JPS59206046A - Material for adsorbing lipoprotein of low specific weight - Google Patents

Material for adsorbing lipoprotein of low specific weight

Info

Publication number
JPS59206046A
JPS59206046A JP58080778A JP8077883A JPS59206046A JP S59206046 A JPS59206046 A JP S59206046A JP 58080778 A JP58080778 A JP 58080778A JP 8077883 A JP8077883 A JP 8077883A JP S59206046 A JPS59206046 A JP S59206046A
Authority
JP
Japan
Prior art keywords
adsorbent
molecular weight
low
adsorption
lipoprotein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58080778A
Other languages
Japanese (ja)
Other versions
JPS6259976B2 (en
Inventor
Toru Kuroda
徹 黒田
Naokuni Yamawaki
山脇 直邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP58080778A priority Critical patent/JPS59206046A/en
Publication of JPS59206046A publication Critical patent/JPS59206046A/en
Publication of JPS6259976B2 publication Critical patent/JPS6259976B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To adsorb selectively lipoprotein of low specific weight with high efficiency by using an adsorbent having many carboxylic groups in a molecule and polyanionic moiety having relatively large mol.wt. on its surface. CONSTITUTION:An adsorbent consisting of molecules having >=600mol.wt. and having many carboxylic groups in a molecule, such as polyacrylic acid, polymethacrylic acid, polyacrylic ester, polyacrylamide, etc., and having polyanionic moiety on its surface, is used to provide a catalyst capable of selectively adsorbing lipoprotein having low specific weight with high efficiency. Preferred mol.wt. of the polyanionic moiety is >=600, more pref. >=5,000.

Description

【発明の詳細な説明】 本発明は、血漿脂質の増加に起因する各種疾患と密接な
関係を持つと考えられている低比重リボ蛋白質を選択的
に吸着除去する低比重リボ蛋白吸着材に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a low-density riboprotein adsorbent that selectively adsorbs and removes low-density riboproteins, which are thought to be closely related to various diseases caused by an increase in plasma lipids.

周知の如く、血液中の脂質、特に低比重リボ蛋白質の増
加は、動脈硬化の原因あるいは進行と密接な関係を持っ
ていると考えられている。動脈硬化が進むと心筋梗塞、
脳梗塞等循環器系の重篤な症状に陥る可能性が非常に高
くなり、死亡率も高い。
As is well known, an increase in blood lipids, particularly low-density riboproteins, is thought to be closely related to the cause or progression of arteriosclerosis. Myocardial infarction occurs when arteriosclerosis progresses,
The possibility of suffering from serious circulatory system symptoms such as cerebral infarction is extremely high, and the mortality rate is also high.

そこで、血液、血漿等の体液成分から低比重リポ蛋白質
を選択的に吸着除去することによって、上記の如き疾患
の進行を防止し、症状を軽減せしめ、さらには治ゆを早
めることが期待されていた。
Therefore, by selectively adsorbing and removing low-density lipoproteins from body fluid components such as blood and plasma, it is expected to prevent the progression of the above-mentioned diseases, alleviate symptoms, and even hasten the healing process. Ta.

上記目的に使用可能な既存の技術には、アガロースゲル
にヘパリンを固定化した吸着材による吸着(Lupie
n、 P −J 、 et、 al、 : A new
 approachto the managemen
t of familial hypercholeg
te−rolemia、 Removal of pl
asma −cholesteyolbased on
 the principle of affinit
ychromatography、Lancet、2 
: 1261〜1264 、1976、)および、ガラ
スパウダーまたはガラスピーズを用いたクロマトグラフ
ィー(Carlson、L、A。
Existing techniques that can be used for the above purpose include adsorption using adsorbents in which heparin is immobilized on agarose gel (Lupie
n, P-J, et, al, : A new
approach to the management
to of family hypercholeg
terolemia, Removal of pl
asma-cholestyolbased on
the principle of affinit
ychromatography, Lancet, 2
1261-1264, 1976) and chromatography using glass powder or glass beads (Carlson, L.A.).

:Chromatographic 5eparati
on of serum 1ipoproteinso
n glass powder columa、 De
scription of themethod  a
nd  some  applications、Cl
1n、Chim、Aeta。
:Chromatographic 5eparati
on of serum 1ipoprotein
n glass powder columa, De
script of the method a
nd some applications, Cl
1n, Chim, Aeta.

5:52B〜538,1960.)がある。5:52B-538, 1960. ).

しかしながら、ヘパリンをアガロースに固定した吸着材
は、低比重リポ蛋白質に選択的吸着能を示すものの吸着
能力が充分でなく、また、担体にアガロースを用いてい
るため、機械的強度が不光分で取り扱い性、操作性が悪
く、体液を流した場合の目づ壕りが起こり易く、また、
滅菌操作によるボアーの破壊があり、非常に使い難いも
のであった。
However, although the adsorbent in which heparin is immobilized on agarose exhibits selective adsorption ability for low-density lipoproteins, the adsorption ability is insufficient, and since agarose is used as a carrier, the mechanical strength is limited to the non-photosensitive area. It is difficult to use, has poor operability, and can easily become clogged when body fluids are poured into it.
The bore was destroyed during the sterilization process, making it extremely difficult to use.

また、ガラスパウダーやガラスピーズを用いる方法は、
吸着能力が低く、その上、吸着選択性が低いという欠点
があり、実用的でなかった。
In addition, the method using glass powder or glass peas is
It had the drawbacks of low adsorption capacity and low adsorption selectivity, making it impractical.

本発明の目的は、上記の如き従来技術に基づく吸着材の
問題点に鑑み、一般的に普及可能であシ、低比重リボ蛋
白質を高い効率で選択的に吸着し、非達択的々吸着が少
なく、安全性があり、滅菌操作も簡単に行なうことがで
き、体液浄化あるいは再生用に適した吸着材を提供しよ
うとするものである。
In view of the problems of adsorbents based on the prior art as described above, an object of the present invention is to provide a method that can be widely used, selectively adsorbs low-density riboproteins with high efficiency, and non-selectively adsorbs low-density riboproteins. The purpose of the present invention is to provide an adsorbent that is safe, easy to sterilize, and suitable for body fluid purification or regeneration.

本発明者らは、上記目的に沿って鋭意研究した結果、分
子中にカルボキシル基を多数個持ち、分子量が比較的大
きいポリアニオン部を表面に有する吸着材が、驚くべき
ほど高い効率で低比重リポ蛋白質を吸着し、免疫グロブ
リン、アルブミン、補体、フィブリノーゲン等の非選択
的な吸着が少ガいことを見出し、本発明を完成するに至
った。
As a result of intensive research in line with the above objectives, the present inventors have discovered that an adsorbent having a large number of carboxyl groups in its molecules and a polyanion moiety with a relatively large molecular weight on its surface has surprisingly high efficiency in producing low-density lipocarbons. The present inventors have discovered that it adsorbs proteins and has little non-selective adsorption of immunoglobulin, albumin, complement, fibrinogen, etc., and has completed the present invention.

