JPS59216164A - Light source device - Google Patents

Light source device

Info

Publication number
JPS59216164A
JPS59216164A JP9104883A JP9104883A JPS59216164A JP S59216164 A JPS59216164 A JP S59216164A JP 9104883 A JP9104883 A JP 9104883A JP 9104883 A JP9104883 A JP 9104883A JP S59216164 A JPS59216164 A JP S59216164A
Authority
JP
Japan
Prior art keywords
light
wavelength
semiconductor laser
variable
photosensitive drum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9104883A
Other languages
Japanese (ja)
Inventor
Kazuhiko Matsuoka
和彦 松岡
Masamichi Tatsuoka
立岡 正道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP9104883A priority Critical patent/JPS59216164A/en
Publication of JPS59216164A publication Critical patent/JPS59216164A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/22Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20
    • G03G15/32Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which the charge pattern is formed dotwise, e.g. by a thermal head
    • G03G15/326Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which the charge pattern is formed dotwise, e.g. by a thermal head by application of light, e.g. using a LED array
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
    • G03G15/04036Details of illuminating systems, e.g. lamps, reflectors
    • G03G15/04045Details of illuminating systems, e.g. lamps, reflectors for exposing image information provided otherwise than by directly projecting the original image onto the photoconductive recording material, e.g. digital copiers
    • G03G15/04072Details of illuminating systems, e.g. lamps, reflectors for exposing image information provided otherwise than by directly projecting the original image onto the photoconductive recording material, e.g. digital copiers by laser

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)

Abstract

PURPOSE:To eliminate the influence of wavelength variation of a semiconductor laser excellently by a simple method by providing a variable stop which controls the quantity of light from the semiconductor laser to a photosensitive drum according to the sensitivity characteristics of the photosensitive drum to wave- length. CONSTITUTION:A light source part 30 consists of a semiconductor chip 20, distributed index lens 21, and variable aperture stop 22. Then, reference wavelength and the aperture diameter of the variable aperture stop 22 are predetermined according to the wavelength sensitivity characteristics of the photosensitive drum 34 to control the quantity of light. For example, when the photosensitive body decreases in sensitivity as the wavelength becomes longer, the aperture diameter of the variable stop 22 is increased for long wavelength to increase the quantity of light. Thus, the influence of wavelength variation of the semiconductor laser to the wavelength sensitivity characteristics of the photosensitive characteristics is eliminated excellently by the simple means.

Description

【発明の詳細な説明】 本発明はレーザビームプリンター等に好適な光源装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a light source device suitable for laser beam printers and the like.

近年、レーザの発達に伴ない、イ重々のレーザーが種々
の用途に用いられている。
In recent years, with the development of lasers, more and more lasers have been used for various purposes.

第1図は、光源部にレーザーを有する記録装置の一実施
例の概略を示す図である。
FIG. 1 is a diagram schematically showing an embodiment of a recording apparatus having a laser in a light source section.

第1図に於いて、1はレーザーとレーザーからの光束を
所定の光束径に変換するコリメータ光学系から成る光源
部、2は偏向器、6はビーム走査用レンズ、4は感光ド
ラムである。ところで最近は、自己変調が可能で6D装
置の小型化が企れると云う利点を生かして、光源として
半導体レーザーが広(用いられるようになってきている
In FIG. 1, reference numeral 1 denotes a light source section consisting of a laser and a collimator optical system that converts the beam from the laser into a predetermined beam diameter, 2 a deflector, 6 a beam scanning lens, and 4 a photosensitive drum. Recently, semiconductor lasers have been widely used as light sources, taking advantage of their ability to self-modulate and the ability to miniaturize 6D devices.

しかしながら、半導体レーザーはHe −Neレーザー
等気体レーザー、或は固体レーザーに比べてその発振波
長が個々のチップにより太き(バラ付く。
However, compared to gas lasers such as He--Ne lasers or solid-state lasers, the oscillation wavelength of semiconductor lasers is wider (varies) depending on the individual chips.

然るに感光ドラムの感度の波長依存性は第2図に示すよ
うに長波長側で急激な減衰を示し特に、半導体レーザの
波長が長波長側にシフトする場合には光量が不足気味に
なシ、良好な画質を得る事が非常に困難になる。対策と
してはレーザーの発光出力を増大する事も考えられるが
、寿命の観点平ら考えても、望ましくない。
However, as shown in Figure 2, the wavelength dependence of the sensitivity of the photosensitive drum exhibits rapid attenuation on the long wavelength side, and especially when the wavelength of the semiconductor laser shifts to the long wavelength side, the amount of light tends to be insufficient. It becomes very difficult to obtain good image quality. As a countermeasure, it may be possible to increase the light emitting output of the laser, but this is not desirable from the perspective of life expectancy.

