JPS59195017A - Pulverized coal combustion device - Google Patents

Pulverized coal combustion device

Info

Publication number
JPS59195017A
JPS59195017A JP6925383A JP6925383A JPS59195017A JP S59195017 A JPS59195017 A JP S59195017A JP 6925383 A JP6925383 A JP 6925383A JP 6925383 A JP6925383 A JP 6925383A JP S59195017 A JPS59195017 A JP S59195017A
Authority
JP
Japan
Prior art keywords
combustion
coal
air
burner
pulverized coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6925383A
Other languages
Japanese (ja)
Inventor
Toshio Uemura
俊雄 植村
Tadahisa Masai
政井 忠久
Hitoshi Migaki
三垣 仁志
Shigeki Morita
茂樹 森田
Fumio Koda
幸田 文夫
Kiichi Itagaki
喜一 板垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP6925383A priority Critical patent/JPS59195017A/en
Publication of JPS59195017A publication Critical patent/JPS59195017A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feeding And Controlling Fuel (AREA)

Abstract

PURPOSE:To reduce production of NOX during combustion of pulverized coal, by a method wherein, in response to a detecting signal from a volatile content detecting means, an amount of the air for combustion fed to the air system of a denitrating burner is controlled to less than the amount of the air for theoretical combustion of a volatile content. CONSTITUTION:A volatile content in coal fed to a denitrating burner 4 is detected by a volatile content detector 17, a volatile content detecting signal 18, provided by the volatile content detector 17, is transmitted to a controller 19, and by means of a control signal 21 from the controller 19, dampers 15 and 20 are opened and closed. Or in case pulverized coal to the denitrating burner 4 is low fuel ratio coal, the volatile content detecting signal 18 by the volatile content detector 17 is increased, whereby the dampers 15 and 20 are throttled so that a ratio of the air to the volatile content becomes below 0.5, and in case pulverized coal is high fuel ratio coal, the dampers 15 and 20 are throttled so that the ratio of the air becomes below 0.5. This causes reduction in production of NOX during combustion of pulverized coal.

Description

【発明の詳細な説明】 不発B11は微粉炭の燃焼装置に係り、特に、微粉炭の
燃焼時に発生する窒葉酸化物(以下NOx という)を
低減するのに好適な微粉炭燃焼装置に関するものである
[Detailed Description of the Invention] Unexploded B11 relates to a pulverized coal combustion device, and particularly relates to a pulverized coal combustion device suitable for reducing nitride oxides (hereinafter referred to as NOx) generated during combustion of pulverized coal. .

化石燃料中には、C、I(等の燃料成分の他にN分が含
まれ、特に、微粉炭には気体燃料や液体燃料(C比較し
てN分合有量が多い。
Fossil fuels contain N in addition to fuel components such as C and I, and in particular, pulverized coal has a higher amount of N than gaseous fuels and liquid fuels (C).

このために、微粉炭の燃焼時に発生するNOx量は気体
オ6よび液体燃料の燃焼時に発生するNOx量よりも多
く、このためにNOxを極力低減させることが要望され
ている。
For this reason, the amount of NOx generated during combustion of pulverized coal is greater than the amount of NOx generated during combustion of gaseous oxygen and liquid fuel, and therefore it is desired to reduce NOx as much as possible.

各種燃料の燃焼時に発生するNOxは、サーマル(Th
ermal) No Xとフューエル(Fuel) N
Oxとに大別されるが、サーマルNOxは燃焼用空気中
の窒素が酸素によって酸化されて生成するものであり、
−万、フューエルNOxは燃料中のN分の酸化により生
成するものである、。
NOx generated during the combustion of various fuels is thermal (Th
(ermal) No X and Fuel (Fuel) N
Thermal NOx is generated when nitrogen in the combustion air is oxidized by oxygen.
-10,000, Fuel NOx is generated by the oxidation of N in the fuel.