すなわち、本発明は、表面に、負電荷を示す竹換基とし
てカルボキシル基を持ち、少なくとも600の分子量を
持つポリアニオン部を有することを特徴とする低比重リ
ポ蛋白質吸着材であり、カルボキシル基を持ち、少々く
とも600の分子量を持つポリアニオン部が、鎖状構造
を持ち、側鎖にカルボキシル基を持つものであることが
好捷しく、また、カルボキシル基を持ち、少なくとも6
00の分子量を持つポリアニオン部が、分子量300当
りに少なくとも一つのカルボキシル基ヲ持つものである
ことが好ましい。
That is, the present invention is a low-density lipoprotein adsorbent characterized by having a carboxyl group on the surface as a bamboo substituent that exhibits a negative charge and a polyanion portion having a molecular weight of at least 600. It is preferable that the polyanion moiety having a molecular weight of at least 600 has a chain structure and a carboxyl group in the side chain;
It is preferred that the polyanion moiety having a molecular weight of 0.00 has at least one carboxyl group per molecular weight of 300.

本発明で対象とする吸着物質は、低比重リボ蛋白質であ
るが、より詳細に説明すると、分子量が2.2 X、 
106から3.5 X 10’、水和密ルが1.005
から1.034 (ff/ml)、浮上係数(1,06
5)が0から20 X 10−1sGIZ 拳5ec−
’ ・dyn−’・ff” s直径が20.0から30
.0 nmのリポ蛋白質(5CANU、A、M。
The target adsorbent of the present invention is low-density riboprotein, and to explain it in more detail, it has a molecular weight of 2.2X,
106 to 3.5 x 10', hydration density 1.005
to 1.034 (ff/ml), flotation coefficient (1,06
5) is 0 to 20 X 10-1sGIZ fist 5ec-
'・dyn-'・ff'' s diameter is 20.0 to 30
.. 0 nm lipoprotein (5CANU, A, M.

: plasma 1ipoproteins : a
n 1ntroduction。
: plasma 1ipoproteins : a
n1ntroduction.

The Biochemistry of Ather
osclerosis”ed、by 5CANIJ A
、M、、1979 、 p、 3〜B 、による)を言
つ。これよシ比嘗の小さいリポ蛋白質、すなわち、浮上
係数(1,065)が20 X 10−’3鍮、Sr’
 1dyn−”−9−’より大きいリポ蛋白質は吸着さ
れてもよいが、比重の高い高比重リポ蛋白質は吸着され
  ゛ないことが好ましい。
The Biochemistry of Ather
osclerosis”ed, by 5CANIJ A
, M., 1979, p. 3-B). This is a small lipoprotein with a buoyancy coefficient (1,065) of 20 x 10-'3 Brass, Sr'
Lipoproteins larger than 1 dyn-"-9-' may be adsorbed, but high-density lipoproteins with a high specific gravity are preferably not adsorbed.

本発明で言うポリアニオン部とは、1分子の分子量が6
00以上であり、1分子中にカルボキシル基(−COO
H,−COO−)を多数個持つものを言う。例示すると
、ポリアクリル酸:ポリメタクリル酸;勝手ψ49麹→
噸中スチレンーマレイン酸 5− 共重合体;ポリアクリル酸エステル、ポリアクリル酸ア
ミド、ポリアクリル酸ニトリル等の加水分解物:ポリ−
L−グルタミン酸、ポリアスパラギン酸等の合成物やポ
リガラクツロン酸ニアルギン酸のよう々酸性多糖類があ
けられる。
The polyanionic moiety referred to in the present invention means that the molecular weight of one molecule is 6.
00 or more, and one molecule contains a carboxyl group (-COO
H, -COO-). To illustrate, polyacrylic acid: polymethacrylic acid; hand ψ49 koji →
Styrene-maleic acid 5-copolymer; hydrolyzate of polyacrylic acid ester, polyacrylic acid amide, polyacrylic acid nitrile, etc.: poly-
Synthetic products such as L-glutamic acid and polyaspartic acid, and acidic polysaccharides such as polygalacturonic acid and nialginic acid are used.

また、吸着目的物質である低比重リポ蛋白質は、直径が
約200^という巨大なリポ蛋白であるだめ、ポリアニ
オン部の構造は鎖状構造であることが好ましく、吸着材
表面から長く伸びている方が好ましい。また、ポリアニ
オン部中のカルボキシル基密度は、分子量300当シに
少なくとも1個あるのが好ましい。さらに好ましくは、
分子量200当りに1個以上であり、分子量70がら1
50の単位に1個あるのが望ましい。ここで言う分子量
には、カルボキシル基の分子量も含む。
In addition, since the low-density lipoprotein, which is the substance to be adsorbed, is a huge lipoprotein with a diameter of about 200^, it is preferable that the structure of the polyanion part is a chain structure. is preferred. The density of carboxyl groups in the polyanion moiety is preferably at least one per molecular weight of 300. More preferably,
1 or more per 200 molecular weight, 1 per 70 molecular weight
It is desirable that there be one in every 50 units. The molecular weight referred to here includes the molecular weight of carboxyl groups.

ポリアニオン部の分子量は、小さく々ると低比重リポ蛋
白質をあ1り吸着しカ<力るので、少なくとも600は
必要である。好ましいのは5000以上であり、250
00から250000の節回が望ましい。
The molecular weight of the polyanion moiety must be at least 600, since the smaller the molecular weight, the more it will adsorb low-density lipoproteins. Preferably it is 5000 or more, and 250
Nodes of 00 to 250,000 are desirable.

 6− ポリアニオン部が持つ多数個のカルボキシル基が、低比
重リポ蛋白質の多数点を認識することにより、強いクー
ロン力で低比重リポ蛋白質を結合すると考えられる。
It is thought that the many carboxyl groups possessed by the 6-polyanion moiety bind the low-density lipoprotein with strong Coulomb force by recognizing multiple points on the low-density lipoprotein.

以下、本発明の吸着材を製造する方法について、担体を
活性化し、リガンドを結合する通常のアフィニティーク
ロマトグラフィー用吸着体の製造方法にしたがった製造
方法を例に上げて説明する。
The method for producing the adsorbent of the present invention will be described below, taking as an example a method for producing an adsorbent for affinity chromatography, in which a carrier is activated and a ligand is bound thereto.

