JPS59212727A - Double beam interferometer - Google Patents

Double beam interferometer

Info

Publication number
JPS59212727A
JPS59212727A JP8810083A JP8810083A JPS59212727A JP S59212727 A JPS59212727 A JP S59212727A JP 8810083 A JP8810083 A JP 8810083A JP 8810083 A JP8810083 A JP 8810083A JP S59212727 A JPS59212727 A JP S59212727A
Authority
JP
Japan
Prior art keywords
light
plane
photodetector
interference
beam splitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8810083A
Other languages
Japanese (ja)
Other versions
JPH0417367B2 (en
Inventor
Masato Mamiya
間宮 真佐人
Hiroatsu Nakamura
中村 弘陸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP8810083A priority Critical patent/JPS59212727A/en
Publication of JPS59212727A publication Critical patent/JPS59212727A/en
Publication of JPH0417367B2 publication Critical patent/JPH0417367B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • G01J3/4531Devices without moving parts

Abstract

PURPOSE:To make the measurement with a double beam interferometer quick by intersecting two coherent parallel luminous fluxes on the light receiving plane of an optical detecter so that they interfere with each other while all of an incident collimater, beam splitter, plane mirror, image forming optical system, and optical detector are fixed. CONSTITUTION:A double beam interferometer is constituted in such a way that all of its incident collimater 2, beam splitter 3, plane mirrors 5 and 6, image forming optical system 7, and optical detector 8 are fixed. Two coherent parallel luminous fluxes are intersected with the other on the light receiving plane of the optical detector 8 so that they interfere with each other while all the sections 2, 3, 5, 6, 7, and 8 mentioned above are fixed. When such an arrangement is made, the interference fringes of the two parallel luminous fluxes can be resolved in accordance with their phases from the zero order to a higher order and quick photometric measurement can be performed by photoelectric scanning.

Description

【発明の詳細な説明】 本発明はビームスプリッタ−と二つの平面鏡を゛有し、
平(a1鏡の各々がビームスプリッタ−で二分された光
束の各光軸と互いに等しい傾き角をもつ三光束干渉δ口
こ関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention has a beam splitter and two plane mirrors,
This is a three-beam interference δ beam in which each of the flat (a1) mirrors has an equal inclination angle with each optical axis of the light beam split into two by the beam splitter.

フーリエ変換分光光度計は測定すべき光のスペクトルの
全波長の光を同時に測光する特長を有し、元来時々刻々
変化する光や移動する試別の測定に適している。
Fourier transform spectrophotometers have the feature of simultaneously measuring light of all wavelengths in the spectrum of the light to be measured, and are originally suitable for measuring constantly changing light or moving specimens.

しかしながら、従来のフーリエ変換分光光度計に多く用
いられているマイケルソン干渉計は、二つの平面鏡の一
方を精密な直線変位をさせて、干渉光の光路差を変えて
干渉縞の12渉次数走査を行っている。
However, the Michelson interferometer, which is often used in conventional Fourier transform spectrophotometers, scans the 12th order of interference fringes by precisely linearly displacing one of two plane mirrors to change the optical path difference of the interference light. It is carried out.

そのため、平面鏡を機械的に移動させる速度が迅速な分
光測光の制約となり、また、iげ視紫外光のような波長
の短い光を測る場合にはV面鏡の直線変位の精度、変位
量のfl+!I定精度及びゼロ次干渉位置の検出という
難しい点をもっている。
Therefore, the speed at which the plane mirror is mechanically moved is a constraint on rapid spectrophotometry, and when measuring light with short wavelengths such as UV light, the accuracy of the linear displacement of the V-plane mirror and the amount of displacement are limited. fl+! It has the difficult points of I-determined accuracy and detection of the zero-order interference position.

そこで、本発明にす6いては、入射コリメーター、ヒー
ムスプリンター、平面反射鏡、作像光学系、光検知器の
全てを固定したまま二つの可干渉な平行光束を光検知器
の受光面上で交叉干渉させ、その干渉縞をゼロ次がら高
次にわたってその位相別に分解して光電的掃引によって
迅速測光を15うことを1−1的としたものであり、そ
の光検知器」−に作られる干渉縞の位相を検知器J二の
縞の位置から精密、かつ安定に読み出すことのできる三
光束干渉計を提供することを目的としたものである。
Therefore, in the present invention, the incident collimator, heam splinter, plane reflector, imaging optical system, and photodetector are all fixed, and two coherent parallel light beams are applied to the light-receiving surface of the photodetector. 1-1 The objective is to perform cross-interference at the top, resolve the interference fringes into phases from the zero order to higher orders, and perform rapid photometry by photoelectric sweep, and the photodetector. The object of the present invention is to provide a three-beam interferometer that can accurately and stably read out the phase of the interference fringes produced from the position of the fringe on the detector J2.