これらのNOアの発生を抑制するだめの燃焼方法として
は、燃焼用空気を多段に分割して供給する多段燃焼法や
低酸素旋回の燃焼排ガスを燃焼領域、に混入する排ガス
再循環燃焼法等がある。
Combustion methods that suppress the generation of these NOAs include a multistage combustion method in which combustion air is divided into multiple stages and supplied, and an exhaust gas recirculation combustion method in which low-oxygen swirling combustion exhaust gas is mixed into the combustion area. There is.

こZtらの低NOx燃焼法は、低酸素燻焼によって燃焼
火炎の温度を下げることだより、策素と酸素の反応を抑
制することにある。ところか、サーマルNOxと7ユー
エルNOxの中で、燃焼温度の低下によってその発生を
抑制できるのは、サーマルNOxであり、フューエルN
Oxの発生は燃焼温度に対1−る依存属は少ない・ 従って、火炎温度の低下を目的とした従来の燃焼方法は
、N分の含有量の少ない気体および液体燃料の燃焼には
有効であるが、発生するNOx の80%近<がフュー
エルNOXである微粉炭燃料の燃焼に対しては効果が小
さい。
These low NOx combustion methods are based not on lowering the temperature of the combustion flame through low-oxygen smoldering, but rather on suppressing the reaction between the oxidizer and oxygen. However, between thermal NOx and fuel NOx, the generation of thermal NOx can be suppressed by lowering the combustion temperature, while fuel NOx can be suppressed by lowering the combustion temperature.
Ox generation has little dependence on combustion temperature. Therefore, conventional combustion methods aimed at lowering flame temperature are effective for combustion of gaseous and liquid fuels with low N content. However, it has little effect on the combustion of pulverized coal fuel, in which nearly 80% of the generated NOx is fuel NOx.

また、これらの多段燃焼法や排ガス再循環燃焼7琵展さ
せたものとして炉内脱硝燃焼法があるが、この炉内脱硝
燃焼法は炉内に還゛元雰囲気を作り、主バーナρ・ら発
生したNOxを脱硝バーナからの還元物質によって還元
する燃焼法で、液体燃料に対しては実用化されている。
In addition, there is an in-furnace denitrification combustion method that is an extension of these multistage combustion methods and exhaust gas recirculation combustion, but this in-furnace denitrification combustion method creates a reducing atmosphere in the furnace and This is a combustion method that reduces generated NOx using reducing substances from a denitrification burner, and has been put into practical use for liquid fuels.

ところが、この炉内脱硝燃焼法を微粉炭燃料の燃焼に通
用しても従来の燃焼法との差異はみもれない。
However, even if this in-furnace denitrification combustion method is applied to the combustion of pulverized coal fuel, there is no obvious difference from the conventional combustion method.

例えば、揮発分50%、固定炭素分40%、灰分10%
の微粉炭を炉内脱硝燃焼法で燃焼させる場合、脱硝バー
ナへの空気比を小さくしても冥質的な空気比は微粉炭の
8発成分に対する理論燃焼用空気量となり、このために
脱硝バーナとしての役割をはださずNOxを大幅に下げ
ることはできない。
For example, volatile content 50%, fixed carbon content 40%, ash content 10%
When combusting pulverized coal using the in-furnace denitrification combustion method, even if the air ratio to the denitrification burner is reduced, the residual air ratio remains the theoretical combustion air amount for the eight components of the pulverized coal, and for this reason, the denitrification It is not possible to significantly reduce NOx without fulfilling its role as a burner.

本発明ば7))7Slhる促米の欠点を解消しようとす
るもので、その目的とするところは、微粉炭燃料Ω燃焼
においてもNOxを低減させることができる微粉炭燃焼
装置を得ようとするものである。
The present invention attempts to eliminate the drawbacks of 7) Slh rice promotion, and its purpose is to obtain a pulverized coal combustion device that can reduce NOx even when pulverized coal fuel is burned. It is something.