押体は、カルボキシル基を持ち、少なくとも600の分
子量を持つポリアニオンを固定できればよく、親水性担
体、疎水性担体いずれも使用できるが、疎水性Iu体を
用いる場合には、時に担体へのアルブミンの非特異的吸
着が生じるため、親水性担体の方が好ましい結果を与え
る。
The press only needs to be able to immobilize a polyanion having a carboxyl group and a molecular weight of at least 600. Either a hydrophilic carrier or a hydrophobic carrier can be used, but when using a hydrophobic Iu carrier, albumin is sometimes added to the carrier. Hydrophilic carriers give more favorable results as non-specific adsorption occurs.

不溶性担体の形状は、粒子状、繊維状、中壁糸状、膜状
等いずれの公知の形状も用いうるが、カルボキシル基を
持ち、少なくとも600の分子量を持つポリアニオンの
保持量、吸’f’J Uとしての取扱い性よりみて、粒
子状、縫維状のものが好ましい。
The shape of the insoluble carrier may be any known shape such as particulate, fibrous, inner-wall thread, or membrane, but the amount of retained polyanion having a carboxyl group and a molecular weight of at least 600, absorption 'f'J From the viewpoint of ease of handling as a U, particles or fibers are preferable.

粒子状担体としては、平均粒径25μmないし2500
μmの範囲にあることが好ましい。平均粒径はJIS−
Z−8801に規定されるフルイを用いて流水中で分級
した後、各般の上限粒径と下限粒径の中間値を各般の粒
径とし、その重量平均として平均粒径を算出する。また
、粒子形状は球形が好ましいが、特に限定されるもので
は彦い。
The particulate carrier has an average particle size of 25 μm to 2500 μm.
Preferably, it is in the μm range. The average particle size is JIS-
After classification in running water using a sieve specified in Z-8801, the intermediate value between the upper limit particle size and the lower limit particle size of each particle size is defined as the particle size of each type, and the average particle size is calculated as the weight average. Further, the particle shape is preferably spherical, but is not particularly limited.

平均粒径が2500μm以上では、低比重リポ蛋白質の
吸着量および吸着速度が低下するし、25μm以下では
、凝固系の活性化、血球粘着をおこしやすい。使いうる
粒子状担体としては、アガロース系、デキストラン系、
セルロース系、ポリアクリルアミド系、ガラス系、シリ
カ系活性炭系等が上げられるが、ゲル構造を有する親水
性担体が良好な結果を与える。また、通常固定化酵素、
アフィニテイクロマトグラフイーに用いられる公知の担
体は、特別な限定なく使用することができる。ここで、
担体の蛋白質排除限界分子量は200万以上あることが
必要であり、250万から1000万が好ましく、30
0万から700万の範囲にあるのが好ましい。
If the average particle size is 2,500 μm or more, the adsorption amount and rate of low-density lipoprotein will decrease, and if it is less than 25 μm, activation of the coagulation system and blood cell adhesion will easily occur. Particulate carriers that can be used include agarose-based, dextran-based,
Examples include cellulose-based, polyacrylamide-based, glass-based, silica-based, activated carbon-based, etc., but hydrophilic carriers having a gel structure give good results. In addition, usually immobilized enzyme,
Known carriers used in affinity chromatography can be used without particular limitations. here,
It is necessary that the protein exclusion limit molecular weight of the carrier is 2 million or more, preferably 2.5 million to 10 million, and 30 million to 10 million.
Preferably, it is in the range of 00,000 to 7,000,000.

粒子状担体としては、多孔性粒子、特に多孔性重合体を
用いることもできる。本発明で用いられる多孔性重合体
粒子は、その表面にカルボキシル基を持ち、少々くとも
6000分子量を持つポリアニオンを固定化しうるもの
であり、平均孔径300から70OAの範囲にあるもの
である。重合体組成は、ポリアミド系、ポリエステル系
、ポリウレタン系、ビニル化合物の重合体等、多孔性構
造をとりうる公知の重合体を用いることができるが、特
に親水性モノマーにより親水化したビニル化合物系多孔
性重合体粒子が好捷しい結果を与える。
Porous particles, especially porous polymers, can also be used as particulate carriers. The porous polymer particles used in the present invention have a carboxyl group on their surface, can immobilize a polyanion having a molecular weight of at least 6000, and have an average pore diameter in the range of 300 to 70 OA. For the polymer composition, known polymers that can have a porous structure, such as polyamides, polyesters, polyurethanes, and vinyl compound polymers, can be used, but in particular, porous vinyl compounds made hydrophilic with hydrophilic monomers can be used. Polymeric particles give favorable results.

本発明の吸着量に11、体液の浄化治療用に用いられる
ので、体液を流したときに目詰まりが起こらないことが
必要である。17′kがって、本発明に用いられる相体
は硬質相体であることが好1しく、合成高分子担体、無
機担体等が好ましく用いられ 9− る。
Since the adsorption amount of the present invention is 11, it is used for purification treatment of body fluids, so it is necessary that no clogging occurs when body fluids are poured. 17'k Therefore, the phase used in the present invention is preferably a hard phase, and synthetic polymer carriers, inorganic carriers, etc. are preferably used.

ここで言う硬質押体とは、外力を加えたとき、担体の物
性値が一定値以上を保持するものを言うが、具体的には
、ゲルを値径10m11m、長さ50ff1mの容器に
充填し、通水するとき、カラムの入口圧力と出口圧力と
の差が200+++ll+Hgの状態でゲルの体積減少
軍が10%以下であるのが好ましい。
The hard pressed body here refers to a carrier whose physical property values maintain a certain value or more when an external force is applied. Specifically, gel is filled into a container with a diameter of 10 m and 11 m and a length of 50 ff and 1 m. When water is passed through the column, it is preferable that the volume reduction of the gel is 10% or less when the difference between the inlet pressure and the outlet pressure of the column is 200++ll+Hg.

前記多孔性s造は、平均孔径20ONないし3000A
の範囲にあるのが好ましいが、平均孔径が小さすぎる場
合には、吸着される低比重リポ蛋白質の量が少々く、太
きすぎる場合には、重合体粒子の強度が低下し、かつ表
面積が減少するため実用的ではない。表面積は少なくと
も10 m2/f以上あるこが好ましく、55m2/7
  以上であることがさらに好ましい。望ましくは10
0 m27?以上である。
The porous structure has an average pore diameter of 20ON to 3000A.
However, if the average pore size is too small, the amount of low-density lipoprotein adsorbed will be small, and if it is too large, the strength of the polymer particles will decrease and the surface area will decrease. impractical as it decreases. The surface area is preferably at least 10 m2/f, preferably 55 m2/7
It is more preferable that it is above. Preferably 10
0 m27? That's all.