即ぢ、不考案の三光束干渉計は、入射光コリメータ、ビ
ームスプリンター、そのビームスプリッタ−によって部
分された三光束のおのおのの光lli+l+に対して互
に等しい傾き角をもつ二つの平面反射鏡及び平面反射鏡
から反fJJされた互に呵十渉な二光巾のセロ次から高
次にわたる干渉縞を光検知器の受光面上に結像する作像
光学系ならびにゼロ次から高次にわたる干渉縞のJji
 I身分布を干渉次数別に分1イして退社測光する光検
知器から構成される。
Thus, the uncontrived three-beam interferometer consists of an incident light collimator, a beam splinter, two plane reflectors having mutually equal inclination angles for each of the three light beams divided by the beam splitter, and An imaging optical system that images interference fringes ranging from ceros order to high orders of two optical widths reflected from a plane reflecting mirror on the light receiving surface of a photodetector, and interference fringes ranging from zero orders to high orders. Striped Jji
It consists of a photodetector that divides the physical distribution into parts according to the order of interference and performs photometry.

以下図面を参1u? t、て本発明の名実施例について
説明するが、まず、第1図に示す実施例1は、下記の部
分から(il成される。
See the drawing below 1u? First, a preferred embodiment of the present invention will be described. First, the first embodiment shown in FIG. 1 is composed of the following parts.

即ち、Qにある光源1がらの入射光を平行光束にするレ
ンズ、または凹面鏡コリメータ2、または入射光を図中
の水平面内において、平行光束、鉛直面内でHH面、ま
たはI(′w面に集束する非球面レンズ系、または非点
収差を利用した軸外し凹面鏡等の入射光コリメータ2、
jiJ −寸法の直角プリズムからなるビームスプリッ
タ−6、ビームスプリッタ−3で部分された光束を反射
する二つの平面反射鏡5,6、二つの平面鏡5.6から
反射された三光束を交叉ぎせて光検知器8の受光面上に
干渉縞を生ずるレンズ、または凹面鏡からなる作像光学
系7がら構成されるか、この作像光学系7は図に示ず平
]m冊及び)I’H’を光検知器8の受光1m上に結像
するように配置される。
In other words, a lens that converts the incident light from the light source 1 at Q into a parallel beam, or a concave mirror collimator 2, or a concave mirror collimator 2, converts the incident light into a parallel beam in the horizontal plane in the figure, HH plane in the vertical plane, or I ('w plane). An incident light collimator 2, such as an aspherical lens system that focuses the light, or an off-axis concave mirror that utilizes astigmatism;
A beam splitter 6 consisting of a rectangular prism with a dimension of jiJ - two plane reflecting mirrors 5 and 6 that reflect the luminous flux divided by the beam splitter 3, and a beam splitter 6 that intersects the three luminous fluxes reflected from the two plane mirrors 5.6. It is composed of an imaging optical system 7 consisting of a lens or a concave mirror that produces interference fringes on the light-receiving surface of the photodetector 8, or the imaging optical system 7 is not shown in the figure. ' is arranged so as to form an image on 1 m of light received by the photodetector 8.

また、光検知器8はダイオードアレイ検知?、゛;、イ
メージテセクター、マルチチャンネルトロン、ヒジコン
’+rr等干渉縞の縞枠様を識別測光する検知器である
Also, is photodetector 8 a diode array detector? This is a detector that identifies and photometers the fringe pattern of interference fringes, such as an image tesector, multichannel tron, and hijicon'+rr.

凹面鏡コリメータ2の光軸上に位置する。で示す光源1
がら放射され、凹面鏡コリメータ2で平行光束になった
光がビームスプリッタ−6Qこ垂直入射すると、入射平
行光束は半透明鏡4て部分されて、一部・は半透明鏡4
を透過して平面反射鏡5に入射する。
It is located on the optical axis of the concave mirror collimator 2. Light source 1 shown in
When the light that is emitted from the main body and becomes a parallel beam by the concave mirror collimator 2 is perpendicularly incident on the beam splitter 6Q, the incident parallel beam is partially split by the semi-transparent mirror 4;
and enters the plane reflecting mirror 5.

そして、他の一部は半透明鏡4て反射されて入射方向と
直角に進み、乎面反東・鏡6に入射すイ)。
The other part is reflected by the semi-transparent mirror 4, travels perpendicular to the direction of incidence, and enters the mirror 6 on the opposite side.

直交する光i1#IIdLに対して垂直な平rfiJ 
’HH及びH’ll’を考えると、平面反射鏡5,6ば
それぞれI用向、H’H’曲とθの傾きをもつ。
Plane rfiJ perpendicular to orthogonal light i1#IIdL
Considering 'HH' and H'll', the plane reflecting mirrors 5 and 6 each have an I direction, an H'H' curve, and an inclination of θ.

゛トl−m反射鏡5,6かHH面、H’H’面と交叉す
る直線が図中のMr 、 Mt点に立つとし、AMrと
AMtとの距離が等しくなるように配置する。
It is assumed that straight lines intersecting the HH plane and the H'H' plane of the l-m reflecting mirrors 5 and 6 stand at Mr and Mt points in the figure, and the mirrors are arranged so that the distances between AMr and AMt are equal.

Qで示ず光源1から放射されてA点を通る光線は半透明
鏡4て部分され、一部は平面反射鏡5のMtで反射され
、丙び半透明鏡4で反射されて作像光学系7を通って光
検知器8の受光面PA点に至る。
A ray of light emitted from the light source 1 and passing through point A, indicated by Q, is divided by the semi-transparent mirror 4, a part is reflected by Mt of the flat reflecting mirror 5, and then reflected by the semi-transparent mirror 4 and sent to the imaging optics. The light passes through the system 7 and reaches a point PA on the light receiving surface of the photodetector 8.