不発明は前述の目的を達成するために、脱硝バーナへの
石炭供給系統に燃料中の揮発成分を検出するi発成分検
出手段7設け、この揮発成分検出手段の検出信号してよ
って脱硝バーナの空気系統への燃焼用窒気量を揮発成分
の理論燃焼用空気量以下に制御1−1I−i−るように
したものである。
In order to achieve the above-mentioned object, the present invention provides an i-emitting component detection means 7 for detecting volatile components in the fuel in the coal supply system to the denitrification burner, and uses a detection signal from the volatile component detection means to detect the denitrification burner. The amount of nitrogen gas for combustion into the air system is controlled to be less than the theoretical amount of air for combustion of volatile components.

以下、不発明の実施例を図面とともに説明する。Hereinafter, embodiments of the invention will be described with reference to the drawings.

v2.; 1 lAは本発明者等の行なった実験データ
7示すもので、縦軸tこNOx、横軸にバーナ平均空気
比?示した特性曲臓図で、通常燃焼から二段燃焼に移行
した時のNOxの変化な示す。比2図は本う6明の実施
例を示した系統図である。
v2. 1 lA shows experimental data7 conducted by the present inventors, where the vertical axis represents tNOx and the horizontal axis represents the burner average air ratio. The characteristic curve diagram shown shows the change in NOx when transitioning from normal combustion to two-stage combustion. Figure 2 is a system diagram showing this sixth embodiment.

なお、第2図においては、説明の都合上脱硝ノぐ−すへ
の石炭供給系統、空気系統のみを示し、主バーナへの石
炭供給系統と空気系統は省略した。
In addition, in FIG. 2, for convenience of explanation, only the coal supply system and the air system to the denitrification nozzle are shown, and the coal supply system and the air system to the main burner are omitted.

以下、本発明の詳細な説明する思料に、液体燃料と微粉
炭燃料の燃焼機構の違いについて述べろ。
Below, in order to provide a detailed explanation of the present invention, the differences in combustion mechanisms between liquid fuel and pulverized coal fuel will be discussed.

液体燃料の燃焼機構は、液体燃料全てが気化して燃焼1
−るのに対し、微粉炭燃料の燃焼機構は、揮発成分の分
解燃焼と、固定炭素分の表面燃焼に分けられ、揮発成分
の分解燃焼速度は固定炭素分の表面燃焼速度に比べて著
しく速いために、両者の反応は明らかに二つの反応とし
てとらえることがでさ、まず揮発成分か燃焼し、その後
tで固定炭素分の燃焼が始まる。
The combustion mechanism for liquid fuel is that all of the liquid fuel is vaporized and burned.
In contrast, the combustion mechanism of pulverized coal fuel is divided into decomposition combustion of volatile components and surface combustion of fixed carbon components, and the decomposition and combustion speed of volatile components is significantly faster than the surface combustion speed of fixed carbon components. Therefore, the reaction between the two can clearly be seen as two reactions: first, the volatile components are burned, and then, at t, the fixed carbon begins to burn.

つまり、微粉炭の燃焼機構は、揮発成分が放出される微
粉炭の熱分解過程、放出された揮発成分の燃焼過程、更
に熱分解後の可燃性固体成分(以下チャーという)の燃
焼過程からなる。揮凭成分燃焼速度は固体成分の燃焼速
度よりはるかに早く、揮発成分は燃焼の初期で燃焼する
。また熱分解過程では、微粉炭中に含有されたN分も、
他の可燃成分と同様に揮発されて放出されるものと、チ
ャー中に残るものとに分れる。
In other words, the combustion mechanism of pulverized coal consists of the pyrolysis process of pulverized coal in which volatile components are released, the combustion process of the released volatile components, and the combustion process of combustible solid components (hereinafter referred to as char) after pyrolysis. . The burning rate of volatile components is much faster than that of solid components, and volatile components burn at the beginning of combustion. In addition, during the pyrolysis process, the N content contained in pulverized coal is
There are two types of combustible components: those that are volatilized and released like other combustible components, and those that remain in the char.