平均孔径の計1定は水銀圧入式ポロシメーターによった
。この方法は、多孔性物質に水銀を圧入してゆき、侵入
した水銀量から気孔量を、圧入に要する圧力から孔径を
求める方法であり 40又以上の孔を測定することがで
きる。本発明の孔と= 10 = とは、孔径が4OA以上の表面からの連通孔と定義する
。平均孔径は、孔径をr1ポロシメーターで測定した累
積気孔量をVとしたとき、dv/dlogrの値が最大
となるときのrの値とする。
The total average pore diameter was measured using a mercury intrusion porosimeter. This method is a method in which mercury is injected into a porous material, and the pore volume is determined from the amount of mercury that has entered, and the pore diameter is determined from the pressure required for the intrusion. Pores with 40 or more holes can be measured. The pores of the present invention = 10 = are defined as communicating pores from the surface with a pore diameter of 4OA or more. The average pore diameter is the value of r when the value of dv/dlogr becomes the maximum, where V is the cumulative amount of pores measured using an r1 porosimeter.

繊維状担体を用いる場合には、その繊維径が1μmない
し50μm1より好ましくは5μmから25μmの範囲
にあるものがよい。繊維径が太きすぎる場合には、低比
重リポ蛋白質の吸着量および吸着速度が低下するし、小
さすぎる場合には、凝固系の活性化、血球粘着、目づま
りをおこしやすい。用いうる繊維状担体としては、再生
セルロース系細維、ナイロン、アクリル、ポリエステル
等公知の級維を一般に用いることができる。
When a fibrous carrier is used, it is preferable that the fiber diameter is in the range of 1 μm to 50 μm, more preferably 5 μm to 25 μm. If the fiber diameter is too large, the adsorption amount and adsorption rate of low-density lipoproteins will be reduced, and if it is too small, activation of the coagulation system, blood cell adhesion, and clogging are likely to occur. As the fibrous carrier that can be used, generally known grade fibers such as regenerated cellulose fibers, nylon, acrylic fibers, and polyester fibers can be used.

カルボキシル基を持ち、少なくとも600の分子量を持
つポリアニオンを不溶性担体の表面に固定する方法は、
共有結合、イオン結合、物理吸着、包埋あるいは重合体
表面への沈澱不溶化等あらゆる公知の方法を用いること
ができるが、ポリアニオンの溶出性から考えると、共有
結合により、同定、不溶化して用いることが好ましい。
A method for immobilizing a polyanion having a carboxyl group and having a molecular weight of at least 600 on the surface of an insoluble carrier is as follows:
Any known method can be used, such as covalent bonding, ionic bonding, physical adsorption, embedding, or precipitation and insolubilization on the polymer surface, but considering the elution properties of polyanions, it is recommended to use covalent bonds to identify and insolubilize the polyanion. is preferred.

そのため通常固定化酵素、アフイニティグロマトグラフ
イーで用いられる公知の担体の活性化方法およびリガン
ドとの結合方法を用いることができる。
Therefore, known methods of activating carriers and binding methods with ligands that are usually used in immobilized enzymes, affinity chromatography, and affinity chromatography can be used.

活性化方法を例示すると、ハロゲン化シアン法、エピク
ロルヒドリン法、ビスエポキシド法、ハロゲン化トリア
ジン法、ブロモアセチルプロミド法、エチルクロロホル
マート法、1,1′−カルボニルジイミダゾール法等を
あけることができる。本発明の活性化方法は、リガンド
のアミノ基、水酸基、カルボキシル基、チオール基等の
活性水素を有する求核反応基と置換および/または付加
反応できればよく、上記の例示に限定されるものでは々
いが、化学的安定性、熱的安定性等を考慮すると、エポ
キシドを用いる方法が好ましく、特にエピクロルヒドリ
ン法が推奨できる。
Examples of activation methods include halogenated cyanide method, epichlorohydrin method, bisepoxide method, halogenated triazine method, bromoacetyl bromide method, ethyl chloroformate method, and 1,1'-carbonyldiimidazole method. can. The activation method of the present invention is not limited to the above examples as long as it can perform a substitution and/or addition reaction with a nucleophilic reactive group having active hydrogen such as an amino group, a hydroxyl group, a carboxyl group, or a thiol group of a ligand. However, in consideration of chemical stability, thermal stability, etc., a method using an epoxide is preferable, and an epichlorohydrin method is particularly recommended.

また、シリカ糸、ガラス系等のシラノール基を持つ担体
については、各種シランカップリング剤が好1しく用い
られる。
Furthermore, various silane coupling agents are preferably used for carriers having silanol groups such as silica threads and glass.

担体に、カルボキシル基を持ち、少なくとも600の分
子量を持つポリアニオンを2種類以上結合してもさしつ
かえ々い。ポリアニオンの担体に対する固定量は10μ
f/me以上必要であり、10OtIり/dから40I
n9/−の範囲が好ましく、0.5η/−から20η/
−のが囲がさらに好ましい。
Two or more types of polyanions having carboxyl groups and having a molecular weight of at least 600 may be bonded to the carrier. The amount of polyanion immobilized on the carrier is 10μ
f/me or more is required, from 10OtI/d to 40I
The range of n9/- is preferable, from 0.5η/- to 20η/
- is more preferable.

以上、本発明吸着材の製造方法として担体を活性化した
後、カルボキシル基を持ち、少なくとも600の分子量
を持つポリアニオンを結合する方法について詳細に説明
したが、本発明は、これに限定されるものではない。
Above, the method for manufacturing the adsorbent of the present invention, in which a carrier is activated and then a polyanion having a carboxyl group and a molecular weight of at least 600 is bonded, has been described in detail. However, the present invention is not limited to this. isn't it.

例えば、カルボキシル基を持ち、少なくとも600の分
子量を持つポリアニオン部を有する重合性モノマーや架
橋剤を用いて1合(共重合)する方法、架橋重合体粒子
にさらに後架橋する時点で、カルボキシル基を持ち、少
なくとも600の分子量を持つポリアニオン部を有する
架橋剤を用いる方法等も用いることができる。また、カ
ルボキシル基を持ち、少なくとも6000分子量を持つ
ポリアニオンを活性化した後に相体と結合する方法も採
用することができる。
For example, a method of monopolymerization (copolymerization) using a polymerizable monomer or crosslinking agent having a polyanion moiety having a carboxyl group and a molecular weight of at least 600; A method using a crosslinking agent having a polyanionic moiety having a molecular weight of at least 600 and a molecular weight of at least 600 can also be used. It is also possible to adopt a method in which a polyanion having a carboxyl group and a molecular weight of at least 6000 is activated and then bonded to the phase.

