JPS59193904A - Apparatus for forming thin film of polymer - Google Patents

Apparatus for forming thin film of polymer

Info

Publication number
JPS59193904A
JPS59193904A JP6973483A JP6973483A JPS59193904A JP S59193904 A JPS59193904 A JP S59193904A JP 6973483 A JP6973483 A JP 6973483A JP 6973483 A JP6973483 A JP 6973483A JP S59193904 A JPS59193904 A JP S59193904A
Authority
JP
Japan
Prior art keywords
plasma
reaction vessel
plasma generation
tubes
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6973483A
Other languages
Japanese (ja)
Inventor
Riyuuzou Houchin
隆三 宝珍
Tanejiro Ikeda
池田 種次郎
Junji Ikeda
順治 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6973483A priority Critical patent/JPS59193904A/en
Publication of JPS59193904A publication Critical patent/JPS59193904A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the titled apparatus consisting of a reaction vessel furnished with a plurality of discharge plasma generation tubes under specific condition and having an inlet of a plasma-polymerizable monomer attached to each generation tube, and capable of forming multilayered thin polymer film in high productivity by plasma polymerization technique. CONSTITUTION:The reaction vessel 1 is evacuated with the vacuum pump 3 attached to the evacuation port 4, and carrier gases 9 are introduced into the discharge plasma generation tubes 2A-2C attached to the reaction vessel 9 inserting their open ends into the vessel. Electric potential is applied to the electrodes 7 by the high-frequency power sources 6 to generate glow discharge in the tubes, and without delay, plasma-polymerizable monomers 10A-10C are introduced into the plasma generation tubes 2A-2C through the monomer gas inlet ports 5A- 5C opened in the plasma generation tubes. At the same time, the specimen tape 13 is traversed to form thin polymer films continuously on the surface of the specimen tape in multilayers by the polymerization of the monomers 10A-10C.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はプラズマ重合法による高分子薄膜形成装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an apparatus for forming a thin polymer film using a plasma polymerization method.

従来技術 従来のプラズマ重合装置は、特−開閉56−60447
号公報に示されるように、反応容器(])の一端に放電
プラズマ発生管(2)を設置し、他端に真空ポンプ(3
)に連結された排気口(4)を有するものであり、重合
性モノマーガス導入口(5)は放電プラズマ発生管(2
)の開口部近くの反応容器(1)外壁に設けられている
(第1図参照)。この種の装置では、高周波電源(6)
から電極(7)に電圧を印加し、キャリヤガス導入口(
8)から導入されるアルゴンなどのキャリヤガス(9)
をプラズマ化させ、モノマーガス00)を導入して、反
応容器(1)内部に配置した試料01)表面にプラズマ
重合による高分子薄膜を形成するものであるが、プラズ
マ発生部が一ケ所しかないため一定厚さの膜を形成する
のに時間がかかり生産性の悪いものであった。
Prior art A conventional plasma polymerization apparatus has a special opening/closing mechanism.
As shown in the publication, a discharge plasma generation tube (2) is installed at one end of the reaction vessel (), and a vacuum pump (3) is installed at the other end.
), and the polymerizable monomer gas inlet (5) is connected to the discharge plasma generating tube (2).
) on the outer wall of the reaction vessel (1) near the opening (see Figure 1). In this type of equipment, a high frequency power source (6)
Apply voltage to the electrode (7) from the carrier gas inlet (
A carrier gas such as argon (9) introduced from 8)
is turned into plasma, monomer gas 00) is introduced, and a thin polymer film is formed by plasma polymerization on the surface of sample 01) placed inside the reaction vessel (1), but there is only one plasma generation area. Therefore, it takes time to form a film of a certain thickness, resulting in poor productivity.

また別の装置として、各層かそれぞれ異なるモノマーか
らなる多層薄膜を形成する装置かqh開開閉6−474
03号公報に示されている。この装;と1°ては、複数
のモノマーを1ケ所の導入バイブから1110次反応容
器に導入できるようになっているか、放電プラズマ発生
管及びモノマーガス導入口はやはり反応容器に1個づつ
しか取付けら2jておらず、重合に時間がかかることに
変りはなかった。
Another device is a device that forms a multilayer thin film in which each layer is made of a different monomer.
This is shown in Publication No. 03. With this equipment, it is possible to introduce multiple monomers into the 1110th reaction vessel from one introduction vibrator, or only one discharge plasma generation tube and monomer gas inlet are installed in each reaction vessel. There was no change in the fact that polymerization took a long time.

