JPS59210413A - Device for optical multiplex communication - Google Patents

Device for optical multiplex communication

Info

Publication number
JPS59210413A
JPS59210413A JP59082099A JP8209984A JPS59210413A JP S59210413 A JPS59210413 A JP S59210413A JP 59082099 A JP59082099 A JP 59082099A JP 8209984 A JP8209984 A JP 8209984A JP S59210413 A JPS59210413 A JP S59210413A
Authority
JP
Japan
Prior art keywords
fiber
optical
waveguide
lens
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59082099A
Other languages
Japanese (ja)
Inventor
リチヤ−ド・アラン・リンク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
American Telephone and Telegraph Co Inc
AT&T Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Telephone and Telegraph Co Inc, AT&T Corp filed Critical American Telephone and Telegraph Co Inc
Publication of JPS59210413A publication Critical patent/JPS59210413A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/29307Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide components assembled in or forming a solid transparent unitary block, e.g. for facilitating component alignment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/2931Diffractive element operating in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は光マルチプレクサ、ならびに光デマルチプレク
サに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical multiplexer and an optical demultiplexer.

元ファイバの低損失波長領域が拡がるに伴って、各ファ
イバに沿って異なった波長をイイする種々の信号を同時
に伝送することによって、この増加した帯域幅を利用す
る技術が研究されている。ひとつの斯かる技術には、回
折格子のように角度力向放散形テ/\イスを利用してい
る(例えば、クブリュー・シエー・トムソンシン(W、
 J、 Tomlinson)による六波形マルチブレ
クシングならびにテマルチブレクシンクを行なうための
光デバイス//(OpticalDevices fo
r Wavelength Multiplexing
 and Dcrnultiplexing )  と
題する論文、ヒー・ティ・−・メトカルフ(B、 D、
 Metcalf )らにより リ(口径GRIN口ッ
トレンスを使用した大容量波長デマルチプレクサ〃(H
igh−capacity WavelengthDe
multiplexer with a Large 
Diameter GRINRod Lens )と題
して1982年3月1日に出版された応月光学誌(Ap
plied 0ptics )第21巻第5号、並びに
エム・セキ(M、 5eki )  らにより\X短焦
点パラメータ式グレートインデクス形ロットレンスを使
用した1、1〜1,6μmハント用20チヤンネル・マ
イクロ光格子式%式% 18日に出版されたエレクトロニクスレタース誌(El
ectronics Letters ) 、第18巻
、第6号第257〜258を参照)。
As the low-loss wavelength range of original fibers expands, techniques are being investigated to take advantage of this increased bandwidth by simultaneously transmitting different signals at different wavelengths along each fiber. One such technique utilizes an angular force-directed dissipation device, such as a diffraction grating (e.g., Kubel-Shee-Thompson (W.
Optical Devices for Hexagonal Multiplexing and Telemultiplexing by Tomlinson, J.
r Wavelength Multiplexing
and Dcrnultiplexing), by H.T. Metcalf (B, D.
A high-capacity wavelength demultiplexer (H
right-capacity WavelengthDe
multiplexer with a large
Diameter GRIN Rod Lens
plied 0ptics) Vol. 21, No. 5, and 20-channel micro-optical grating for 1, 1-1,6 μm hunting using short-focus parametric great-index Rotlens by M. Seki et al. Formula % Formula % Electronics Letters magazine (El
electronics Letters), Volume 18, Issue 6, Nos. 257-258).

斯かるデバイス(は典型的にはファイバアレイと、レン
スと、格子とから成立つ。デマルチプレクサとして使用
する場合には、異なった波長の複数の信号は入カファイ
ハに?Dつてデバイスに入シ、レンスによりコリメート
され、波長の関数として分散さぜるための格子上に指向
されている。回折された各ヒームは、残りのファイバの
それぞれにフォーカスされている。このようにして、信
号は空間的に分離され、後続する独立した処理に備えで
ある。
Such a device typically consists of a fiber array, a lens, and a grating. When used as a demultiplexer, multiple signals of different wavelengths are input to the device. is collimated by a lens and directed onto a grating for dispersion as a function of wavelength. Each diffracted beam is focused into each of the remaining fibers. In this way, the signal is spatially It is separated into two parts in preparation for subsequent independent processing.

