を発生し、また光ス
ポツト像が2分割ホトダイオード46の受光面上の境界
線よシ下側に結像し、受光出力電流1□′が受光出力電
流12′よシ小さくなシ、電圧Vよ′が電圧v2′より
小さくなって下限コンパレータ52がL出力を発生し、
ナントゲート53,55.60の出力がそれぞれH,H
When the target surface 42 is closer to the lower limit surface 66, the original spot image is formed above the boundary line on the light-receiving surface of the two-split photodiode 45, and the light-receiving output current i is equal to the light-receiving output current +2. The large force and voltage V□ become larger than the voltage v2, and the upper limit comparator 49 generates an L output, and a light spot image is formed below the boundary line on the light-receiving surface of the two-split photodiode 46, When the light receiving output current 1□' is smaller than the light receiving output current 12', the voltage V' becomes smaller than the voltage v2', and the lower limit comparator 52 generates an L output.
The outputs of Nant gates 53, 55.60 are H and H, respectively.
.

Lとなシ、発光ダイオード61のみが点灯し距離過小を
表示する。
When L is selected, only the light emitting diode 61 lights up to indicate that the distance is too short.

このように構成した結果、従来例のような距離演算回路
8や高精度比較回路10を必要とせず、単に大小を比較
する上限コンパレータ49および下限コンパレータ52
とナントゲート53 、55゜60およびインバータ5
6,58.59とだけで対象面42が許容範囲内にある
かどうかを判定することができ、しかも2分割ホトダイ
オード45゜46の移動軌跡をシャインプルーグ条件に
合致させるようにしているため、2分割ホトダイオード
45.46の受光面の境界での識別N度が向上し。
As a result of this configuration, there is no need for the distance calculation circuit 8 and the high precision comparison circuit 10 as in the conventional example, and the upper limit comparator 49 and the lower limit comparator 52 that simply compare the magnitude
and Nant gate 53, 55°60 and inverter 5
6, 58, and 59, it is possible to determine whether the target surface 42 is within the permissible range, and the movement locus of the two-part photodiode 45°46 is made to match the Scheimpflug condition. The discrimination N degree at the boundary of the light-receiving surface of the two-part photodiode 45 and 46 is improved.

判定を高精度で行うことができる。また、2分割ホトダ
イオード45.46を受光素子移動・位置決め機構62
.63によシ移動させるだけでよいため広い範囲にわた
って簀定に判定することができる。
Judgments can be made with high precision. In addition, the two-divided photodiode 45 and 46 are moved and positioned by the light-receiving element moving and positioning mechanism 62.
.. 63, it is possible to make a comprehensive determination over a wide range.

この発明の第3の実施例を第5図および第6図に示す。A third embodiment of the invention is shown in FIGS. 5 and 6.

すなわち、この距離センナは、第4図の受光レンズ43
を平凸レンズ67aとシリンドリカルレンズ67bとを
相互に密着させ平凸レンズ67a側を対象面42に対向
させるとともにシリンドリカルレンズ67b側を2分割
ホトダイオード45゜46側にした受光レンズ67を用
いることにょシ対象面42に照射した光スポツト像を円
形から線状に変換して並設した2分割ホトダイオード4
546の両受光面上にわたって結像させるようにしてい
る。仁の場合の2分割ホトダイオード45゜46の配置
は双方とも第4図における2分割ホトダイオード46と
同じ配置にしている。
That is, this distance sensor is connected to the light receiving lens 43 in FIG.
By using a light-receiving lens 67 in which the plano-convex lens 67a and the cylindrical lens 67b are brought into close contact with each other, the plano-convex lens 67a side faces the object surface 42, and the cylindrical lens 67b side is the 2-split photodiode 45° 46 side. A two-part photodiode 4 arranged in parallel converts the light spot image irradiated onto the photodiode 42 from circular to linear.
The image is formed on both light receiving surfaces of 546. The arrangement of the two-divided photodiodes 45.degree. 46 in the case of the third embodiment is the same as the two-divided photodiodes 46 in FIG.

なお、第6図は、第5図において矢印入方向に受光レン
ズ67.2分割ホトダイオード45.46および受光素
子移動・位置決め機構62.63を見た図である。
Note that FIG. 6 is a view of the light receiving lens 67, two-divided photodiode 45, 46, and the light receiving element moving/positioning mechanism 62, 63 viewed in the direction of the arrow in FIG.

その他の構成および効果は前述の第2の実施例と同様で
ある。
Other configurations and effects are similar to those of the second embodiment described above.