−16− す々わち、本発明は、吸着材表面に、カルボキシル基を
持ち、少なくとも6ooの分子量を持つポリアニオン部
を有することによシ、その効果を発揮するものであシ、
製造方法に左右されるものではkい。
-16- That is, the present invention exhibits its effects by having a polyanion moiety having a carboxyl group and a molecular weight of at least 6oo on the surface of the adsorbent.
It doesn't depend on the manufacturing method.

本発明低比重リポ蛋白質吸着材は、体液の導出入口を備
えた容器内に充填保持されて使用されるのが一般的であ
る。
The low-density lipoprotein adsorbent of the present invention is generally used while being filled in a container equipped with an inlet and outlet for body fluids.

図面において、1は本発明低比重リポ蛋白質吸着材を納
めてなる吸着装置の一例を示すものであり、円筒2の一
端開口部に、内側にフィルター3を張ったバッキング4
を介して体液導入口を有するキャブ6をネジ嵌合し、円
筒2の他端開口部に内側にフィルター3′を張ったバッ
キング4′を介して体液導出ロアを有するキャップ8を
ネジ嵌合して容器を形成し、フィルター3および3′の
間隙に吸着材を充填保持させて吸着材層9全形成してな
るものである。
In the drawings, reference numeral 1 shows an example of an adsorption device containing the low-density lipoprotein adsorbent of the present invention, in which a backing 4 with a filter 3 placed inside is placed in an opening at one end of a cylinder 2.
A cab 6 having a body fluid inlet is screwed into the cylinder 2, and a cap 8 having a body fluid outlet lower part is screwed into the opening at the other end of the cylinder 2 through a backing 4' having a filter 3' on the inside. A container is formed, and an adsorbent is filled and held in the gap between the filters 3 and 3' to form the entire adsorbent layer 9.

吸着材層9には、本発明低比重リポ蛋白質吸着材を単独
で充填してもよく、他の吸着材と混合も−14− しくは積層してもよい。他の吸着材としては、例えば幅
広い吸着能を有する活性炭のようなものを用いることが
できる。こ扛により吸着材の相乗効果によるより広範な
臨床効果が期待できる。吸着材層9の容積は、体外循環
に用いる場合、50〜40〇−程度が適当である。本発
明の装置を体外循環で用いる場合には、大路次の二通り
の方法がある。一つには、体内から取り出した血液を遠
心分離器もしくは腔型血漿分離器を使用して、血漿成分
と血球成分とに分離した後、血漿成分を該装置に通過さ
せ、浄化した後、血球成分と合わせて体内にもどす方法
であり、他の一つは体内から取シ出した血液を直接核装
置に通過させ、浄化する方法である。
The adsorbent layer 9 may be filled with the low-density lipoprotein adsorbent of the present invention alone, mixed with other adsorbents, or stacked. Other adsorbents that can be used include, for example, activated carbon, which has a wide range of adsorption capacities. By using this method, a wider range of clinical effects can be expected due to the synergistic effect of the adsorbent. When used for extracorporeal circulation, the appropriate volume of the adsorbent layer 9 is about 50-400. When the device of the present invention is used for extracorporeal circulation, there are two methods as follows: First, blood taken from the body is separated into plasma components and blood cell components using a centrifuge or a cavity-type plasma separator.The plasma components are passed through the device, purified, and then separated into blood cells. One method is to return the blood to the body together with its components, and the other method is to directly pass blood taken from the body through a nuclear device for purification.

また、血液もしくは血漿の通過速度については、該吸着
材の吸着能基が非常に筒いため、吸着材の粒度を粗くす
ることができ、また充填度を低くできるので、吸着材層
の形状の如何にか\わりなく、高い通過速度を与えるこ
とができる。そのため多量の体液処理をすることができ
る。
In addition, regarding the passage rate of blood or plasma, since the adsorbent's adsorbent groups are very cylindrical, the particle size of the adsorbent can be made coarser, and the degree of packing can be lowered, so the shape of the adsorbent layer can be adjusted. A high passing speed can be provided regardless of the situation. Therefore, a large amount of body fluid can be treated.

体液の通液方法としては、臨床上の必要に応じ、あるい
は設備の装置状況に応じて、連続的に通液してもよいし
、また、断続的に通液使用してもよい。
The method for passing body fluids may be either continuous or intermittent, depending on clinical needs or equipment conditions.

本発明の吸着材は、以上述べてきたように、体液中の低
比重リポ蛋白質を高率かつ選択的に吸着除去し、該吸着
材を用いた吸着装置は非常にコンパクトであると共に簡
便かつ安全である。そして、血漿蛋白中の免疫グロブリ
ンフィブリノーゲン、補体等、重要彦役割シを持つ成分
を非選択的に吸着することが少なく、高い効率で低比重
リボ蛋白質を吸着でき、さらに凝固線溶、補体系を活性
化することが少ない。
As described above, the adsorbent of the present invention selectively adsorbs and removes low-density lipoproteins in body fluids at a high rate, and the adsorption device using the adsorbent is extremely compact, simple, and safe. It is. In addition, it is less likely to non-selectively adsorb components that play an important role, such as immunoglobulin fibrinogen and complement in plasma proteins, and can adsorb low-density riboproteins with high efficiency, as well as coagulation fibrinolysis and complement system. is less likely to be activated.

本発明は、筒脂血症等の体液の浄化、再生する一般的な
用法に適用可能であり、高脂血症に起因した疾患の安全
で確実な治療に有効である。
INDUSTRIAL APPLICATION This invention is applicable to the general usage of purification and regeneration of body fluids, such as a lipemia, and is effective for the safe and reliable treatment of the disease caused by hyperlipidemia.

以下実施例により、本発明の実施の態様をより詳細に説
明する。
Embodiments of the present invention will be explained in more detail with reference to Examples below.