逆の方法で動作さぜる時には、各ファイバにおける信号
を多重化して共通ファイバに沿って同時に伝送させるこ
とができる。
When operated in the opposite manner, the signals on each fiber can be multiplexed and transmitted simultaneously along a common fiber.

斯かるデバイスは、マルチモートならび(てシンクルモ
ートの信号をデマルチプレクスするのによく適している
。しかしながら、前記トムリンシン(Tomlinso
n )  の文献に記載されているように、多重化シン
クルモート化号に使用されている場合には、これらのデ
バイスはあまり有効ではない。問題は、シンクルモート
ファイバにおいてコアの直径がクラットの外径に比べて
小さいと云うことに起因する。結果的には、チャネルの
緻密な実装がイ行られす、その結果としてiTJ能な帯
域幅をイ〕効に使用できない。
Such devices are well suited for demultiplexing multi-mode and single-mode signals.
These devices are not very effective when used in multiplexed single-mortized codes, as described in the literature 2003. The problem arises from the fact that in sinkle moat fibers, the core diameter is small compared to the outer diameter of the crut. As a result, a dense implementation of channels is required, resulting in inefficient use of the available bandwidth of the iTJ.

本発明によれば、複数のシンクルモート形光入出力ファ
イハと、該入出力ファイハ間で光波動エネルキを選択的
に結合するだめの回折格子と、前記結合されたエネルギ
をフォーカスするためのレンズと、ファイバとレンズと
の間に挿入きれた集積形光収束導波路アレイとから成る
光マルチプレクサ、あるいは光デマルチプレクサが提供
される。
According to the present invention, a plurality of sinkle moat type optical input/output fibers, a diffraction grating for selectively coupling optical wave energy between the input/output fibers, and a lens for focusing the combined energy are provided. An optical multiplexer or optical demultiplexer is provided which includes an integrated optical convergence waveguide array inserted between a fiber and a lens.

次に、図面を参照して本発明の詳細な説明する。Next, the present invention will be described in detail with reference to the drawings.

図面を参照すれは、第1図は公知技術による反射形回折
格子式波長分割マルチブレクザ/デマルチプレクサ10
を示す図である。図示して説明する目的のために、デバ
イスは共通入力形マルチモート光ファイバ9と出力マル
チモートノCファイバ11−1.1l−2、・・・11
−6の線形アレイとから成立つデマルチプレクサとして
動作しているものとして示されている。ファイバ9から
供給される異なった波長λ1.λ2.・λ6の信号はフ
レース処理した反射形回折格子13により空間的に分離
されている。ファイバアレイと格子との間に挿入された
レンズ12は、種々の光ヒームをフォーカスさぜる(幾
能を有する。
Referring to the drawings, FIG. 1 shows a reflection grating type wavelength division multiplexer/demultiplexer 10 according to a known technique.
FIG. For purposes of illustration and explanation, the device has a common input multimode optical fiber 9 and an output multimode optical fiber 11-1.1l-2, . . .
-6 linear arrays. Different wavelengths λ1 . λ2. - The signal of λ6 is spatially separated by a reflective diffraction grating 13 subjected to face processing. A lens 12 inserted between the fiber array and the grating focuses the various optical beams.

動作において、ファイバ9から放射され、波長λ1.λ
2・・・八 を有する波動エネルギは、選択的に光を反
射するように構成した格子13上にフォーカスされる。
In operation, radiation is emitted from the fiber 9 at wavelengths λ1 . λ
The wave energy having 2...8 is focused onto a grating 13 configured to selectively reflect light.