発明の1ミ1的 不発+114は、」−述の如き従来装置の欠点を解消し
、モア7−の異同にかかわらず、プラズマ引合θくを用
いて多層の高分子薄膜を非常に生産性よく形成しうる装
置を提供することを目的とする。
The 1/1 misfire +114 of the invention eliminates the shortcomings of the conventional apparatus as described above, and allows multilayer polymer thin films to be formed with high productivity using plasma attraction θ, regardless of the difference in mowers. The purpose is to provide a device that can be formed.

発明の構成 不発IJIjの装置は、2個以上の放電プラズマ発生’
j’j’を、識プラズマ発生管の開IJ部が反応容器内
部に向かって位lするように反応容器に数句り、かつ各
プラズマ発生管にそれぞれプラズマ重合性モノマーガス
導入口を設けたことを特徴とするものである。
Structure of the Invention The apparatus of the non-explosion IJIj is capable of generating two or more discharge plasmas.
J'j' were placed in the reaction vessel several times so that the open IJ part of the plasma generation tube was positioned toward the inside of the reaction vessel, and each plasma generation tube was provided with a plasma polymerizable monomer gas inlet. It is characterized by this.

放電プラズマ発生管は、反応容器一端から他端の排気口
に向けて同一線上に、一定間隔をあけて並んで配置され
るのが好ましく、また反応容器内部には高分子薄膜を形
成される試料を、各放電プラズマ発生管の開口部に面し
て移動するだめの移動手段が設けられるのがよい。
It is preferable that the discharge plasma generating tubes are arranged in line at regular intervals from one end of the reaction vessel toward the exhaust port at the other end. It is preferable that moving means be provided for moving the discharge plasma generating tube facing the opening of each discharge plasma generating tube.

次に、本発明の装置の一例を第2図に示し、この装置に
従って本発明の構成を更に詳しく説明する。
Next, an example of the apparatus of the present invention is shown in FIG. 2, and the configuration of the present invention will be explained in more detail according to this apparatus.

この装置では、横型の反応容器(1)の下方に排気口(
4)が設けられてあり、反応容器(1)の上方に3個の
放電プラズマ発生管(2A) (2B) (2C)が、
等間隔で横方向に並列して取付けられている。
In this device, an exhaust port (
4), and three discharge plasma generating tubes (2A) (2B) (2C) are provided above the reaction vessel (1).
They are installed horizontally in parallel at equal intervals.

各放電プラズマ発生管(2A)(2B)(2C)の頂部
にはキャリヤガス導入口(8)が存在し、反応容器(1
)に向けた開口部近くにはモノマーガス導入口(5A)
 (5B) (5C)が設けられており、キャリヤガス
導入口(8)とモノマーガス導入口(5A)(513)
(5C)の間には、高周波電源(6)に連結された電極
(7)か取イク]けらオ]ている。すjに、反応容:惜
(1)内部には巻取り装置(12)で各放電プラズマ発
11管(2A) (2f3) (2C)の下を連続して
移′動する、Lつに試料アープ(13)が配jrx、L
されている。
A carrier gas inlet (8) is present at the top of each discharge plasma generating tube (2A) (2B) (2C),
) is the monomer gas inlet (5A) near the opening facing the
(5B) (5C) are provided, a carrier gas inlet (8) and a monomer gas inlet (5A) (513).
Between (5C), there is an electrode (7) connected to a high frequency power source (6). Next, inside the reaction chamber (1), there are 11 discharge plasma tubes (2A) (2F3) (2C) that are continuously moved under each discharge plasma tube (2A) (2F3) (2C) by a winding device (12). Sample Arp (13) is arranged jrx, L
has been done.