〔発明の効果〕〔Effect of the invention〕

この発明の距離センサによれば、簡単な回路構成で広範
囲かつ安寛に距離判定を行うことができるという効果が
ある。
According to the distance sensor of the present invention, there is an effect that distance can be determined easily over a wide range with a simple circuit configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の距離センナの構成図、第2図は他の従来
例の要部回路図、第3図はこの発明の第1の実施例の構
成図、第4因はこの発明の第2の実施例の構成図、第5
図はこの発明の第3の実施、  例の構成図、第6図は
その要部拡大図である。 11・・・投光部、J2・・・対象面、13・・・受光
レンズ、14・・・2分割ホトダイオード、15.16
・・・光m変換回路、17・・・コンパレータ、18・
・・インバータ、19・・・発光ダイオード、41・・
・投光部、42・・・対象面、43・・・受光レンズ、
44・・・ハーフミラ−145,46・・・2分割ホト
ダイオード、47゜48.50.51・・・光電変換回
路、49・・上限コンパレータ、53,55.60・・
・カントゲート、56.58.59・・・インバータ、
54,57.61・・・発光ダイオード 」 マメ 第5図 3 第6図
Fig. 1 is a block diagram of a conventional distance sensor, Fig. 2 is a main circuit diagram of another conventional example, Fig. 3 is a block diagram of a first embodiment of the present invention, and the fourth factor is a block diagram of a conventional distance sensor. Configuration diagram of the second embodiment, fifth
The figure is a block diagram of a third embodiment of the present invention, and FIG. 6 is an enlarged view of the main parts thereof. DESCRIPTION OF SYMBOLS 11... Light emitter, J2... Target surface, 13... Light receiving lens, 14... 2-split photodiode, 15.16
... Optical m conversion circuit, 17... Comparator, 18.
...Inverter, 19...Light-emitting diode, 41...
・Light emitter, 42...Target surface, 43...Light receiving lens,
44... Half mirror 145, 46... 2-split photodiode, 47° 48.50.51... Photoelectric conversion circuit, 49... Upper limit comparator, 53, 55.60...
・Cant gate, 56.58.59...Inverter,
54,57.61...Light-emitting diode" Mame Figure 5 3 Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1)対象面にスポット光を照射する投光部と、前記対
象面上の光スポットを収束する受光レンズと、受光面が
一方向に一方−および他方に2分割されその境界線が前
記受光レンズによる受光軸の前記対象面の遠近による振
れ方向と直交するように位置決めされ前記受光レンズに
より収束された光スポツト像を受光面に結像させる2分
割受光素子と、この2分割受光素子を前記受光面の境界
線と、直交する方向でかつ前記受光面と略平行な方向に
移動可能であって基準面上の光スポットによる光スポツ
ト像が前記受光面の境界線上に結像するように前記2分
割受光素子を位置決めする受光素子移動・位置決め機構
と、前記2分割受光素子の一方および他方の受光面から
の第1および第2の受光出力電流をそれぞれ第1および
第2の電圧に変換する第1および第2の電流電圧変換回
路と、前記第1および@2の電圧の大小を比較するコン
パレータとを備えた距離センサ。
(1) A light projecting unit that irradiates a spot light onto the target surface, a light receiving lens that converges the light spot on the target surface, and a light receiving surface that is divided into two parts in one direction, one side and the other side, and the boundary line is the light receiving lens. a two-split light-receiving element that is positioned so as to be perpendicular to the deflection direction of the light-receiving axis of the lens due to distance and distance of the object plane, and forms a light spot image converged by the light-receiving lens on the light-receiving surface; The light receiving surface is movable in a direction perpendicular to the boundary line of the light receiving surface and substantially parallel to the light receiving surface so that a light spot image of the light spot on the reference surface is formed on the boundary line of the light receiving surface. a light-receiving element moving/positioning mechanism for positioning the two-split light-receiving element; and converting first and second light-receiving output currents from one and the other light-receiving surfaces of the two-split light-receiving element into first and second voltages, respectively. A distance sensor comprising first and second current-voltage conversion circuits and a comparator that compares the magnitude of the first and @2 voltages.
(2)  前記受光素子移動・位置決め機構は、投光軸
上で前記受光レンズを含む面と交差する面内で前記2分
割受光集子の受光面を移動させるようにしている特許請
求の範囲第(1)項記載の距離センナ。
(2) The light-receiving element moving/positioning mechanism moves the light-receiving surface of the two-split light-receiving condenser within a plane that intersects a plane containing the light-receiving lens on the light projection axis. Distance sensor described in (1).
(3)対象面にスポット光を照射する投光部と、前記対
象面上の光スポットを収束する受光レンズと、受光面が
一方向に一方および他方に2分割されその境界線が前記
受光レンズによる受光軸の前記対象面の遠近による振れ
方向と直交するように位置決めされ前記受光レンズによ
シ収束された光スポツト像を受光面に同一幾何学条件で
結像させる第1および第2の2分割受光素子と、この第
1 ・の2分割受光素子を前記受光面の境界線と直交す
る方向でかつ前記受光面と略平行な方向に移動可能であ
って上限面上の光スポットによる光スポツト像が前記受
光面の境界線上に結像するように前記#11の2分割受
光素子を位置決めする第1の受光素子移動・位置決め機
構と、前記第2の2分割受光素子を前記受光面の境界線
と直交する方向でかつ曲射受光面と略平行な方向に移動
可能であって下限面上の光スポットによる光スポツト像
が前記受光面の境界線上に結像するように前記第2の2
分割受光素子を位置決めする第2の受光素子移動・位置
決め機構と、前記M1の2分割受光素子の一方および他
方の受光面一からの第1および第2の受光出力電流をそ
れぞれ第1および第2の電圧に変換する第1および第2
の電流電圧変換回路と、前記第1および第2の電圧の大
小を比較する上限コンパレータと、前記第2の2分割受
光素子の一方および他方の受光面からの第3および第4
の受光出力電流をそれぞれ第3および第4の電圧に変換
する第3および第4の電流電圧変換回路と、前記第3お
よび第4の電圧の大小を比較する下限コンパレータとを
備えた距離センサ。
(3) A light projecting unit that irradiates a spot light onto a target surface, a light receiving lens that converges a light spot on the target surface, and a light receiving surface that is divided into two in one direction into one and the other, with the boundary line being the light receiving lens. a first and a second second lens for forming a light spot image on the light receiving surface under the same geometrical conditions; a divided light-receiving element, and a first two-divided light-receiving element that is movable in a direction perpendicular to the boundary line of the light-receiving surface and substantially parallel to the light-receiving surface, and a light spot formed by a light spot on the upper limit surface; a first light-receiving element moving/positioning mechanism that positions the #11 two-split light-receiving element so that an image is formed on the boundary line of the light-receiving surface; The second second lens is movable in a direction perpendicular to the line and substantially parallel to the curved light-receiving surface, and is configured such that a light spot image of the light spot on the lower limit surface is formed on the boundary line of the light-receiving surface.
A second light-receiving element moving/positioning mechanism that positions the split light-receiving element and the first and second light-receiving output currents from one and the other light-receiving surface of the two-split light-receiving element of M1 The first and second
a current-voltage conversion circuit; an upper limit comparator for comparing the magnitudes of the first and second voltages; and third and fourth
A distance sensor comprising: third and fourth current-voltage conversion circuits that convert the received light output currents of the output current into third and fourth voltages, respectively; and a lower limit comparator that compares the magnitudes of the third and fourth voltages.
JP10456183A 1983-06-10 1983-06-10 Distance sensor Pending JPS59228108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10456183A JPS59228108A (en) 1983-06-10 1983-06-10 Distance sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10456183A JPS59228108A (en) 1983-06-10 1983-06-10 Distance sensor