ファイバアレイに沿った距離りの関数としてイυIられ
た光強度分布は、第2図に示すようになっている。成る
任意の基準点Oから6111定すれば、波長λ1におい
て第1の強度尖頭値がD 1lllに沿って距離D1 
の点で生じている。同(条に、波長λ2゜λ3・・八 
における尖頭値は耐錐d2. d3− d6の点で生じ
ている。斯くして、それぞれ個々の信号チャネルに対応
する入射信号の種々の成分は、第1図に示すように、回
折された各信号のフォーカス点にファイバを置くことに
より空間的に分離することができる。イー」−fllな
ことに、強度尖頭値間の距離りがファイバの外径に等し
いように格子13は設計しである。
The light intensity distribution plotted as a function of distance along the fiber array is shown in FIG. 6111 from an arbitrary reference point O, the first intensity peak value at wavelength λ1 is along distance D1
This is occurring in the following points. Same (Article 8) wavelength λ2゜λ3...8
The peak value at d2. It occurs at points d3-d6. Thus, the various components of the incident signal, each corresponding to an individual signal channel, can be spatially separated by placing a fiber at the focal point of each diffracted signal, as shown in FIG. . Advantageously, the grating 13 is designed such that the distance between the intensity peaks is equal to the outer diameter of the fiber.

これによって、可能な光帯域幅を最も有効に利用できる
。チャネルの帯域幅はコア直径Cの関数である。マルチ
モートファイバにおいては、コア直径のクラット直径に
対する比ばは\05て29、可能な帯域幅は有効に利用
きれている。対照的(/(、シンクルモートファイバに
対するコア対クラット比hは非常に低い。典型的なコア
とクラットとの直径比(は、それぞれ8μmおよび12
5/Lm であり、第111]効率は50%からはマロ
%−\と減少するように構成されている。必要なものは
、チャネルの実装密度を増加させるだめの手段である。
This allows for the most efficient use of the available optical bandwidth. The bandwidth of the channel is a function of the core diameter C. In multimode fibers, the ratio of core diameter to crat diameter is \05/29, and the available bandwidth is effectively utilized. In contrast, the core-to-crat ratio h for single-moat fibers is very low. Typical core-to-crat diameter ratios (are 8 μm and 12 μm, respectively)
5/Lm, and the 111th efficiency is configured to decrease from 50% to %-\. What is needed is a means to increase channel packing density.

第3図に示すように、ファイバと反身」形格子との間に
収束4波路アレイを挿入することにJ−リ、これは達成
されている。特Vこ、マルチブレクザ/デマルチプレク
サは入出力ファイバ部31−1.31−2・・・31−
nのアレイ31と、集積形光収束導波路アレイ3oと、
レンズ32と、フレース処理された回折銘子34とから
成立つ。5利なことに、各ファイバ部はシステムファイ
バに接続するだめの適当なコネクタ(図示してない)で
終端;されている。本実施例においては、レンズ32ば
1/4ピツチのGRINレンスであり、個別形レンズよ
シも容易に導波路アレイに結合でさるものである。くさ
び331i、レンズ32と格子34との間をより有効に
結合するために具備したものである。
This has been accomplished by inserting a convergent four-wavelength array between the fiber and the anti-corrosion grating, as shown in FIG. Special V: The multiplexer/demultiplexer is connected to the input/output fiber section 31-1, 31-2...31-
n array 31, an integrated optical convergence waveguide array 3o,
It consists of a lens 32 and a diffractive inscription 34 which has been subjected to frase processing. 5. Advantageously, each fiber section is terminated with a suitable connector (not shown) for connection to the system fiber. In this embodiment, the lens 32 is a 1/4 pitch GRIN lens, and individual lenses can also be easily coupled to the waveguide array. The wedge 331i is provided to more effectively connect the lens 32 and the grating 34.