他の一部の光線は、゛ド面反射鏡6の点Mrて反射され
、半透明鏡4を通り作像光学系7を通ってPA点に達す
る。
The other part of the light rays is reflected by the point Mr of the mirror 6, passes through the semi-transparent mirror 4, passes through the imaging optical system 7, and reaches the point PA.

即ち、PA点は作像光学系7によって作られたMr点と
Mt点の実像である。
That is, the PA point is a real image of the Mr point and the Mt point created by the imaging optical system 7.

距離面と可とが等しく 、Mr 、 Mt点が互に半透
明鏡4に対する7f像点になるように配置6されている
ときは、PA点における光線Mr PAと正正とは等し
い光路長を持ち、PA点における二光線の干渉光路差は
ゼロである。
When the distance plane and the positive are equal and the Mr and Mt points are arranged 6 so that they each become the 7f image point with respect to the semitransparent mirror 4, the ray Mr PA and the positive positive at the PA point have equal optical path lengths. The interference optical path difference between the two beams at the point PA is zero.

従って、PA点にゼロ次の干渉縞が位置し、またQて示
す光源1から放射される任意光線[株]は半透明鏡4で
部分された後、一方は平面反射鏡5のMt’で反射され
、他方は平面反射鏡6のMr’点て反射される。
Therefore, a zero-order interference fringe is located at the point PA, and after an arbitrary ray emitted from the light source 1 indicated by Q is divided by the semi-transparent mirror 4, one part is at Mt' of the plane reflecting mirror 5. The other one is reflected by the Mr' point of the plane reflecting mirror 6.

それぞれの反射光線は作像光学系7を通って光検知器8
の受光面のP、1点で交叉し、この28点はMr’から
の反射光線の延長線がHH平而面交る点Q1、の作像光
学系7が作る実像に相当する。
Each reflected light beam passes through an imaging optical system 7 to a photodetector 8.
P on the light receiving surface of , intersects at one point, and these 28 points correspond to the real image created by the imaging optical system 7 at the point Q1 where the extension line of the reflected light ray from Mr' intersects the HH plane.

そこで、PAPllの間隔をWと表すと、26点て交叉
する二光線BMt’P nとBM r’P nとの間の
光路差γ8は次式の値になる。
Therefore, when the interval of PAPll is expressed as W, the optical path difference γ8 between the two beams BMt'P n and BM r'P n that intersect at 26 points becomes the value of the following equation.

Qで示す光源1から波長Aの単色光が放射された時は光
検知器8の受光面上に次式て表されれるピン、チ間隔△
Wごとに強度極大の干渉縞が作られる。
When monochromatic light of wavelength A is emitted from the light source 1 indicated by Q, the pinch interval △ is expressed by the following formula on the light receiving surface of the photodetector 8.
An interference fringe with maximum intensity is created for each W.

上記(2)式から判るように、単色光によって作られる
干渉縞のピーク間隔は等間隔になり、その間隔△Wは光
の波長λに比例する。
As can be seen from the above equation (2), the peak intervals of the interference fringes created by monochromatic light are equal intervals, and the interval ΔW is proportional to the wavelength λ of the light.

従って、レーザー光のようにバンドパスの小さい波長が
判っている単色光を入射して、その干渉縞を測定すれば
、(])式に従ってWの値が光路差、即ち干渉位相に容
易に換算できる。
Therefore, if monochromatic light with a known small bandpass wavelength, such as a laser beam, is incident and its interference fringes are measured, the value of W can be easily converted to the optical path difference, that is, the interference phase, according to formula ( ). can.

また、作像光学系7の配置を変えない限り一度測定した
Wの位相換算値は安定して使え、例へは、素子間隔d1
素子数2048のダイオードアレイ検知器の場合に△w
−5dになるように傾角θをセットすると/1.00次
までの干渉縞が測定される。
In addition, unless the arrangement of the imaging optical system 7 is changed, the phase conversion value of W measured once can be stably used.
In the case of a diode array detector with 2048 elements, △w
When the inclination angle θ is set to −5d, interference fringes up to the /1.00th order are measured.

即ち、分解能400のスペクトル測定ができることにな
る。
That is, spectrum measurement with a resolution of 400 can be performed.

第1図に示す実施例1においては、平面反射鏡5,6か
ら反射された互いに干渉する三光束が光軸りに対して対
称な±20の傾角をもってビームスプリッタ−6に入射
するから、ビームスプリッタ−6の屈折率による分散は
干渉縞に影響を与えない。
In the first embodiment shown in FIG. 1, the three mutually interfering beams reflected from the plane reflecting mirrors 5 and 6 enter the beam splitter 6 at an inclination angle of ±20 symmetrically with respect to the optical axis. Dispersion due to the refractive index of the splitter 6 does not affect interference fringes.

第1図の実施例1において、二つの平llff1反射鏡
5,6は互に直角に配置され、θの値を変えても常に二
つの平面反射鏡5,6のなす角は直角である。
In the first embodiment shown in FIG. 1, the two flat reflectors 5 and 6 are arranged at right angles to each other, and even if the value of θ is changed, the angles formed by the two flat reflectors 5 and 6 are always right angles.