従って、微粉炭燃焼時に発生するフューエルNOxは、
微粉炭の揮発成分に含まれるN分に起因するボラタイル
(Volatile)NOxと、チャー中に含丘れるN
分に起因するチャー(Char ) No Xとに分れ
るーこの二ね・類のフューエルNoX0中でチャーNO
xはチャーが燃焼することによって初めて生成するため
、燃焼の後半までチャーNoxが生成されるが、ボラタ
イルNoXは燃焼の前半で生成される。
Therefore, fuel NOx generated during pulverized coal combustion is
Volatile NOx caused by the N content in the volatile components of pulverized coal and N contained in the char
It is divided into char (Char) No.
Since x is first generated when char burns, char Nox is generated until the second half of combustion, whereas volatile NoX is generated during the first half of combustion.

つまり、揮発成分のN分は、燃焼の初期過程および酸素
不足の燃焼領域でNHa、HCN等の化合物になるが、
これらの窒素化合物は、酸素と反応してNOxになる他
に、発生したNoXを窒素に分解する還元沖」にもなり
得る。この窒素化合物によるNOx還元反泌は、NOx
との共存系において進行するものであり、NOxが共存
しない反応系では、大半の窒素化合部は、NoxK酸化
される。また、この還元物質の生成は低酸紫濃度雰囲気
になる程通行し易い。
In other words, the volatile N component turns into compounds such as NHa and HCN in the initial stage of combustion and in the oxygen-deficient combustion region;
In addition to reacting with oxygen to become NOx, these nitrogen compounds can also act as a "reducing agent" that decomposes the generated Nox into nitrogen. This NOx reduction and secretion by nitrogen compounds is NOx
In a reaction system where NOx coexists, most of the nitrogen compound parts are oxidized with NoxK. In addition, the production of this reducing substance is more likely to occur in an atmosphere with a lower acid purple concentration.

このように、微粉炭燃焼時のNOx低減方法としては、
還元性乞もつ揮発成分中のN分が燃焼の初期過程および
酸素不足の燃焼領域でNH3、HCN等還元物質が生成
されることから、脱硝バーナへの空気量を微粉炭の揮発
成分に対応して111」御することが重要なポイントで
あることが判明した。
In this way, as a NOx reduction method during pulverized coal combustion,
Since the nitrogen content in the volatile components that have a high reducing property generates reducing substances such as NH3 and HCN in the initial stage of combustion and in the combustion region where there is a lack of oxygen, it is necessary to adjust the amount of air to the denitrification burner to correspond to the volatile components of the pulverized coal. It turned out that the important point was to control the situation.

この傾向は燃料比(石炭の工業分析(C″!εける固定
炭素匍/揮発成分)の異なる低燃料化炭と高・燃料化炭
に8いても云える。
This tendency is true even if the fuel ratio (industrial analysis of coal (C″!ε) of fixed carbon mass/volatile components) is different between low-fuel coal and high-fuel coal.

第1図の実験データは通常燃焼から徐々に二段燃焼へ移
行した時のN Ox(Bの変化を示したもので、性状の
異なる微粉炭に対する結果である。
The experimental data in Figure 1 shows changes in NOx (B) when normal combustion gradually shifts to two-stage combustion, and the results are for pulverized coal with different properties.

図中曲線Aは燃料比0.8の低燃料化炭、曲線B、Cは
燃料比3.3,4.3の高燃料比炭のもの乞示す。
In the figure, curve A shows low fuel ratio coal with a fuel ratio of 0.8, and curves B and C show high fuel ratio coals with fuel ratios of 3.3 and 4.3.

つまり、第1図でも明らかなように、低撚浩化炭(揮発
成分の多い微粉炭)では曲線Aで示すように、バーナ平
均空気比を少し下げただけでもNOxは下るが、高燃料
比炭(揮発成分の少lよい微粉炭)では曲線B 、 C
で示すようにバーナ平均空気比をかなり下げないとNO
xが下らないことな示している。
In other words, as is clear from Figure 1, with low-twisted tornized coal (pulverized coal with a high volatile content), NOx decreases even if the burner average air ratio is slightly lowered, as shown by curve A, but with a high fuel ratio Curves B and C for charcoal (pulverized coal with low volatile components)
As shown in , it is NO unless the burner average air ratio is significantly lowered.
It shows that x is not bad.