実施例1 担体として、平均細孔径が400^、細孔の表面積が9
0 m2/fのシリカゲル2.5 ? (10m1)を
3−アミノプロピルトリエトキシシランの10重量%ア
セトン溶液62.5−中に入れ、50cで振とうし彦か
ら40時間反応させた。この佐、光分量のアセトンで洗
浄後、蒸留水で洗浄し、リン酸緩衝液(pH4,0)で
置換した。ついで、ポリアクリル酸(分子量19000
0〜5400口0゜分子量72当りに1個のカルボキシ
ル基−を持っ)200rn9.1−シクロヘキシル−6
−(2−モルホリノエチル)カルボジイミド−メト−p
−)ルエンスルホネート2000In9を含むリン酸緩
衝液(pH4,0) 100ml中に懸濁した。室温で
20時間、振とうしガから反応させた後、充分水洗して
低比重リボ蛋白質吸着材を得た。
Example 1 A carrier with an average pore diameter of 400^ and a pore surface area of 9
0 m2/f silica gel 2.5? (10ml) was placed in a 10% by weight acetone solution of 3-aminopropyltriethoxysilane (62.5ml) and reacted for 40 hours under shaking at 50c. After this, the plate was washed with a light amount of acetone, then with distilled water, and replaced with phosphate buffer (pH 4.0). Next, polyacrylic acid (molecular weight 19,000
0-5400 0゜Molecular weight: 1 carboxyl group per 72) 200rn9.1-Cyclohexyl-6
-(2-morpholinoethyl)carbodiimide-meth-p
-) Suspended in 100 ml of phosphate buffer (pH 4,0) containing luenesulfonate 2000In9. After reacting with shaking at room temperature for 20 hours, the mixture was thoroughly washed with water to obtain a low-density riboprotein adsorbent.

ポリアクリル酸の(2)定量は6.3m9 / ml 
getであった。
(2) Quantification of polyacrylic acid is 6.3m9/ml
It was get.

吸着実験は、ヒト血漿5容と吸着材1容を混合し、57
’Q、5時間インキュベートした。吸着後の低比重リボ
蛋白をヘパリン−カルシウム沈殿法にて、免疫グロブリ
ンG (IgG ) 、免疫グロプリ−17− ンA (IgA )、補体C5cをシングルラジアルイ
ムノディフュージョン法にて測定した。
In the adsorption experiment, 5 volumes of human plasma and 1 volume of adsorbent were mixed, and 57
'Q, incubated for 5 hours. After adsorption, low-density riboproteins were measured by a heparin-calcium precipitation method, and immunoglobulin G (IgG), immunoglobulin-17-A (IgA), and complement C5c were measured by a single radial immunodiffusion method.

その結果、吸着前の低比重リポ蛋白質が550m9/d
Z%IgGが1300In9/dt、  IgAが19
0”97 d l %  C5cが85m9/dtであ
ったのに対し、吸着後の血漿では、低比重リポ蛋白質が
g&宸前の血漿濃度の20%に下ったが、IgG 、 
 IgA 、 C3eは、それぞれ90%、79%、7
6チとあまり下らなかった。
As a result, the amount of low-density lipoprotein before adsorption was 550 m9/d.
Z% IgG is 1300 In9/dt, IgA is 19
0"97 dl % C5c was 85 m9/dt, whereas in the plasma after adsorption, low-density lipoproteins decreased to 20% of the plasma concentration before g & g, but IgG,
IgA and C3e were 90%, 79%, and 7, respectively.
It wasn't much lower than 6 inches.

実施例2 ポリアクリル酸の代わシにポリメタクリル酸(分子量5
000〜50000、分子量86当りに1個のカルボキ
シル基を持つ)を用いた以外は、実施例1と同様に吸着
材を調製した。
Example 2 Polymethacrylic acid (molecular weight 5
An adsorbent was prepared in the same manner as in Example 1, except that an adsorbent (having one carboxyl group per molecular weight of 86) was used.

ポリメタクリル酸の固定量は6 、6 m97m1 g
 e tであった。
The fixed amount of polymethacrylic acid is 6.6 m97ml g
It was et.

実施例1と同様に実験した結果、吸着後の血漿では、低
比重リポ蛋白質が吸着前の血漿濃度の26%に下ったが
、IgG SIgA 、 C5cは、それぞれ85チ、
82%、76%とあまシ下らなかった。
As a result of the same experiment as in Example 1, in the plasma after adsorption, the concentration of low-density lipoprotein was 26% of the plasma concentration before adsorption, but the concentration of IgG SIgA and C5c was 85%, respectively.
The numbers did not fall significantly, at 82% and 76%.

−18− 実施例6 担体として、平均細孔径が400A、細孔の表面積が9
0m”/fのシリカゲル2.5 f (10+++l)
を6−クリシドキシプロビルトリメトキシシランの20
重量%アセトン溶液62.5ml!中に入れ、50Cで
振とうしながら40時間反応さ一+!:た。この後、光
分量のアセトンで洗浄後、蒸留水で洗浄し、0.1M炭
酸バッファー(pH9,8)で置換した。
-18- Example 6 A carrier with an average pore diameter of 400 A and a pore surface area of 9
0 m”/f silica gel 2.5 f (10+++l)
20 of 6-crisidoxypropyltrimethoxysilane
Weight% acetone solution 62.5ml! Place it inside and react for 40 hours while shaking at 50C! :Ta. Thereafter, the plate was washed with a light amount of acetone, then with distilled water, and replaced with 0.1M carbonate buffer (pH 9,8).

次に、この活性化ゲルをL−グルタミン酸の5量体(分
子量666、分子量110.5当り1個のカルボキシル
基を持つ)200m9を含む0.1M炭酸バッファー1
00 ml中に懸濁した。50′cで20時間、振とう
しながら反応させ、その後、室温で1週間静置した。こ
の後、光分水洗して低比重リポ蛋白質吸着材を得た。
Next, this activated gel was mixed with 0.1 M carbonate buffer containing 200 m9 of L-glutamic acid pentamer (molecular weight 666, with one carboxyl group per molecular weight 110.5).
00 ml. The mixture was allowed to react at 50'C for 20 hours with shaking, and then allowed to stand at room temperature for one week. Thereafter, the material was washed with light and water to obtain a low-density lipoprotein adsorbent.

L−グルタミン酸5量体の固定量は6.91Q/meg
elであった。
The fixed amount of L-glutamic acid pentamer is 6.91Q/meg
It was el.

この吸着材を用いて実験例1と同様の吸着実験を行なっ
た。
An adsorption experiment similar to Experimental Example 1 was conducted using this adsorbent.

吸着実験の結果、吸着後の血漿では、低比重リポ蛋白質
が吸着前の血漿濃度の42%に下ったが、IgG 、 
 IgA 、 C3cは、それぞれ90%、85%、8
0チとあまり下らなかった。
As a result of adsorption experiments, the concentration of low-density lipoprotein in plasma after adsorption was 42% of that before adsorption, but IgG,
IgA and C3c were 90%, 85%, and 8, respectively.
It wasn't much lower than 0chi.

比較例1 実施例3と同様にして得た活性化ゲルをL−グルタミン
酸(分子量147、カルボキシル基ヲ2個持つ)200
m9を含む0.1M炭酸バッファー10〇−中に懸濁し
、実施例3と同様に固定化反応を行なった。
Comparative Example 1 An activated gel obtained in the same manner as in Example 3 was treated with L-glutamic acid (molecular weight 147, having 2 carboxyl groups) 200
The suspension was suspended in 0.1M carbonate buffer 100ml containing m9, and the immobilization reaction was carried out in the same manner as in Example 3.