本発明の目的は、受光媒体として波長に対して感度が変
化する様な媒体で、光のとして半導体レーザな用いた場
合にも、上記欠点を改良できる光源装置を提供すること
におる。
SUMMARY OF THE INVENTION An object of the present invention is to provide a light source device that can improve the above-mentioned drawbacks even when a semiconductor laser is used as a light-receiving medium whose sensitivity changes with respect to wavelength.

本発明に係る光源装置に於いては、半導体レーする光量
を制御することによυ、上記目的を達成せんとするもの
である。
The light source device according to the present invention aims to achieve the above object by controlling the amount of light emitted by the semiconductor laser.

即ち、半導体レーザの波長に依って、光の部と受光媒体
との間に股げた絞シの開口径を変化させ、受光媒体に到
達する光量の調整を行なう。要するに、受光媒体の波長
感度特性に応じて基準とすべき波長と可変絞シの開口径
をあらかじめ定めておきそれに従って光量制御を行なう
もので、例えば波長が長(なるに従って感度が低下する
場合には、実際の波長が長波長側にシフトした場合には
可変絞りの開口径を広げて光量を増加させるものである
。以下本発明に関して詳述する。
That is, depending on the wavelength of the semiconductor laser, the aperture diameter of the diaphragm interposed between the light section and the light-receiving medium is changed to adjust the amount of light that reaches the light-receiving medium. In short, the standard wavelength and the aperture diameter of the variable diaphragm are determined in advance according to the wavelength sensitivity characteristics of the light-receiving medium, and the light amount is controlled accordingly. In this method, when the actual wavelength shifts to the long wavelength side, the aperture diameter of the variable diaphragm is widened to increase the amount of light.The present invention will be described in detail below.

第3図は本発明に係る光源装置の一実施例を示す図で、
10は半導体レーザチップ、11はコリメータレンズ、
12は開口径が可変である絞りである。この絞シ12は
、半導体レーザ10の波長及び受光媒体の波長感度特性
に応じてその開口径が設定出来る様に、可変絞りとなっ
ているものである。半導体レーザ10からの光束は、コ
リメータレンズ11によシ平行光束とされ、該平行光束
は、レーザ光束の波長及び受光媒体の波長感度特性に応
じて、その光束の一部が絞り12により遮光される。
FIG. 3 is a diagram showing an embodiment of the light source device according to the present invention,
10 is a semiconductor laser chip, 11 is a collimator lens,
12 is a diaphragm whose aperture diameter is variable. This diaphragm 12 is a variable diaphragm so that its aperture diameter can be set according to the wavelength of the semiconductor laser 10 and the wavelength sensitivity characteristics of the light-receiving medium. The light beam from the semiconductor laser 10 is converted into a parallel light beam by a collimator lens 11, and a part of the parallel light beam is blocked by an aperture 12 depending on the wavelength of the laser beam and the wavelength sensitivity characteristics of the light-receiving medium. Ru.