これは微粉炭中の揮発成分の箪に基因するものと考えら
れ、低燃料化炭の場合は、揮発成分が多いためにバーナ
平均空気比を少し下げただけでも揮発成分に対する空気
比が減少して二段燃焼効果が太さくなりNOxは低減す
るか、高燃料炭の場合は、低燃料化炭の場合よりも逆に
搗づr成分か少ないために二段燃焼効果は小さく、NO
xも余り下らない傾向を示し、高燃料比炭においても微
粉炭中の揮発成分((対応して脱硝バーナへの空気量を
制御すれば、NOxは低減¥ろことが明らか((なった
2、第2図において、1はボイラ火炉、2はウィンドボ
ックス、3は主バーナ、4は脱硝バーナ、5はアフタエ
アポートでウィンドボックス2内は主バーナ3、脱硝バ
ーナ4およびアフタエアポート5の段に仕切られ、各段
毎に空気量が制御できろ5、脱硝バーナ4への石炭供給
系統6は原炭バンカ7より給炭機8を経てミル9へ供給
され、微粉炭に粉砕すれてフューエルパイプ10より脱
硝バーナ4へ供給されるように構成されている。
This is thought to be due to the amount of volatile components in the pulverized coal.In the case of low-fuel coal, there are many volatile components, so even if the burner average air ratio is slightly lowered, the air ratio to volatile components decreases. In the case of high-fuel coal, the two-stage combustion effect becomes thicker and NOx is reduced, or in the case of high-fuel coal, the second-stage combustion effect is small and NO
x also showed a tendency not to decrease much, and even with high fuel ratio coal, it is clear that NOx can be reduced by controlling the amount of air to the denitrification burner ((2, In Fig. 2, 1 is a boiler furnace, 2 is a wind box, 3 is a main burner, 4 is a denitrification burner, and 5 is an after air port.The inside of the wind box 2 is divided into stages of a main burner 3, a denitrification burner 4, and an after air port 5. The amount of air can be controlled for each stage 5. The coal supply system 6 to the denitrification burner 4 is such that the coal is supplied from the raw coal bunker 7 to the mill 9 via the coal feeder 8, and is pulverized into pulverized coal and sent to the fuel pipe 10. The denitrification burner 4 is supplied with the denitrification burner 4.

一方、脱硝バーナ4への燃焼用空気は、予熱空気と冷空
気が空気ダクト11.12より、排ガスは排ガスダクト
13より空気系統14へ供給され、ダンノや15、−次
空気フアン16を介してミル9へ送られ、微粉炭を搬送
してフューエルパイプ10より脱硝バーナ4へ供給され
る。
On the other hand, the combustion air for the denitrification burner 4 is supplied to the air system 14 through the air duct 11, 12 for preheated air and cold air, and the exhaust gas duct 13 for the combustion air to be supplied to the denitrification burner 4. The pulverized coal is sent to the mill 9, and then supplied to the denitrification burner 4 through the fuel pipe 10.

17は脱硝バーナ4へ供給される石炭の揮発成分を検出
する揮発成分検出器、18は払1発成分検出信号、19
は制御器、20は二次空気飢ビ旬1」御するダンパ、2
1はダンノぐ15.207制御する制御信号である。
17 is a volatile component detector for detecting the volatile components of coal supplied to the denitrification burner 4; 18 is a one-shot component detection signal; 19
is the controller, 20 is the damper that controls the secondary air starvation period 1, and 2
1 is a control signal for controlling Dannogu15.207.