従って、二つの平面反射鏡5,6を直角にセットした支
持台を鉛直軸の周りに回転させて任意の値のθをセット
することかでき、即ち、干渉縞の位相間隔を変えること
ができる。
Therefore, by rotating the support base on which the two plane reflectors 5 and 6 are set at right angles around the vertical axis, it is possible to set an arbitrary value of θ, that is, it is possible to change the phase interval of the interference fringes. .

また、二平面反射鏡支持台を−っの光1i+I+ Lに
平行に僅か変位させると、ゼロ次干渉点PAが受光面上
を左右何れかに変位し、即ち、干渉縞全体が移動する。
Furthermore, when the biplane reflecting mirror support is slightly displaced in parallel to the light 1i+I+L, the zero-order interference point PA is displaced to either the left or right on the light receiving surface, that is, the entire interference pattern is moved.

従って、二平面鏡支持台の位置を調節して光検知器8の
受光面に任意の干渉次数範囲の干渉縞を作ることができ
る。
Therefore, by adjusting the position of the biplane mirror support base, interference fringes of any interference order range can be created on the light receiving surface of the photodetector 8.

次に、第2図及び第2図の1−1方向の断面図である第
13図に示す本発明の実施例2は、平面鏡面が鉛直でげ
に90°の角をなす二つの平面反射鏡の支持台が鉛直i
Ii+I+の周りに回転可能で、かつ回転のヘースが一
つの光軸の方向に平行移動可能な支持台構造の一例を略
図で表わしている。
Next, Embodiment 2 of the present invention shown in FIG. 2 and FIG. 13, which is a sectional view taken in the 1-1 direction of FIG. The support stand is vertical i
1 schematically represents an example of a support structure that is rotatable around Ii+I+ and whose heel of rotation is translatable in the direction of one optical axis;

X、yは干渉1.1の入射・出射光軸を表わしており、
Zは両九輔の交点を通りビームスプリッタ−11の半透
明鏡面内にある鉛直線である。
X and y represent the input and output optical axes of interference 1.1,
Z is a vertical line that passes through the intersection of both corners and lies within the semi-transparent mirror surface of the beam splitter 11.

ビートスプリッター11を保持する取イ」枠12は支柱
17に対し傾き及びZ輔の周りの回転調節J 能でビー
ムスプリッタ−11の半透明鏡面が正しくy軸と一致し
、かつy軸とy軸とのなす角90°を三等分するように
調節で′きる。
The frame 12 that holds the beat splitter 11 can be tilted with respect to the support 17 and rotated around the Z support so that the translucent mirror surface of the beam splitter 11 correctly aligns with the y-axis, and the y-axis and the y-axis It can be adjusted to divide the 90° angle between the two into three equal parts.

二つの平面反射鏡13.15の取付枠14.16は夫々
支持台18に対して傾き及び鉛直線の周りの回転調節が
できるように取り付けられる。
The mounting frames 14.16 of the two plane reflecting mirrors 13.15 are respectively mounted to the support base 18 so that the inclination and rotation around the vertical line can be adjusted.

平面反射鏡13.15はこの調節によってその鏡面が正
しく鉛直線に平行で、かつ互に直角をなすようにセット
される。
By this adjustment, the plane reflecting mirrors 13, 15 are set so that their mirror surfaces are correctly parallel to the vertical line and at right angles to each other.

二つの平面反射鏡13.15の支持台18は、摺動台1
9の回転軸25の周りにねじ送り22によって回転でき
締ねじ26で固定される。
The support base 18 of the two plane reflectors 13 and 15 is the sliding base 1
It can be rotated around the rotating shaft 25 of 9 by a screw feeder 22 and fixed by a tightening screw 26.

摺動台19は送りねじ21によってヘース20に対しy
軸に沿って平行移動てきる。
The sliding table 19 is fixed to the head 20 by the feed screw 21.
It moves in parallel along the axis.

平面反射鏡15の前に鏡面とほぼ平行に開閉シャッター
24が反射平面鏡13.15の支持台18に取り付けら
れる。
In front of the flat reflecting mirror 15, an opening/closing shutter 24 is attached to the support base 18 of the flat reflecting mirror 13.15, substantially parallel to the mirror surface.

この開閉シャッター24は手動、または電動で任意に開
閉される。
This opening/closing shutter 24 can be opened and closed manually or electrically as desired.

以上の構造を備えることによって二つの平面反射鏡13
.15の光軸に対する傾き角を容易に変見ることができ
、それによって第1図の光検知器8の受光面上の干渉縞
ピンチ間隔を容易に変えることができる。
By having the above structure, two plane reflecting mirrors 13
.. 15 with respect to the optical axis can be easily changed, thereby easily changing the interference fringe pinch interval on the light receiving surface of the photodetector 8 shown in FIG.

また、摺動台19の変位によって光検知器8の受光面上
に作られるゼロ次干渉縞の位置を変えることができると
共に、光検知器8の受光面上に任7意の干)歩次数範囲
の高次干渉縞を作ることができる。
Further, by displacing the sliding table 19, the position of the zero-order interference fringes formed on the light receiving surface of the photodetector 8 can be changed, and the position of the zero-order interference fringe formed on the light receiving surface of the photodetector 8 can be changed to any number of steps. A range of high-order interference fringes can be created.