」二に説明したように、信号チャイ、ルの緻密な実装は
、小さなコア対クラット比ゆえ(て、従来のシンクルモ
ートファイバを使用して行うことは不可能である。きわ
めて薄いクラットを備え、相当する大きなコア対クラッ
ト比をイ1する標準品ではないシンクルモートファイバ
を使J−することには、手に負えない困難性が存在する
。集積形導波路アレイを使用ずれは、これらの両方の問
題が避けられる。図示したように、ファイバ31−1.
31−2、−31−nのそれぞれは、導波路3o−1,
30−2、・・・30−nの0・とっの一端において終
端されている。レンズを備えたpnj部において導波路
間の間隙が標準形シンクルモートファイバのクラット直
径よりも小さく構成されるように導波路アレイは収束し
ている。クロストークは究極的に、導波路実装密度を制
限するものである。しかしながら、クロストークはモー
トサイスの2倍のオークの間隙に対して小さく、必要な
らば、第4・図に示すように隣接導波路間のぜす波路基
板に溝を設置することによシざらに減少できる。この図
においては、レンスに隣接したアレイの端部が示しであ
る。図示する目的で、5本の導波路41.42.43.
44.45が適当な基板46内圧実装きれているのが示
されている。
As explained in Section 2, the precise implementation of signal fibers is impossible to achieve using traditional single moat fibers due to their small core-to-crat ratios, which have extremely thin claddings. Significant difficulties exist in using non-standard single moat fibers with correspondingly large core-to-crat ratios. The problem of fibers 31-1. as shown is avoided.
31-2 and -31-n are waveguides 3o-1 and 31-n, respectively.
30-2, . . . 30-n are terminated at one end of the 0. The waveguide array is convergent such that the gap between the waveguides in the lensed pnj section is configured to be smaller than the crat diameter of a standard Shinklemoat fiber. Crosstalk ultimately limits waveguide packing density. However, the crosstalk is small for an orc gap twice the size of the mortise and, if necessary, can be improved by installing grooves in the waveguide substrate between adjacent waveguides as shown in Figure 4. Can be reduced. In this figure, the end of the array adjacent to the lens is shown. For illustrative purposes, five waveguides 41.42.43.
It is shown that 44.45 has been mounted to the appropriate board 46 internal pressure.

神々のチャネルをさらに有効に隔−〇、するために、溝
50.51.52.53が隣接導波路間の領域における
基板46内に形成されている。隣接導波路の伝達定数を
等しくないように設定することにより、大きな隔離が実
現できる。
To further effectively separate the channels, grooves 50, 51, 52, 53 are formed in the substrate 46 in the regions between adjacent waveguides. Large isolation can be achieved by setting the transfer constants of adjacent waveguides to be unequal.

上記マルチプレクサは共通基板」二に集積できる。薄j
模光導波路の一次元フオーカス技術および回折技術は、
カラス基板を使用して示しておいた。LiN’b03の
ような電子光学的に能動な基板を使用すれば、同じ基板
」二へ他の回路を集積することもできる。例えば、それ
ぞれ導波路60−1.60−2.60−3.60−4に
沿って変調器60−1.61−2.61−3.61−4
が設置されている4波路アレイの変更したものを第5図
に示す。この実施例においては、波長λ1.λ2.λ3
.礼のCW侶郊は2.q波路アレイ60に結合されてい
る。導波路65に沿ってイー■られた出力は、波長多重
した被変調信号から成立つ。
The multiplexers described above can be integrated on a common substrate. thin j
The one-dimensional focus technology and diffraction technology of the simulated optical waveguide are
I have shown this using a glass board. Using an electro-optically active substrate such as LiN'b03, it is also possible to integrate other circuits onto the same substrate. For example, modulators 60-1.61-2.61-3.61-4 along waveguides 60-1.60-2.60-3.60-4, respectively.
A modified four-wavepath array is shown in Figure 5. In this embodiment, the wavelength λ1. λ2. λ3
.. Rei's CW Ryouko is 2. It is coupled to a q-wavepath array 60. The output along the waveguide 65 consists of wavelength-multiplexed modulated signals.