第4図は本発明に係る光源装置の他の実施例を示す図で
ある。第4図に於いて、20は半導体レーザチップ、2
1は屈折率分布型レンズ、22は可変絞りである。屈折
率分布型レンズ21は、収差を補正する為に光束の入射
側端面21aは平面であり、光束の出射側端面22aは
、開口絞υ21bに凸面を向けた球面である。屈折率分
布型レンズの中心軸から周辺に向かって距離rの位置で
の屈折率分布n (r)を rl”(r)= n2(o) (1−(gr)’+h4
(gr)’+ha(gr)’) ・・・・・(I)で表
現する67gは近軸での分布の強さを表わすパラメータ
である。h4. htは係数である。今、n (0)=
 1.552 、 gro = 0.248 、 ro
’= 1.587 、 b+−0,9、116−10,
0の素材を用いて両面の頂点間距^1「zをz = 2
.425とすれば、光束の出射側の端面21bの曲率半
径itが、 −4,0≦R≦−2,2・0・拳 (2)の時、良好な
波面を得る事が出来た。尚、Rの値は、その曲率中心位
置との関係上、負の値で示している。この屈折率分布型
レンズ21の、R=−4,0、Iも−−2,3、■−−
2.2の場合の縦収差図(,11I常レンズの球面収差
図に対応する)を第5図に示す。尚、縦軸は、レンズ2
1に入射する光束の入射高りを表わしている。第5図よ
り分る様に、l′Lが(2)式の中に入っていれば、良
好な結像性能を有する。
FIG. 4 is a diagram showing another embodiment of the light source device according to the present invention. In FIG. 4, 20 is a semiconductor laser chip;
1 is a gradient index lens, and 22 is a variable aperture. In the gradient index lens 21, in order to correct aberrations, an end surface 21a on the incident side of the light beam is a flat surface, and an end surface 22a on the exit side of the light beam is a spherical surface with a convex surface facing the aperture stop υ21b. The refractive index distribution n (r) at a distance r from the central axis to the periphery of the gradient index lens is rl''(r)=n2(o) (1-(gr)'+h4
(gr)'+ha(gr)') 67g expressed in (I) is a parameter representing the strength of the distribution on the paraxial axis. h4. ht is a coefficient. Now, n (0)=
1.552, gro = 0.248, ro
'= 1.587, b+-0,9, 116-10,
Using a material of 0, the distance between the vertices on both sides is ^1'z = 2
.. 425, a good wavefront could be obtained when the radius of curvature it of the end surface 21b on the emission side of the light beam satisfies -4,0≦R≦-2,2.0.fist (2). Note that the value of R is shown as a negative value in relation to the position of the center of curvature. R of this gradient index lens 21 is -4,0, I is also -2,3, ■--
A longitudinal aberration diagram (corresponding to the spherical aberration diagram of the 11I ordinary lens) in the case of 2.2 is shown in FIG. In addition, the vertical axis is lens 2
1 represents the height of incidence of a luminous flux incident on 1. As can be seen from FIG. 5, if l'L falls within equation (2), good imaging performance is achieved.

次に本発明では、受光媒体の波長に対する感度特性が、
第2図に示す如(、波長が長(なるに従って感度が悪(
なる様な場合には、受光媒体面上でのビームスポット径
の変動を小さく押えることが出来ることに関して述べる
。レーザー光の強度は、ガ奥ス分布をしている事は広く
知られているが、今、中心強度のEXP(−2)の強度
をニスで光束、スポット径を定義すると、結像スポラ)
Dは、 D=K  拳 F 豐  λ            
   −・・・・ (6)で与えられる。
Next, in the present invention, the wavelength sensitivity characteristic of the light-receiving medium is
As shown in Figure 2, the longer the wavelength, the worse the sensitivity (
In such a case, we will discuss how fluctuations in the beam spot diameter on the surface of the light-receiving medium can be kept small. It is widely known that the intensity of laser light has a deep distribution, but if we define the intensity of the center intensity EXP (-2) as the luminous flux and the spot diameter, then the imaging spora)
D is D=K fist F 豐λ
−・・・・ It is given by (6).

ここで波長が長波長側にシフトすれば(3)式によりD
は増加する。然るに、受光媒体の感度は低下するので、
可変絞りの開口径をよシ広げるわけであるが、結像レン
ズの焦点距離をf1絞シの開口径をaとすると、(6)
式のFは、 F−f/a で与えられるから、明らかにFの値は小さくなる。
Here, if the wavelength shifts to the long wavelength side, D
increases. However, since the sensitivity of the light-receiving medium decreases,
The aperture diameter of the variable aperture is widened, but if the focal length of the imaging lens is f1 and the aperture diameter is a, then (6)
Since F in the equation is given by F-f/a, the value of F is obviously small.

更に開口径aを広げると云う事は、レーザー光束のEX
P(−2)光束径すに対する開口径aの、比a/bが太
き(なり、従って(6)式の定iKも小さくなる。
Furthermore, widening the aperture diameter a means that the EX of the laser beam
P(-2) The ratio a/b of the aperture diameter a to the luminous flux diameter becomes thick (becomes), and therefore the constant iK of equation (6) also becomes small.