この任意の高次干渉縞の各干渉次数は既知波長(D バ
ンドパスの小さい単色光を入射して先づゼロ次干渉縞を
光検知器8上に作ってその位置を読み出す。
Each interference order of this arbitrary high-order interference fringe is determined by inputting a small monochromatic light with a known wavelength (D bandpass), first creating a zero-order interference fringe on the photodetector 8, and reading out its position.

と(いて、摺動台19を移動させながらゼoa干渉縞の
あった位置及びその他の指定された位置に現れる二に渉
縞ピークを計数ずれば、最終的にセ・ツトされた干渉縞
の干渉次数をあらがしめ測シjイすることがてきる。
Then, by counting the two interference fringe peaks that appear at the position where the zeoa interference fringe was and other specified positions while moving the sliding table 19, the finally set interference fringe can be calculated. It is possible to check and measure the order of interference.

摺動台19を移動させる間にy ifζFに対する平行
度の誤差があれば干渉縞のピッチ間隔の変化となって現
れるが、これは光検知器8で干渉縞全体を測光すれば検
出できる。
If there is an error in parallelism with respect to y ifζF while moving the slide table 19, it will appear as a change in the pitch interval of the interference fringes, but this can be detected by photometrically measuring the entire interference fringe with the photodetector 8.

この平行度誤差は最終的に二つの平面反射鏡1ろ、15
の支持台18を回転させて修正することができる。
This parallelism error is ultimately caused by the two plane reflecting mirrors 1 and 15.
can be corrected by rotating the support stand 18.

上記の開閉シャッター24を備えた目的は次の点にある
The purpose of providing the opening/closing shutter 24 described above is as follows.

即ち、二つの平行光束が光検知器8の受光面に作る干渉
縞模様はそれぞれの光束がもっている光強度分布をベー
スラインとしてそのベースライン同志の干渉縞強度分布
をとる。
That is, the interference fringe pattern created by the two parallel light beams on the light receiving surface of the photodetector 8 uses the light intensity distribution of each light beam as a baseline, and takes the interference fringe intensity distribution of the baseline.

一般にこのベースラインは平坦でなく、曲線分布を示し
時には凹凸を示す。
Generally, this baseline is not flat, but exhibits a curved distribution and sometimes exhibits irregularities.

また、光検知器8の受光面における測光感度の不均一性
、即ちロヵリティがあるときは干渉縞強度分布測定の誤
差となる。
Further, non-uniformity of photometric sensitivity on the light receiving surface of the photodetector 8, that is, when there is locality, causes an error in interference fringe intensity distribution measurement.

一以上の測光値誤差及びベースラインの影響は測定すべ
き光のスペクトルの強度分布に含まれているものではな
い。
One or more photometric error and baseline effects are not included in the intensity distribution of the spectrum of light to be measured.

従って、この誤差を含んだ干渉縞強度分布測定をフーリ
エ変換すると誤ったスペクトルが得られる。
Therefore, if the interference fringe intensity distribution measurement containing this error is Fourier transformed, an incorrect spectrum will be obtained.

ベースラインの曲りや光検知器8の感度不均一性を補正
して平坦なベースラインに乗った干渉縞強度分布値をフ
ーリエ変換することが望ましい。
It is desirable to correct the curvature of the baseline and the non-uniformity of sensitivity of the photodetector 8 and perform Fourier transformation on the interference fringe intensity distribution value that lies on a flat baseline.

正しく光学調整された三光束干渉計においては7rに干
渉する二つの光束は互に近似的に等しい強度と等しい強
度分布をもつ。
In a correctly optically adjusted three-beam interferometer, the two beams interfering with 7r have approximately equal intensities and equal intensity distributions.

その一方の光束を遮蔽し、他方の゛光束のみ光検知器8
に入射することによって測定すべき光の光束強度分布を
測定することができる。
One of the light beams is blocked, and only the other light beam is detected by a photodetector 8.
The luminous flux intensity distribution of the light to be measured can be measured by making the light incident on the light beam.

この測光値にはまた光検知器8自体の感度不均一性が含
まれている。
This photometric value also includes sensitivity non-uniformity of the photodetector 8 itself.

測光された単光束光強度分布値を用いて、開閉シャンク
−24を開いて測光される干渉縞光強1印分布の測光値
をベースライン補正する。
Using the photometered single beam light intensity distribution value, the photometered value of the interference fringe light intensity 1 mark distribution photometered by opening the opening/closing shank 24 is baseline corrected.

このベースライン補正した干渉縞の値をフーリエ変換す
る。
This baseline-corrected interference fringe value is subjected to Fourier transformation.

あらかしめ、または繰返し交互に測られたベースライン
の値を用いて干渉縞測光値をベースライン補正する作業
はコンピューターにとって容易であるが、以上の操作を
行う目的で開閉シャンター24を設けたものである。
Although it is easy for a computer to perform baseline correction of interference fringe photometric values using baseline values that have been measured in advance or repeatedly and alternately, the opening/closing shunter 24 is provided for the purpose of performing the above operation. be.