(発明の効果) 収束導波路アレイを使用してシンクルモートファイバで
可能なものよりも緻密に一体化してチャネルが実装さh
ているので lIJ能な帯域幅をより有効に利用できる
と云う効果がある。
(Effect of the invention) Channels are implemented using converging waveguide arrays in a more densely integrated manner than is possible with single moat fibers.
This has the effect that the available bandwidth can be used more effectively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、公知技術による反射形回折格子弐光マルチプ
レクサ/デマルチプレクサを示す図、 第2図は、第1図の元マルチプレクサ/デマルチプレク
サの応答特性を示す説明図、第3図は、本発明による光
マルチプレクサ/テマルチブレクサを示す図、 第4図ならびに第5図は、本発明による変形実施例を部
分的に示す図である。 〔主要部分の符号の説明〕 30 導波路アレイ 31・・・ファイバ 32・・・レンス 34 回折格子 41〜45−・導波路ストリップ 46・基板 62 元変調手段
FIG. 1 is a diagram showing a reflection type diffraction grating two-light multiplexer/demultiplexer according to a known technique. FIG. 2 is an explanatory diagram showing the response characteristics of the original multiplexer/demultiplexer shown in FIG. 1. FIGS. 4 and 5 show partially modified embodiments of the invention. FIGS. [Explanation of symbols of main parts] 30 Waveguide array 31...Fiber 32...Lens 34 Diffraction gratings 41-45--Waveguide strip 46-Substrate 62 Original modulation means

Claims (1)

【特許請求の範囲】 ■ 光入出力ファイバの線形アレイ(例えば31)と、
前記光入出力ファイハ間で光波動エネルキを選択的に結
合するだめの回折格子(例えば34)と、前記結合され
たエネルギをフォーカスさぜ−るためのレンズ(例えば
32)とからなる光多重通信用デバイスにおいて、 前記ファイバ(例えば31)がシンクルモートファイバ
であり、且つ、集積形光収束形導鼓路アレイ(例えば3
0)が前記ファイバと前aLEレンスとの間に挿入され
ていることをLlつ徴とした光多重通信用デバイス。 2、特許請求の範囲第1項記載のデバイスVこおいて、 前記導波路アレイ(例えば30)が低屈折率の基板(例
えば46)に実装された複数の導波路ストリップ(例え
ば41乃至45)からなり、且つ、 隣接4波路ストリップ間の距離が前記複数のファイバ(
例えば31、)に隣接した1)IJ記導波路アレイの第
1の端部における最大値から前記レンズ(例えば32)
に隣接した前記導波路アレイの第2の端部における最小
値にまで減少することを特徴としたy0多重通信用デバ
イス。 3、 特許請求の範囲第2項記載のデバイスにおいて、 前記隣接導波路ストリップ(例えば41乃至45)間で
前記第2の端部の領域に、前記基板(例えば46)の方
に延長した而(例えば50乃至53)を設けることを特
徴としたツ0多重通信用デバイス。 4、 %許請求の範囲第2項あるいは第3」」′↓;;
己載のデバイスにおいて、 前記基板(例えば46)が電子光学制御で作られたもの
であることを特徴とした光多重通信用デバイス。 5 特許請求の範囲第4項記載のデバイスにおいて、 前記4ネ彼路アレイのカニ波路ストリップに沿って含1
れた光16号を変調するだめの手段(例え―゛62)を
設けることを將徴としたy色多重通信用テハイス。 6 特許6青求の範囲第1項乃至第5項のいずれかに記
載のデバイスにおいて、 前記導波路アレイにおける隣接導波路の伝達定数が等く
ないことを!!FM徴とした光多重通イに用デバイス。
[Claims] ■ A linear array of optical input/output fibers (for example, 31);
Optical multiplex communication comprising a diffraction grating (e.g. 34) for selectively coupling optical wave energies between the optical input and output fibers and a lens (e.g. 32) for focusing the combined energy. in the device, wherein the fiber (e.g. 31) is a single moat fiber, and the fiber (e.g. 31) is a single moat fiber, and the fiber (e.g.
0) is inserted between the fiber and the front aLE lens. 2. In the device V according to claim 1, the waveguide array (e.g. 30) comprises a plurality of waveguide strips (e.g. 41 to 45) mounted on a low refractive index substrate (e.g. 46). , and the distance between adjacent four waveguide strips is equal to or greater than the distance between the plurality of fibers (
1) from the maximum value at the first end of the IJ waveguide array adjacent to the lens (e.g. 32);
y0 multiplexing device, characterized in that the y0 is reduced to a minimum value at a second end of the waveguide array adjacent to the waveguide array. 3. A device according to claim 2, characterized in that in the region of the second end between the adjacent waveguide strips (for example 41 to 45) extending towards the substrate (for example 46) ( For example, 50 to 53) are provided. 4. %Claims 2nd or 3rd”'↓;;
A self-mounted device for optical multiplex communication, characterized in that the substrate (for example, 46) is made by electro-optical control. 5. The device of claim 4, comprising:
This technology for y-color multiplex communication is characterized by the provision of a means (for example, 62) to modulate the transmitted light No. 16. 6 In the device according to any one of Items 1 to 5 of the scope of Patent No. 6, the transfer constants of adjacent waveguides in the waveguide array are not equal! ! A device for optical multiplexing with FM characteristics.
JP59082099A 1983-04-25 1984-04-25 Device for optical multiplex communication Pending JPS59210413A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US48853783A 1983-04-25 1983-04-25
US488537 1983-04-25