(Mj、HUZAWA:LASERFOCUS  SE
P、P82 (1980))結局(6)式に於いて、右
辺のKXFの積とλは互いにその変動量を打消す作用を
持ち従って開口径の変動によるスポット径の変化は十分
に小さい二上記記載に於いては、半導体レーザの製作上
の誤差による発振波長のばらつきを補正する為について
述べたが、本発明は使用中の、半纏体レーザの温度変化
による発振波長の変化に対しても使用することが出来る
。この場合には、半導体レーザの発振波長をモニターす
る手段を設け、このモニターからの出力信号を基にして
、前記絞シの開閉を行なう様にすれば発振波長が変化し
ても自動的に、受光媒体上に到達する光量を補正するこ
とが可能である。
(Mj, HUZAWA: LASERFOCUS SE
P, P82 (1980)) In the end, in equation (6), the product of KXF and λ on the right-hand side have the effect of canceling out their variations, so the change in spot diameter due to variation in aperture diameter is sufficiently small as shown in the above two equations. In the description, the purpose of correcting variations in oscillation wavelength due to manufacturing errors of semiconductor lasers has been described, but the present invention can also be used to correct variations in oscillation wavelength due to temperature changes of semi-integrated lasers during use. You can. In this case, if a means for monitoring the oscillation wavelength of the semiconductor laser is provided, and the diaphragm is opened and closed based on the output signal from this monitor, even if the oscillation wavelength changes, the diaphragm can be opened and closed automatically. It is possible to correct the amount of light reaching the light receiving medium.

第6図は、本発明に係る光臨装置uを適用した、回転多
面鏡の面倒れ補正機u目を有する記録装置の一実施例を
示す図である。第6図に於いて、60は本発明に係る光
汎部を示し、その内部の構成要素は第4図に示す如(、
半導体レーザーチップ20ル−ザー光の入射側端面な平
面、出射側端面をレーザーチップ側に凹面を向けた屈折
率分布型レンズ21、可変開口絞シ22から成る。
FIG. 6 is a diagram illustrating an embodiment of a recording apparatus having a rotating polygon mirror surface tilt correction device u-th to which the optical adjustment device u according to the present invention is applied. In FIG. 6, 60 indicates an optical general section according to the present invention, and the internal components are as shown in FIG.
The semiconductor laser chip 20 is composed of a plane end face on the incident side of the laser beam, a gradient index lens 21 whose exit end face is concave toward the laser chip side, and a variable aperture diaphragm 22.

62は回転多面鏡であり、61は回転多面鏡62によυ
偏向されたビームが形成する主走査平面と直交する断面
でのみパワーを有し、光源部60からの光束を回転多面
鏡62の偏向反射面付近に線状結像させるシリンドリカ
ルレンズ、66は、球面単レンズ33aとトーリック面
を有する単レンズ35bから成るアナモフィックなビー
ム走査用子 レンズ系で、上記主走査贋と直交する断面内では前記偏
向反射面と感光ドジム64とを光学的に共役な関係とす
る事によシ偏向器620面倒れを補正する。
62 is a rotating polygon mirror, and 61 is a rotating polygon mirror 62.
A cylindrical lens 66 is a spherical lens that has power only in a cross section perpendicular to the main scanning plane formed by the deflected beam and forms a linear image of the light beam from the light source section 60 near the deflection reflecting surface of the rotating polygon mirror 62. This is an anamorphic beam scanning sub-lens system consisting of a single lens 33a and a single lens 35b having a toric surface, and the deflection reflection surface and the photosensitive dome 64 are in an optically conjugate relationship in the cross section perpendicular to the main scanning direction. By doing so, the tilt of the deflector 620 surface is corrected.

上記説明に於いて簡単化の為光臨部に於けるレンズにコ
リメート機能を持たせたが本発明の趣旨によれば、可変
絞りから出射される光束は平行光に限定されるものでな
(、発散光、収れん光でも構わない。更に可変絞りはレ
ーザーチップと光源部レンズの間に配置しても構わない
In the above explanation, for the sake of simplicity, the lens in the optical focal point has a collimating function, but according to the spirit of the present invention, the luminous flux emitted from the variable aperture is not limited to parallel light. Divergent light or convergent light may be used.Furthermore, a variable aperture may be placed between the laser chip and the light source lens.