第4図に示す本発明の実強例3は単色光干渉縞ピーク間
隔を変える必要がなく、がっ、そのゼロ次干渉縞の現れ
る位置を変える必要のないある程度限定された分光測光
に適した簡単な構造で安定度の高い三光束干渉計である
Practical Example 3 of the present invention shown in FIG. 4 is suitable for a somewhat limited spectrophotometry in which there is no need to change the monochromatic light interference fringe peak interval, and it is not necessary to change the position where the zero-order interference fringe appears. This is a three-beam interferometer with a simple structure and high stability.

入射光束の光軸をx +T+1i、出射光来の光軸をy
軸と表し、ビームプリンター66の半透明m面34がy
軸及びy軸に直交する図示されていないy軸を含みXと
yのなす角を三等分する。
The optical axis of the incident light flux is x + T + 1i, and the optical axis of the output light is y
The translucent m-plane 34 of the beam printer 66 is y
The angle formed by X and y, including the y-axis (not shown) perpendicular to the axis and the y-axis, is divided into three equal parts.

半透明鏡64面と平面反射鏡6而(Mr 、 Mr勺と
のなす角φは(45°−θ)、半透明鏡64面と平面反
射鏡5面(Mt ’+ Mt )とのなす角fは(45
゜十θ)である。
The angle φ between the 64th surface of the semi-transparent mirror and the 6th plane of the flat reflecting mirror (Mr, Mr. f is (45
゜10θ).

従って、二つの平面反射鏡5,6面は!fに直交してい
る。
Therefore, the two plane reflecting mirrors 5 and 6 are! It is orthogonal to f.

入射光軸し上の凹面鏡コリメータ62の焦点のQに位置
する光源61から放射された光をレンズ、凹面鏡コリメ
ータ2によって平行光束に1μしてビームスプリッタ−
66に垂直入射する。
The light emitted from the light source 61 located at Q of the focal point of the concave mirror collimator 62 above the incident optical axis is converted into a parallel beam of 1μ by the lens and the concave mirror collimator 2 and then sent to the beam splitter.
66 is perpendicularly incident.

この光束のA点を通る光線が半透明鏡64で二分され、
一部は半透明鏡64を透過して平面反射鏡5面のMt点
に当り、他の一部は半透明鏡34面で反射されてy軸方
向に進み平面反射鏡6面のMr点に当るi訂とAMrと
の距離が等しいものとし、即ちMrはMtの半透明鏡6
4面に対する写像点であるとする。
The light beam passing through point A of this light flux is divided into two by a semi-transparent mirror 64,
A portion passes through the semi-transparent mirror 64 and hits the Mt point on the 5th plane of the plane reflecting mirror, and the other part is reflected on the 34th plane of the semi-transparent mirror and travels in the y-axis direction to reach the Mr point on the 6th plane of the plane reflecting mirror. It is assumed that the distance between the corresponding i revision and AMr is equal, that is, Mr is the semi-transparent mirror 6 of Mt.
Suppose that it is a mapping point for four planes.

MtとMrで反射された光線は光軸yに対してそれぞれ
±20の傾きをもってコンペンセーター65を通過し、
作像光学系66によって集束されて光検知器67の受光
面上の点P。で交叉して干渉する。
The light rays reflected by Mt and Mr pass through the compensator 65 with an inclination of ±20 with respect to the optical axis y,
A point P on the light receiving surface of the photodetector 67 is focused by the imaging optical system 66 . interfering with each other.

Po点は作像光学系によって作られたMt及びMr点の
実像に相当する。
The Po point corresponds to the real image of the Mt and Mr points created by the imaging optical system.

」二記のようにAMt = AMrの条件か満されてい
の間の光路差はゼロである。
2, the optical path difference is zero when the condition of AMt = AMr is satisfied.

即ち、Poに作られる干渉縞はゼロ次の干渉縞てあり、
点A以外の任意の点Bを通る光線は半透明鏡64て部分
された後、それぞれ平面反射鏡5.6而の1M7点とM
r’点とで反射される。
In other words, the interference fringes created at Po are zero-order interference fringes,
A ray passing through any point B other than point A is divided by a semi-transparent mirror 64, and then divided into points 1M7 and M7 of a plane reflecting mirror 5.6, respectively.
It is reflected at point r'.

この二つの反射光線はy軸とそれぞれ±20の傾きをも
ってコンペンセーター65を通過し、作像光学系66に
よって光検知器67の受光面上の点Pwて交叉して干渉
する。
These two reflected light beams pass through the compensator 65 with an inclination of ±20 relative to the y-axis, and intersect and interfere by the imaging optical system 66 at a point Pw on the light receiving surface of the photodetector 67.

点Aより等距離にあるMt 、 Mr点を通り、光軸y
及びXにそれぞれ直角な平面HHとH’H’とを考えて
、M’r点の反射光線の延長線とHH平面との交点をQ
Bと表すと、受光面」−の点Pwは作像光学系66によ
って結像される交点QBの実像にほかならない。
Passing through points Mt and Mr, which are equidistant from point A, the optical axis y
Considering the planes HH and H'H' that are perpendicular to the planes HH and
When expressed as B, the point Pw on the light-receiving surface "-" is nothing but the real image of the intersection point QB imaged by the imaging optical system 66.