Publications (1)

Publication Number Publication Date
JPS59210413A true JPS59210413A (en) 1984-11-29

Family

ID=23940052

Family Applications (2)

Application Number Title Priority Date Filing Date
JP59082099A Pending JPS59210413A (en) 1983-04-25 1984-04-25 Device for optical multiplex communication
JP021518U Pending JPH0676907U (en) 1983-04-25 1993-04-26 Optical multiplexer / demultiplexer

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP021518U Pending JPH0676907U (en) 1983-04-25 1993-04-26 Optical multiplexer / demultiplexer

Country Status (8)

Country Link
JP (2) JPS59210413A (en)
CA (1) CA1257415A (en)
DE (1) DE3414724A1 (en)
FR (1) FR2544883B1 (en)
GB (1) GB2139374B (en)
IT (1) IT1176113B (en)
NL (1) NL192171C (en)
SE (1) SE454121B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11125733A (en) * 1997-07-11 1999-05-11 Instruments Sa Optical wavelength dispersion system

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0173930A3 (en) * 1984-09-01 1988-01-27 Alcatel N.V. Optical multiplexer/demultiplexer
GB8431087D0 (en) * 1984-12-10 1985-01-16 Secr Defence Multiplexing & demultiplexing systems
US4736360A (en) * 1986-07-21 1988-04-05 Polaroid Corporation Bulk optic echelon multi/demultiplexer
GB8718560D0 (en) * 1987-08-05 1987-09-09 Gec Avionics Nuclear pulse simulation
GB2219869B (en) * 1988-06-15 1992-10-14 British Telecomm Optical coupling device
GB2251957B (en) * 1990-11-29 1993-12-15 Toshiba Kk Optical coupler
DE4134293C1 (en) * 1991-10-17 1993-02-11 Messer Griesheim Gmbh, 6000 Frankfurt, De
US7236660B2 (en) 2002-05-20 2007-06-26 Jds Uniphase Corporation Reconfigurable optical add-drop module, system and method
CN100422777C (en) * 2002-11-01 2008-10-01 欧姆龙株式会社 Optical multiplexer/demultiplexer and production method for optical multiplexer/demultiplexer
EP4002724A1 (en) 2015-12-13 2022-05-25 Genxcomm, Inc. Interference cancellation methods and apparatus
US10257746B2 (en) 2016-07-16 2019-04-09 GenXComm, Inc. Interference cancellation methods and apparatus
US11150409B2 (en) 2018-12-27 2021-10-19 GenXComm, Inc. Saw assisted facet etch dicing
US10727945B1 (en) 2019-07-15 2020-07-28 GenXComm, Inc. Efficiently combining multiple taps of an optical filter
US11215755B2 (en) 2019-09-19 2022-01-04 GenXComm, Inc. Low loss, polarization-independent, large bandwidth mode converter for edge coupling
US11539394B2 (en) 2019-10-29 2022-12-27 GenXComm, Inc. Self-interference mitigation in in-band full-duplex communication systems
US11796737B2 (en) 2020-08-10 2023-10-24 GenXComm, Inc. Co-manufacturing of silicon-on-insulator waveguides and silicon nitride waveguides for hybrid photonic integrated circuits
CA3234722A1 (en) 2021-10-25 2023-05-04 Farzad Mokhtari-Koushyar Hybrid photonic integrated circuits for ultra-low phase noise signal generators