この様な密造において、まず脱硝バーナ4へ供給される
石炭中のヨId発成分ケ揮発成分検出器17で検出し、
この揮発り灰分イ莢出器17で得られた揮発成分検出信
号18を制御器19へ伝達し、制御器19かもの制御信
号21によってダンパ15゜20を[ii9’ r閉し
て脱硝バーナ4へ供給される微粉炭中の揮発成分に応じ
て一次空気、二次全気量を変えるのである。
In such illegal production, first, the volatile component detector 17 detects the Id emitting components in the coal supplied to the denitrification burner 4,
The volatile component detection signal 18 obtained by the volatile ash extractor 17 is transmitted to the controller 19, and the dampers 15 and 20 are closed by the control signal 21 of the controller 19 and the denitrification burner 4 is closed. The total amount of primary air and secondary air is changed depending on the volatile components in the pulverized coal supplied to the pulverized coal.

なお、脱硝バーナ4の空気比は対揮発成分空気比として
05以下になるようダンパ15,20を’6;:制御信
号21によって制御することが好ましい。
It is preferable that the dampers 15 and 20 are controlled by the '6;: control signal 21 so that the air ratio of the denitrification burner 4 is 05 or less as the air ratio to volatile components.

つまり、脱硝バーナ4への微粉炭が低燃祠化炭である場
合にば、揮発成分検出器17での揮発成分検出信号18
は大ざくなるので、揮発成分に対する空気比が0.5以
下になるようにダンパ15゜20を絞り、脱硝バーナ・
1への微粉炭が高燃料比炭でk)る場合には揮発成分は
少な(なるので揮発成分に対する空気比が0.5以下に
なるようにダンノや15 r 20を絞るのである。
In other words, if the pulverized coal supplied to the denitrification burner 4 is low-burning coal, the volatile component detection signal 18 at the volatile component detector 17
Since the ratio of air to volatile components becomes 0.5 or less, reduce the damper 15°20 and use the denitrification burner.
When the pulverized coal to 1 is a high fuel ratio coal, the volatile components are small (k), so Danno or 15 r 20 is squeezed so that the air ratio to the volatile components is 0.5 or less.

なお、高燃料比炭の場合は揮発成分が少ないため((、
対揮発ルご分壁気比70.5以下に1−ると、−次壁ン
のみでに微イ分炭な!112送でき]【くなるために排
ガスダクト13かもの排ガス勺ビ贈やしてパックアンプ
でることになる。
In addition, in the case of high fuel ratio coal, since there are few volatile components ((,
When the ratio of coal to the volatile wall is 70.5 or less, the coal becomes slightly different from the wall. 112 can be sent] [In order to achieve this, 13 exhaust gas ducts will be sent and a pack amplifier will be sent.

このよつ((、微粉炭中の揮発成分に対応して空気針ケ
制御することによって、置す、?;料比化炭低燃狛化炭
に関係なく脱硝燃焼をさせることができ、1′氏NOx
化も計ることかできろ、
In this way, by controlling the air needle according to the volatile components in the pulverized coal, denitrification combustion can be performed regardless of the low-flame carbonized coal. 'Mr.NOx
Can you even measure the change?

【図面の簡単な説明】[Brief explanation of the drawing]

第1区は縦聴にNQア、横軸にバーナ平均空気比を示し
た特性1田絣図、第2図は本発明の笑施例を示した力戚
仙′1バーナのjW>’+略系紐図である。 3・・・主バーナ、4・・・脱硝バーナ、6・・・石炭
供給系組、14・・・全シ、系統、17・・・投光成分
検出器、18・・・揮発成分検出信号、19・・・制御
器、15゜20・・・グンパ、21・・・制御信号。
The first section shows NQA in the vertical direction, the horizontal axis shows the average air ratio of the burner, and the second chart shows an example of the present invention. This is a simplified genealogy diagram. 3... Main burner, 4... Denitrification burner, 6... Coal supply system set, 14... All systems, 17... Emission component detector, 18... Volatile component detection signal , 19...Controller, 15°20...Gunpa, 21...Control signal.