故に、POPWの距離をWとし、ビームスプリッタ−ろ
6とコンペンセーター65との屈折率を共にn(λ)と
すると、PW点で交叉干渉する二光線BMt’PwとB
M−ビPwとの間の光路差γP′は次式で表される。
Therefore, if the distance of POPW is W, and the refractive index of both the beam splitter 6 and the compensator 65 is n (λ), then the two beams BMt'Pw and B which cross interfere at the point PW
The optical path difference γP' between M-BiPw is expressed by the following equation.

Qて示す光源61からバンドパスの小さい波長λのti
t色九を入射したときは光検知器67の受光1m−[−
に等間隔に強度極大のピークをもつ干渉縞か作られる。
Ti of wavelength λ with small bandpass from light source 61 shown as Q
When t color 9 is incident, the light received by the photodetector 67 is 1m-[-
Interference fringes with peaks of maximum intensity are created at equal intervals.

そのピーク間隔を△Wと表すとその大きさが次式で表さ
れる。
When the peak interval is expressed as ΔW, its magnitude is expressed by the following equation.

上記(4)式から判るように、△Wは光の波長λに比例
すると同時に、ビームスプリッタ−66トコンペンセー
ター65の分散によって変る。
As can be seen from the above equation (4), ΔW is proportional to the wavelength λ of the light and at the same time changes depending on the dispersion of the beam splitter 66 and compensator 65.

従って、この干渉縞の強度分布測定値をフーリエ変換し
て測定した光のスペクトルを求める場合には、あらかし
め干渉縞強度分布測定値を既知屈折率n(λ)の値で測
定波長範囲にわたる分散値補正を行う必要がある〇 第4図の実噛例3の二光束干渉計においては、一度単色
光を入射して光検知器8の受光面にできる干渉縞の強度
分布を測定すれば、Poの位置とP。からの距離Wの干
渉位相換算値とが装置定数として定められる。
Therefore, when obtaining the spectrum of the measured light by Fourier transforming the measured value of the intensity distribution of this interference fringe, it is necessary to prepare the measured value of the interference fringe intensity distribution with a known value of refractive index n(λ) and dispersion over the measurement wavelength range. It is necessary to perform value correction. In the two-beam interferometer of Example 3 in Fig. 4, once monochromatic light is incident and the intensity distribution of interference fringes formed on the light receiving surface of the photodetector 8 is measured, Po position and P. The interference phase conversion value of the distance W from the distance W is determined as a device constant.

光検知器8はダイオードアレイ検知器、イメージデセク
ター、マルチチャンネルトロン、ビジコン管のように干
渉縞の強度分布を干渉次数側に分解測光できる検知器で
ある。
The photodetector 8 is a detector such as a diode array detector, an image desector, a multichannel tron, or a vidicon tube, which can photometer the intensity distribution of interference fringes by decomposing them into interference orders.

従って、本発明の三光束干渉計においては、その構成す
る部品である入射コリメータ、ビームスプリッタ−1平
面反射鏡、作像光学系、光検知器の全てを固定したまま
二つの可干渉な平行光束を光検知器の受光面上で交叉干
渉させ、その干渉縞をゼロ次から高次にわたってその位
相別に分解して充電的掃引によって迅速測光を行なうこ
とができ、更に、その光検知器上に作られる干渉縞の位
相は検知上の縞の位置から精密、かつ安定に読み出しつ
るという利点がある。
Therefore, in the three-beam interferometer of the present invention, two coherent parallel light beams are produced while all of the constituent parts, such as the incident collimator, the beam splitter-1 plane reflecting mirror, the imaging optical system, and the photodetector, are fixed. It is possible to perform cross-interference on the light-receiving surface of a photodetector, resolve the interference fringes by phase from zero order to higher order, and perform rapid photometry by charging sweep. This method has the advantage that the phase of the interference fringes can be accurately and stably read out from the position of the detected fringes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1における三光束干渉計の光学
系統略図を示し、第2図は本発明の実施例2における支
持台構造の略図を示しており、第3図は第2図の171
方向の断Iflj図を示し、そして第4図は本発明の実
施例3における三光束干渉計の光学系統略図を示してい
る。 1.61・・光源、12.32・・凹面鏡コリメータ、
3.11.’33・・ビームスプリッタ−15,6,1
3゜15 ・平面反射鏡、7,66・・作像光学系、8
.37′・・光検知器。
FIG. 1 shows a schematic diagram of the optical system of a three-beam interferometer in Embodiment 1 of the present invention, FIG. 2 shows a schematic diagram of the support structure in Embodiment 2 of the present invention, and FIG. 171 of
FIG. 4 shows a schematic diagram of the optical system of a three-beam interferometer in Embodiment 3 of the present invention. 1.61...Light source, 12.32...Concave mirror collimator,
3.11. '33...beam splitter-15,6,1
3゜15 ・Plane reflecting mirror, 7, 66 ・・Imaging optical system, 8
.. 37'...Photodetector.