L−グルタミン酸の固定量は7.9 m97m1 ge
tであった。
The fixed amount of L-glutamic acid is 7.9 m97ml ge
It was t.

得られた吸着材を用いて、実施例3と同様に吸着実験を
行なった結果、吸着後の血漿中、低比重リポ蛋白質は吸
着前の85%、IgG 、  IgA 、 C3cは、
それぞれ90%、85%、80%と有意な差が認められ
なかった。
Using the obtained adsorbent, an adsorption experiment was conducted in the same manner as in Example 3. As a result, in the plasma after adsorption, low-density lipoprotein was 85% of that before adsorption, and IgG, IgA, and C3c were:
No significant difference was observed at 90%, 85%, and 80%, respectively.

実施例4 酢酸ビニル100f?、トリアリルイソシアヌレ−)4
1.4f(X=O040)、酢酸エチル1001、ヘプ
タン100f!、ポリ酢酸ビニル(重合度500)7.
51および2.2′−アゾビスイソブチロニトリル3,
82よりなる均一混合液と、ポリビニルアルコール1重
社チ、リン酸二水素ナトリウム二水和物0.053T量
チおよびリン酸水素二ナトリウム十二水和物1.5重量
%を溶解した水40〇−とをフラスコに入れ、十分撹拌
したのち65Cで18時間、さらに75Cで5時間加熱
攪拌して懸濁重合を行ない、粒状共重合体を得た。濾過
水洗、ついでアセトン抽出後、カセイソーダ46.5 
fおよびメタノール2tよりなる溶液中で40[で18
時間、共重合体のエステル交換反応を行々つだ。
Example 4 Vinyl acetate 100f? , triallylisocyanurate) 4
1.4f (X=O040), ethyl acetate 1001, heptane 100f! , polyvinyl acetate (degree of polymerization 500)7.
51 and 2.2'-azobisisobutyronitrile 3,
82, water in which polyvinyl alcohol 1, 0.053T of sodium dihydrogen phosphate dihydrate and 1.5% by weight of disodium hydrogen phosphate dodecahydrate were dissolved 40 〇- was placed in a flask, thoroughly stirred, and then heated and stirred at 65C for 18 hours and then at 75C for 5 hours to carry out suspension polymerization to obtain a granular copolymer. After filtering and washing with water, then extracting with acetone, caustic soda 46.5
f and 2 t of methanol at 40 [18
For some time, the transesterification reaction of the copolymer was carried out.

得られたゲルの平均粒径は1508m1単位重量あたシ
のビニルアルコール単位(q OH)は9.0 meq
/S’、比表面積は60m”/?、デキストランによる
排除限界分子量は6 X 105であった。
The average particle size of the resulting gel was 1508 ml, and the vinyl alcohol unit (q OH) per unit weight was 9.0 meq.
/S', the specific surface area was 60 m''/?, and the exclusion limit molecular weight by dextran was 6 x 105.

次に、得られたゲル10グ(乾燥重量)をジメチルスル
ホキシド120ゴ中に懸濁し、これにエピクロルヒドリ
ンy 8.5rrt、  50 %水酸化ナトリー 2
1− ラム10−を加え、60Cて5時間攪拌しながら活性化
反応を行なった。反応後ジメチルスルホキシドで洗浄し
、水洗し、吸引脱水した。次に、この活性化ゲルをポリ
アクリル酸ナトリウム(実施例1で用いたものと同じも
の) 2.Orを含む0.1M炭酸ナトリウムバッファ
ー(p H9,8) 1oo。
Next, 10 g (dry weight) of the obtained gel was suspended in 120 g of dimethyl sulfoxide, and to this was added 8.5 rrt of epichlorohydrin, 2 g of 50% sodium hydroxide.
1-ram 10- was added and the activation reaction was carried out with stirring at 60C for 5 hours. After the reaction, the mixture was washed with dimethyl sulfoxide, water, and dehydrated under suction. Next, this activated gel was mixed with sodium polyacrylate (same as used in Example 1) 2. 1oo of 0.1M sodium carbonate buffer (pH 9,8) containing Or.

−中に懸濁した。50Cで20時間、攪拌し々から固定
化反応を行ない、その後60.6m97m1のトリス(
ヒドロキシエチル)アミノメタン溶g3s7を加え、さ
らに5005時間、攪拌しながらブロッキング反応(残
存活性基をブロックする)を行った。この後、充分水洗
して低比重リポ蛋白質吸着材を得た。この吸着材に固定
されたポリアクリル酸ナトリウムの量は7 、4 mg
 / ml ge Lであった。
- suspended in The immobilization reaction was carried out at 50C for 20 hours with constant stirring, and then 60.6m97ml of Tris (
Hydroxyethyl) aminomethane solution g3s7 was added, and a blocking reaction (to block remaining active groups) was carried out for an additional 5,005 hours with stirring. Thereafter, it was thoroughly washed with water to obtain a low-density lipoprotein adsorbent. The amount of sodium polyacrylate fixed on this adsorbent was 7.4 mg.
/ ml ge L.

該吸着材をもとのゲル粒子と比較して光学顕微鏡で観察
したところ、カケ、タダケ等の破壊はaられ力かった。
When the adsorbent was compared with the original gel particles and observed under an optical microscope, no damage such as chips or cracks was observed.

この吸着材を内径101X11.長さ50龍のカラム2
本に充填し、1本にはACD加血漿を0 、4 ml/
mil+の流速で20づ、もう1本にはACD加血液を
0.7−22− rnt/順の流速で35m1fiした。いずれのカラム
も充填体積の低下、目詰まシ、流量低下はみら扛ず、カ
ラム前後の圧力差も血漿で10 mmHg以下、増面で
も10〜20 [++Hgの範囲であった。
This adsorbent has an inner diameter of 101×11. Column 2 of length 50 dragons
Fill the bottles with 0.4 ml of ACD-added plasma in one bottle.
20ml of blood was added to the other tube at a flow rate of mil+, and 35ml of ACD-added blood was added to the other tube at a flow rate of 0.7-22-rnt/ml. There was no decrease in packing volume, clogging, or decrease in flow rate in any of the columns, and the pressure difference before and after the column was 10 mmHg or less for plasma, and was in the range of 10 to 20[++Hg] even for increased surface area.

カラム通過前後の血漿蛋白および血液血球成分の変動を
副べたところ、血漿では、吸着後の低比重リボ蛋白質は
26%に下ったが1g0%  IgA。
When we examined the changes in plasma protein and blood cell components before and after passing through the column, we found that in plasma, the amount of low-density riboprotein after adsorption decreased to 26%, but 1g0% IgA.