Claims (1)

【特許請求の範囲】[Claims] 主バーナと脱硝バーナへ石炭を供給する石炭供給系統と
、燃焼用空気暑供給する空気系統な設け、主バーナかも
のNOxを脱硝バーナからの還元物質で脱硝燃焼するも
のにおいて、前記脱硝バーナへの石炭供給系統に燃料中
の揮発分を検出する揮発成分検出手段を設け、この揮発
分検出手段の検出信号によって前記脱硝バーナの空気系
統への燃焼用空気量を揮発成分の理論燃焼用空気量以下
に制御するように桐成したことを%徴とする微粉炭燃焼
装置。
A coal supply system that supplies coal to the main burner and the denitrification burner, and an air system that supplies hot air for combustion are provided, and NOx in the main burner is denitrified and combusted with reducing substances from the denitrification burner. A volatile component detection means for detecting volatile components in the fuel is provided in the coal supply system, and the amount of combustion air supplied to the air system of the denitrification burner is controlled to be less than or equal to the theoretical combustion air amount of volatile components based on the detection signal of the volatile component detection means. The pulverized coal combustion equipment is characterized by the fact that it is controlled in a controlled manner.
JP6925383A 1983-04-21 1983-04-21 Pulverized coal combustion device Pending JPS59195017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6925383A JPS59195017A (en) 1983-04-21 1983-04-21 Pulverized coal combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6925383A JPS59195017A (en) 1983-04-21 1983-04-21 Pulverized coal combustion device

Publications (1)

Publication Number Publication Date
JPS59195017A true JPS59195017A (en) 1984-11-06

Family

ID=13397379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6925383A Pending JPS59195017A (en) 1983-04-21 1983-04-21 Pulverized coal combustion device

Country Status (1)

Country Link
JP (1) JPS59195017A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039341A (en) * 2006-08-09 2008-02-21 Central Res Inst Of Electric Power Ind Coal combustion method and coal combustion device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039341A (en) * 2006-08-09 2008-02-21 Central Res Inst Of Electric Power Ind Coal combustion method and coal combustion device

Similar Documents

Publication Publication Date Title
KR101249871B1 (en) A method for decreasing nitrogen oxides of a pulverized coal boiler using burners of internal combustion type
RU2476772C2 (en) Waste incineration furnace with fluidised bed and method to burn bottom sediment in such furnace (versions)
US4335660A (en) Apparatus and method for flue gas recirculation in a solid fuel boiler
US5085156A (en) Combustion process
JP5270661B2 (en) Exhaust gas control method and apparatus for oxyfuel boiler
BG106652A (en) Solid fuel burner and combustion method using solid fuel burner
JPS5837415A (en) Nox decreasing incinerator
MX2007010342A (en) Combustion method and system.
US4878830A (en) Substoichiometric fuel firing for minimum NOx emissions
JP5107418B2 (en) Primary recirculation exhaust gas flow controller for oxyfuel boiler
WO2008051798A1 (en) Modifying transport air to control nox
CN100504164C (en) Coal firing method with low emission for nitrous oxides
Xiao et al. Influence of feeding position and post-combustion air arrangement on NOx emission from circulating fluidized bed combustion with post-combustion
US5215455A (en) Combustion process
Teng et al. Control of NOx emissions through combustion modifications for reheating furnaces in steel plants
JP4015026B2 (en) Advanced NOx reduction method for boilers
JPS59195017A (en) Pulverized coal combustion device
JP2002228129A (en) Waste incinerator
JPH05340509A (en) N2 and nox reducing method in fluidized bed combustion
JPS62169907A (en) Pulverized coal combustion boiler
JP2612284B2 (en) Combustion equipment
CN115111599A (en) Control method for ultralow NOx emission in ignition and blowing-in process of circulating fluidized bed boiler
JPS58187709A (en) Pulverized coal burning system utilizing nitrogen in coal
RU2634344C1 (en) Fuel burning method
SK92005A3 (en) Additive to firing process of solid fossil fuels and the method of stabilization of firing process hereby additive