Claims (1)

【特許請求の範囲】[Claims] 入射光コリメータ、ビームスプリッタ−1そのビームス
プリッタ−によって二分された三光束のおのおのの光1
!qI+に対して互に等しい傾き角をもつ二つの平面反
射鏡及び平面反射鏡から反射された互に11■干渉な三
光束のゼロ次から高次にわたる−[二渉縞を光検知器の
受光面」二に結像する作像光学系ならびjOゼロ次から
高次にわたる干渉縞の強度分布を干渉次数別に分解して
迅速1i11j光する光検知器がら構成されたことを特
徴とする二九束十渉ンン(。
Incident light collimator, beam splitter 1 Each of the three beams of light divided into two by the beam splitter 1
! The two plane reflecting mirrors have the same inclination angle with respect to qI+, and the three interfering beams reflected from the plane reflecting mirror range from the zeroth order to the higher order - [two interference fringes are detected by the photodetector. A 29-bundle system characterized by comprising an imaging optical system that forms an image on a plane 2, and a photodetector that quickly generates light by decomposing the intensity distribution of interference fringes ranging from zero order to high order into interference orders. Juwata nnn (.
JP8810083A 1983-05-19 1983-05-19 Double beam interferometer Granted JPS59212727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8810083A JPS59212727A (en) 1983-05-19 1983-05-19 Double beam interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8810083A JPS59212727A (en) 1983-05-19 1983-05-19 Double beam interferometer

Publications (2)

Publication Number Publication Date
JPS59212727A true JPS59212727A (en) 1984-12-01
JPH0417367B2 JPH0417367B2 (en) 1992-03-25

Family

ID=13933444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8810083A Granted JPS59212727A (en) 1983-05-19 1983-05-19 Double beam interferometer

Country Status (1)

Country Link
JP (1) JPS59212727A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2647902A1 (en) * 1989-06-06 1990-12-07 Aerospatiale INTERFEROMETRIC DEVICE, IN PARTICULAR FOR A SPECTRO-IMAGER THROUGH A MULTIPLEX FOURIER TRANSFORM, AND SPECTRO-IMAGER COMPRISING SAME
JP2008521011A (en) * 2004-11-18 2008-06-19 モーガン・リサーチ・コーポレーション Small Fourier transform spectrometer
WO2011036982A1 (en) * 2009-09-24 2011-03-31 コニカミノルタホールディングス株式会社 Interference optical system and spectroscope including same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2647902A1 (en) * 1989-06-06 1990-12-07 Aerospatiale INTERFEROMETRIC DEVICE, IN PARTICULAR FOR A SPECTRO-IMAGER THROUGH A MULTIPLEX FOURIER TRANSFORM, AND SPECTRO-IMAGER COMPRISING SAME
EP0402194A2 (en) * 1989-06-06 1990-12-12 AEROSPATIALE Société Nationale Industrielle Interferometric apparatus, particularly for a moving spectro-imager with multiplex fourier transformation and spectro-imager containing the apparatus
US5223910A (en) * 1989-06-06 1993-06-29 Aerospatiale Societe Nationale Industrielle Interferometer devices, especially for scanning type multiplex fourier transform spectrometry
JP2008521011A (en) * 2004-11-18 2008-06-19 モーガン・リサーチ・コーポレーション Small Fourier transform spectrometer
WO2011036982A1 (en) * 2009-09-24 2011-03-31 コニカミノルタホールディングス株式会社 Interference optical system and spectroscope including same

Also Published As

Publication number Publication date
JPH0417367B2 (en) 1992-03-25

Similar Documents

Publication Publication Date Title
US4969744A (en) Optical angle-measuring device
KR102139988B1 (en) Normal-incidence ellipsometer and method for measuring optical properties of the sample using the same
CN115014235A (en) Color confocal measuring equipment
CN108759698B (en) Low-coherence light interference measuring method and device for mirror surface spacing of multi-mirror lens group
CN106352985B (en) A kind of asymmetric space heterodyne spectrograph structure
US9678436B2 (en) Irradiation module for a measuring apparatus
KR102139995B1 (en) Normal-incidence and non-normal-incidence combination ellipsometer and method for measuring optical properties of the sample using the same
CN110082071B (en) Device and method for measuring optical parallel difference of right-angle prism
JPS59212727A (en) Double beam interferometer
US5298976A (en) Method and apparatus for measuring surface distances from a reference plane
JPH0771924A (en) Method and device for measuring thin film characteristics
CN109631783A (en) The low-coherent light interferometric measuring means and method of mirror surface spacing on lens group axis
JPS63193003A (en) Apparatus for measuring depth of recessed part and thickness of film
US20040196460A1 (en) Scatterometric measuring arrangement and measuring method
CN110243760B (en) Line domain frequency domain optical coherence tomography system and longitudinal coordinate calibration method thereof
US4120590A (en) Method for measuring the thickness of transparent articles
CN108955880A (en) High-precision UV double grating spectrograph concentricity scaling method
RU2769305C1 (en) Autocollimator
JPS58727A (en) Fourier transform spectrum device
JPH05500853A (en) Method and apparatus for determining glass tube wall thickness
JP7289780B2 (en) Eccentricity measuring method and eccentricity measuring device
US4441814A (en) Spectrograph providing spectral reference marks
JPH0791926A (en) Method and device for measuring characteristic value
JP2006284233A (en) Apparatus for measuring system error and interferometer system for wavefront measurement equipped with the same
Qian et al. Precision calibration and systematic error reduction in the Long Trace Profiler