C5cは、それぞ扛96%、82%、78%とあ才り下
らなかった。
C5c was no less impressive, with scores of 96%, 82%, and 78%, respectively.

1だ、作成では、カラム〕m過前後の赤血球、白血球、
III[小板の^度に有意々差は認められ々かった。
1. When creating the column, red blood cells, white blood cells, before and after m.
III [No significant difference was observed in the degree of platelets.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明低比重リポ缶白質吸着材を使用した吸着装
置の1例を示す断面図である。 −23=
The drawing is a sectional view showing an example of an adsorption device using the low-density lipo can white matter adsorbent of the present invention. −23=

Claims (1)

【特許請求の範囲】 (11表面に、負電荷を示す置換基としてカルボキシル
基を持ち、少なくとも600の分子量を持つポリアニオ
ン部を有することを特徴とする低比重リポ蛋白質吸着材
。 121  カルボキシル基を持ち、少なくとも600の
分子量を持つポリアニオン部が、鎖状構造を持ち、側鎖
にカルボキシル基を持つものである特許請求の範囲第1
項記載の低比重リボ蛋白質吸着材。 (31カルボキシル基を持ち、少なくとも600の分子
量を持つポリアニオン部が、分子量300当りに少なく
とも一つのカルボキシル基を持つものである特許請求の
範囲第1項記載の低比重リポ蛋白質吸着材。
[Scope of Claims] (11) A low-density lipoprotein adsorbent having a carboxyl group on the surface as a substituent that exhibits a negative charge and a polyanionic moiety having a molecular weight of at least 600. Claim 1, wherein the polyanion moiety having a molecular weight of at least 600 has a chain structure and has a carboxyl group in the side chain.
The low-density riboprotein adsorbent described in Section 1. (The low-density lipoprotein adsorbent according to claim 1, wherein the polyanion portion having 31 carboxyl groups and a molecular weight of at least 600 has at least one carboxyl group per molecular weight of 300.
JP58080778A 1983-05-11 1983-05-11 Material for adsorbing lipoprotein of low specific weight Granted JPS59206046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58080778A JPS59206046A (en) 1983-05-11 1983-05-11 Material for adsorbing lipoprotein of low specific weight

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58080778A JPS59206046A (en) 1983-05-11 1983-05-11 Material for adsorbing lipoprotein of low specific weight

Publications (2)

Publication Number Publication Date
JPS59206046A true JPS59206046A (en) 1984-11-21
JPS6259976B2 JPS6259976B2 (en) 1987-12-14

Family

ID=13727895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58080778A Granted JPS59206046A (en) 1983-05-11 1983-05-11 Material for adsorbing lipoprotein of low specific weight

Country Status (1)

Country Link
JP (1) JPS59206046A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11180996A (en) * 1997-12-16 1999-07-06 Mitsubishi Chemical Corp Separation of lipoprotein and its determination
EP0969855A4 (en) * 1996-11-27 2001-08-16 Boston Heart Foundation Inc Novel low density lipoprotein binding proteins and their use in diagnosing and treating atherosclerosis
US6605588B1 (en) 1996-11-27 2003-08-12 Boston Heart Foundation, Inc. Low density lipoprotein binding proteins and their use in diagnosing and treating atherosclerosis
US6632923B1 (en) 1996-11-27 2003-10-14 Boston Heart Foundation, Inc. Low density lipoprotein binding proteins and their use in diagnosing and treating atherosclerosis

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0969855A4 (en) * 1996-11-27 2001-08-16 Boston Heart Foundation Inc Novel low density lipoprotein binding proteins and their use in diagnosing and treating atherosclerosis
US6355451B1 (en) 1996-11-27 2002-03-12 Boston Heart Foundation, Inc. Low density lipoprotein binding proteins and their use in diagnosing and treating atherosclerosis
US6605588B1 (en) 1996-11-27 2003-08-12 Boston Heart Foundation, Inc. Low density lipoprotein binding proteins and their use in diagnosing and treating atherosclerosis
US6632923B1 (en) 1996-11-27 2003-10-14 Boston Heart Foundation, Inc. Low density lipoprotein binding proteins and their use in diagnosing and treating atherosclerosis
US7244410B2 (en) 1996-11-27 2007-07-17 Boston Heart Foundation, Inc. Low density lipoprotein binding proteins and their use in diagnosing and treating atherosclerosis
US7402395B2 (en) 1996-11-27 2008-07-22 Boston Heart Foundation, Inc. Low density lipoprotein binding proteins and their use in diagnosing and treating atherosclerosis
US7807384B2 (en) 1996-11-27 2010-10-05 Boston Heart Foundation, Inc. Low density lipoprotein binding proteins and their use in diagnosing and treating atherosclerosis
JPH11180996A (en) * 1997-12-16 1999-07-06 Mitsubishi Chemical Corp Separation of lipoprotein and its determination

Also Published As

Publication number Publication date
JPS6259976B2 (en) 1987-12-14

Similar Documents

Publication Publication Date Title
US4576927A (en) Porous adsorbent for adsorbing low density lipoproteins
JP2004508188A (en) Adsorbents with separately modified surface portions, methods for their preparation and their use
JPS6353971B2 (en)
JP2543693B2 (en) Adsorbent for low-density lipoprotein and method for producing the same
JPS59206046A (en) Material for adsorbing lipoprotein of low specific weight
JPS6090039A (en) Blood purifying adsorbing body
JP3176753B2 (en) Adsorbent for blood processing
JPS59206045A (en) Adsorbent for lipoprotein of low specific weight
JPH0424065B2 (en)
JPH0114791B2 (en)
JPS59169532A (en) Adsorbing material of c-reactive protein
JPS6226073A (en) Method and apparatus for direct infusion and adsorption of blood
JPH043988B2 (en)
JP2665526B2 (en) β2-microglobulin adsorbent
JPH01315338A (en) Adsorbent for lipoprotein having low specific gravity
JPS62244442A (en) Low specific gravity lipoprotein adsorbing material and its preparation
JPH024301B2 (en)
JPH06296861A (en) Bradykinin adsorbent
JPS59139937A (en) Adsorbent for lipoprotein with low specific gravity
JPH088928B2 (en) Device for producing plasma from which low-density lipoprotein has been removed
JPS6227967A (en) Regeneration of low specific gravity lipoprotein adsorbing material
JPS63283748A (en) Myoglobin adsorption material
JPH05168707A (en) Adsorbent for hemocatharsis
JPS6222657A (en) Low specific gravity lipoprotein adsorbing material and its production
JPS6090038A (en) Blood compatible carrier