この装置では、まず排気D (4)に取イ」けられた真
空ポンプ(3)で反応容器(])内を10 瀝bIIグ
以下に誠圧し、ギヤリヤガス0りを放電プラズマ発生管
(2A) (214) (2C)にそれぞれ10人する
。次いで、高周波電源((J)から電極(7)に電圧を
印加し、グロー放電を4I−シさせる。その後すぐに、
第1、第2及び第3のプラズマ重合性モノマー(IOA
)(1013)(,10C)を導入口(5A) (5B
) (5C)を通じて、それぞれ放電プラズマ発生管(
,2A)(2B)(2C)に導入する。それと同時にテ
ープ(13)を巻取り装置i(/ (12)で巻取るこ
とにより、テープθ3)表面に各千ツマ−(IOA) 
(IOB) (IOC)の重合による高分子薄膜を連続
して多層に形成できる。
In this device, first, the inside of the reaction vessel () is brought to a pressure of 10 mm or less using the vacuum pump (3) connected to the exhaust D (4), and the gear rear gas is pumped into the discharge plasma generating tube (2A). (214) Add 10 people to each of (2C). Next, a voltage is applied from the high frequency power supply (J) to the electrode (7) to cause a glow discharge to occur. Immediately thereafter,
First, second and third plasma polymerizable monomers (IOA
) (1013) (,10C) to the inlet (5A) (5B
) (5C) respectively through the discharge plasma generating tube (
, 2A) (2B) (2C). At the same time, by winding the tape (13) with the winding device i (/ (12)), each thousand marks (IOA) are formed on the surface of the tape θ3.
(IOB) A multilayer polymer thin film can be continuously formed by polymerizing (IOC).

千ツマ−(IOA)(IOB)(IOC)としては異な
るモノマーを使用しても、同一モノマーヲ使用してもよ
い。前者の場合には異なる3層の高原が形成され、後者
の場合には放電ブラン:’ 7 %生管が1個の場合に
比べて3倍の速度で所定の厚さの高分子薄膜が得られる
。なお、反応容器(1)に数句ける放電プラズマ発生管
(2)の数を増すことで、この効果は更に高まる。
As IOA, IOB, and IOC, different monomers or the same monomer may be used. In the former case, three different plateaus are formed, and in the latter case, a polymer thin film of a predetermined thickness can be obtained at a rate three times faster than in the case of one 7% raw tube. It will be done. This effect can be further enhanced by increasing the number of discharge plasma generating tubes (2) in the reaction vessel (1).

また、放電プラズマ発生管(2A) (2B) (2C
)のいずれか、あるいはすべてについてプラズマ重合性
モノマーガスは導入せず、不活性ガスあるいはN2. 
N2.02といったガスを導入し、プラズマを発生させ
ることにより試料をプラズマ処理することも可能である
In addition, discharge plasma generating tubes (2A) (2B) (2C
), no plasma polymerizable monomer gas was introduced, and an inert gas or N2.
It is also possible to plasma-treat the sample by introducing a gas such as N2.02 and generating plasma.

更に、テープ状以外の試料を用いる場合には、反応容器
内にコンベアを設けて試料を各放電プラズマ発生管(2
A) (2B) (2C)に沿って移動させ1所望の高
分子薄膜を形成するのがよい。
Furthermore, when using a sample other than a tape-shaped sample, a conveyor is provided in the reaction vessel to transfer the sample to each discharge plasma generating tube (2
It is preferable to move along A) (2B) and (2C) to form a desired polymer thin film.