Publications (1)

Publication Number Publication Date
JPS59228108A true JPS59228108A (en) 1984-12-21

Family

ID=14383869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10456183A Pending JPS59228108A (en) 1983-06-10 1983-06-10 Distance sensor

Country Status (1)

Country Link
JP (1) JPS59228108A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2756930A1 (en) * 1996-12-06 1998-06-12 Schneider Electric Sa PHOTOELECTRIC CELL WITH LATCHABLE DIFFERENTIAL PROCESSING

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582903A (en) * 1978-12-14 1980-06-23 Bosch Gmbh Robert Distance measuring apparatus
JPS5767815A (en) * 1980-10-16 1982-04-24 Mitsuhiro Ueda Measuring method for position of reflector using light
JPS57128810A (en) * 1981-02-03 1982-08-10 Olympus Optical Co Ltd Distance measuring device
JPS5830613A (en) * 1981-08-18 1983-02-23 Canon Inc Distance measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582903A (en) * 1978-12-14 1980-06-23 Bosch Gmbh Robert Distance measuring apparatus
JPS5767815A (en) * 1980-10-16 1982-04-24 Mitsuhiro Ueda Measuring method for position of reflector using light
JPS57128810A (en) * 1981-02-03 1982-08-10 Olympus Optical Co Ltd Distance measuring device
JPS5830613A (en) * 1981-08-18 1983-02-23 Canon Inc Distance measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2756930A1 (en) * 1996-12-06 1998-06-12 Schneider Electric Sa PHOTOELECTRIC CELL WITH LATCHABLE DIFFERENTIAL PROCESSING

Similar Documents

Publication Publication Date Title
EP0646769A1 (en) Displacement measurement apparatus
JPS6383886A (en) Bar code detector
JPS5979805A (en) Distance sensor
JPS59228108A (en) Distance sensor
JPH0479522B2 (en)
JPS60194301A (en) Distance detector
JP2544733B2 (en) Photoelectric switch
JPH0517484B2 (en)
JPH0240506A (en) Distance measuring apparatus
JP2638356B2 (en) Focusing spot coaxiality measuring device
JP2529049B2 (en) Optical displacement meter
JPH049525Y2 (en)
JP2986023B2 (en) Displacement sensor
JPS59142412A (en) Distance detecting device
JPH0738201A (en) Adjustment of mounting bearing of semiconductor laser chip
JPH11281543A (en) Sample stage and particle size-measuring apparatus using the sample stage
JPS60177211A (en) Optical distance measuring device
JPH05280947A (en) Optical apparatus for measurement
JPH0220679A (en) Focal position detecting device and focus follow-up mechanism for laser device
JPS6468611A (en) Displacement measuring instrument
JPS6264904A (en) Apparatus for measuring shape
JPS6095307A (en) Position measuring device
JPH0510717A (en) Position and displacement measuring apparatus
JPS61120912A (en) Distance measuring device
JPH0392711A (en) Measuring method for minute displacement