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126806A (en) * 1980-03-11 1981-10-05 Nec Corp Diffraction grating type light branching filter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3986020A (en) * 1975-09-25 1976-10-12 Bell Telephone Laboratories, Incorporated Common medium optical multichannel exchange and switching system
US4111524A (en) * 1977-04-14 1978-09-05 Bell Telephone Laboratories, Incorporated Wavelength division multiplexer
DE3239336A1 (en) * 1982-10-23 1984-04-26 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Optical wavelength-division multiplexer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126806A (en) * 1980-03-11 1981-10-05 Nec Corp Diffraction grating type light branching filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11125733A (en) * 1997-07-11 1999-05-11 Instruments Sa Optical wavelength dispersion system
JP4633206B2 (en) * 1997-07-11 2011-02-16 イェニスタ オプティクス Optical chromatic dispersion system

Also Published As

Publication number Publication date
NL192171B (en) 1996-10-01
NL8401315A (en) 1984-11-16
SE454121B (en) 1988-03-28
GB2139374B (en) 1986-07-16
IT8420660A1 (en) 1985-10-20
FR2544883B1 (en) 1992-04-17
IT1176113B (en) 1987-08-12
GB2139374A (en) 1984-11-07
SE8402180D0 (en) 1984-04-18
JPH0676907U (en) 1994-10-28
IT8420660A0 (en) 1984-04-20
DE3414724A1 (en) 1984-10-25
NL192171C (en) 1997-02-04
DE3414724C2 (en) 1993-07-22
FR2544883A1 (en) 1984-10-26
SE8402180L (en) 1984-10-26
GB8410197D0 (en) 1984-05-31
CA1257415A (en) 1989-07-11

Similar Documents

Publication Publication Date Title
JPS59210413A (en) Device for optical multiplex communication
US5107359A (en) Optical wavelength-divison multi/demultiplexer
US6084695A (en) Optical fiber wavelength multiplexer and demutiplexer
US7198416B2 (en) Optical combiner device
US5936752A (en) WDM source for access applications
US6271970B1 (en) Wavelength division multiplexing/demultiplexing devices using dual homogeneous refractive index lenses
JPS6161107A (en) Optical multiplex separation transmitter
KR20200111250A (en) Multi channel optical coupler
JPS61113009A (en) Optical multiplexer/demultiplexer
JP2000089057A (en) Optical device, terminal apparatus and system for wavelength division multiplex
JPS5844414A (en) Wavelength multiplexer or wavelength demultiplexer
US6181853B1 (en) Wavelength division multiplexing/demultiplexing device using dual polymer lenses
US6243513B1 (en) Wavelength division multiplexing/demultiplexing devices using diffractive optic lenses
US6236780B1 (en) Wavelength division multiplexing/demultiplexing devices using dual diffractive optic lenses
Qiao et al. Athermalized low-loss echelle-grating-based multimode dense wavelength division demultiplexer
US6591042B2 (en) Fiber based wavelength de-multiplexing system
US6434299B1 (en) Wavelength division multiplexing/demultiplexing devices having concave diffraction gratings
US6879749B2 (en) System and method for multiplexing and demultiplexing optical signals using diffraction gratings
US6829096B1 (en) Bi-directional wavelength division multiplexing/demultiplexing devices
US6298182B1 (en) Wavelength division multiplexing/demultiplexing devices using polymer lenses
JP2000131542A (en) Optical transmission and reception module
US6404945B1 (en) Wavelength division multiplexing/demultiplexing devices using homogeneous refractive index lenses
US7305185B2 (en) Device for integrating demultiplexing and optical channel monitoring
US6909822B2 (en) Wavelength separation elements for dense wavelength division multiplexing systems
US7006727B2 (en) Combined multiplexer and demultiplexer for optical communication systems