以上述べた様に、本発明に係る光臨装置は、受光媒体の
波長感度特性に対する半導体レーザの波長変化による影
響を簡易な手段で、良好に除去することが出来るもので
ある。
As described above, the photodetection device according to the present invention can satisfactorily eliminate the influence of the wavelength change of the semiconductor laser on the wavelength sensitivity characteristics of the light-receiving medium using simple means.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の記録装置の一実施例を示す図、第2図は
感度が波長依存性を有する受光媒体の一例に於ける感度
特性的・線を示す図、第6図及び第第6図は本発明の光
源装置を適用した記録装置の一実施例を示す図。 10.20・・・・・半導体レーザ、11・・・・・コ
リメータレンズ、12,22・・嗜・・可変絞り、21
−・・・・屈折率分布型レンズ。 (nmノ 躬′4図 (X70−’)
FIG. 1 is a diagram showing an example of a conventional recording device, FIG. 2 is a diagram showing a sensitivity characteristic line in an example of a light-receiving medium whose sensitivity is wavelength dependent, and FIGS. The figure shows an embodiment of a recording device to which the light source device of the present invention is applied. 10.20... Semiconductor laser, 11... Collimator lens, 12, 22... Variable aperture, 21
−・・・Gradient index lens. (nm'4 diagram (X70-')

Claims (2)

【特許請求の範囲】[Claims] (1)半導体レーザと受光媒体の波長に対する感反特性
に応じて前記半導体レーザの受光媒体に到達する光すを
制御する可変絞りとを備えた事を特徴とする光源装置。
(1) A light source device comprising a semiconductor laser and a variable diaphragm that controls the amount of light that reaches a light receiving medium of the semiconductor laser in accordance with the wavelength sensitivity characteristics of the light receiving medium.
(2)半導体レーザと、該半導体レーザからの光ビーム
を偏向し感光ドラムを走査する偏向手段と、前記感光ド
ラムの波長に対する感度特性に応じて、前記半導体レー
ザの感光ドラムに到達する光量を制御する可変絞りとを
備えた事を特徴とする記録装置。
(2) A semiconductor laser, a deflection device that deflects a light beam from the semiconductor laser to scan the photosensitive drum, and controls the amount of light of the semiconductor laser that reaches the photosensitive drum according to the wavelength sensitivity characteristics of the photosensitive drum. A recording device characterized by being equipped with a variable aperture.
JP9104883A 1983-05-24 1983-05-24 Light source device Pending JPS59216164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9104883A JPS59216164A (en) 1983-05-24 1983-05-24 Light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9104883A JPS59216164A (en) 1983-05-24 1983-05-24 Light source device

Publications (1)

Publication Number Publication Date
JPS59216164A true JPS59216164A (en) 1984-12-06

Family

ID=14015614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9104883A Pending JPS59216164A (en) 1983-05-24 1983-05-24 Light source device

Country Status (1)

Country Link
JP (1) JPS59216164A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020114467A (en) * 2016-10-25 2020-07-30 ラクテン メディカル インコーポレイテッド Light diffusion apparatus for use in photoimmunotherapy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020114467A (en) * 2016-10-25 2020-07-30 ラクテン メディカル インコーポレイテッド Light diffusion apparatus for use in photoimmunotherapy

Similar Documents

Publication Publication Date Title
JPH06294940A (en) Beam-shaping element as well as radiation source and optical scanning unit provided with said element
KR19990076486A (en) Light intensity converter, optical device and optical disc device
JPS6314328B2 (en)
JPH0115046B2 (en)
KR19980081460A (en) Scanning optics
JPH09501789A (en) Optical scanning device and beam shaper and source unit for use in the device
US6829284B2 (en) Light source device and optical pickup
US5477372A (en) Optical scanner
JP3073790B2 (en) Optical scanning device
JP3918331B2 (en) Reflective micro-optical system
KR100790419B1 (en) Optical scanning device
JPS59216164A (en) Light source device
KR100350990B1 (en) Solid immersion mirror type objective lens and optical pickup apparatus employing it
US6130701A (en) Scanner apparatus and image recording apparatus provided with array-like light source
JPH0820621B2 (en) Radiation source for printer
US6438088B1 (en) Light transmission device and apparatus including light transmission device
US5148190A (en) Scanning optical system with plural focusing units
JP3345234B2 (en) Scanning optical system
US5835475A (en) Optical device and optical pickup device
JP3767167B2 (en) Optical system
JPH079502B2 (en) Grating lens optical system
JPS63188116A (en) Collimating optical system
JPH0968664A (en) Optical system for light beam scanning
JPH0743467B2 (en) Scanning optics
JPH0369083B2 (en)