なお、前記のキャリヤガスとしては、ヘリウム、アルゴ
ン、ネオンなどの不活性ガスが使用でき、プラズマ重合
性′モノマーとしては、メタン、エタン、プロパン、ブ
タン等の飽和炭化’水素、エチレン、プロピレン、ブテ
ン、ブタジェン、γ十升しン鵡の不飽和炭化水素、テト
ラフロロエチレン、ヘキサフロロプロピレン、パーンロ
ロシクロフ゛タン、ジフロロエタン、トリフIJ l’
J−1ニータン′!jのフッ素化合物、パラトルイジン
、ピリジン、ヒ゛ニルピリジン(、すの、’;、゛窒素
化合物、トリレン−2,4−ジイソシアネート、ヘキサ
メチレンジイソシアネート等のイソシアネート化合物、
スチレン、α−メチルスチレン、アクリロニトリル等の
エチレン性不飽和結合ヲ有する化合物、アクリル酸メチ
ル、メタクリル酸メチル、グリシジルメタクリレ−1・
、2−ヒドロキシメタクリレート、n−ブチルアクリレ
ート」°のアクリル化合物、ビニルトリメトキシシラン
、テトラメチルシラン、テトラエトキシシラン、テトラ
メトキシシラン、ヘキ′リーメチルジシ1」ギリン、オ
クタメチルトリジVノキャン拓のオルカッシラン化合物
等の1 :IJIfあるいi;t 2 、iJl以−1
ユのfjj11合物を使用することができる。
As the carrier gas, an inert gas such as helium, argon, or neon can be used, and as the plasma polymerizable monomer, saturated hydrocarbons such as methane, ethane, propane, and butane, ethylene, propylene, and butene can be used. , butadiene, unsaturated hydrocarbons, tetrafluoroethylene, hexafluoropropylene, perlolocyclobutane, difluoroethane, trifluoroethylene
J-1 Nitan'! Fluorine compounds of j, paratoluidine, pyridine, vinylpyridine (, suno, ';, nitrogen compounds, isocyanate compounds such as tolylene-2,4-diisocyanate, hexamethylene diisocyanate,
Compounds with ethylenically unsaturated bonds such as styrene, α-methylstyrene, acrylonitrile, methyl acrylate, methyl methacrylate, glycidyl methacrylate-1.
, 2-hydroxymethacrylate, n-butyl acrylate, acrylic compounds, vinyltrimethoxysilane, tetramethylsilane, tetraethoxysilane, tetramethoxysilane, hexylmethyldisilane, octamethyltridiV-nocan-taku orcassilane compounds, etc. 1: IJIf or i; t 2 , iJl or -1
A fjj11 compound of Yu can be used.

実施例 第2図に示した装置に、Ni −Co 蒸着テープ(1
3)を試料として取付け、真空ポンプ(3)で反応容器
(])内を10  賜Ifに減圧した後、アルゴンカス
を3個の放電プラズマ発生管(2A) (2B) (2
C)にそれぞれ20 ml (STP ) /min 
テ導入し、反応容器(1)内の圧力を0.3mHPに保
った。次に、1 ’3.56 M Hzの高周波電圧を
各電極(ア)に印加し、グロー放電を行なった。その後
すぐに第1の放電プラズマ発生管(2A)内にビニルト
リメトキシシランを30 ml (STP ) /mi
 n テ導入し、第2の放電プラズマ発生管(2B)内
にテトラフロロエチレンとビニルメトキシシランの混合
ガス(体積混合比1:1)を20 rue (STP 
) /mi n テ導入し、第3の放電プラズマ発生管
(2C)内にテトラフロロエチレンを50 ml (S
TP ) /mi n テ導入した。そして同時に蒸着
テープ03)を巻取り装置(12)で2 c1n/m 
i nの速度で巻取り、テープ(13)の蒸着面に高分
子薄膜を形成した。このようにして高分子薄膜を形成し
た蒸着テープの動M擦係数は0.4と小さく、未処理の
もの(動摩擦係数0.7)に比べてテープの走行性を著
しく改善できた。
Example A Ni-Co vapor deposition tape (1
3) as a sample, and after reducing the pressure inside the reaction vessel () to 10°C using the vacuum pump (3), the argon gas was poured into three discharge plasma generating tubes (2A) (2B) (2).
C) 20 ml (STP)/min each
The pressure inside the reaction vessel (1) was maintained at 0.3 mHP. Next, a high frequency voltage of 1'3.56 MHz was applied to each electrode (A) to cause glow discharge. Immediately thereafter, 30 ml (STP)/mi of vinyltrimethoxysilane was added to the first discharge plasma generating tube (2A).
20 rue (STP
)/min Tetrafluoroethylene was introduced into the third discharge plasma generating tube (2C).
TP)/minte was introduced. At the same time, the vapor deposition tape 03) is rolled up at 2 c1n/m using the winding device (12).
A thin polymer film was formed on the vapor deposition surface of the tape (13) by winding it up at a speed of i n. The dynamic M friction coefficient of the vapor-deposited tape on which the polymer thin film was formed in this way was as small as 0.4, and the running properties of the tape were significantly improved compared to the untreated tape (dynamic friction coefficient of 0.7).

しかも密着性の良い下地j換形成のためにビニルトリメ
トキシシランを用い、下地膜の上にテトラフロロエチレ
ンをプラズマ重合で保巡膜−!i= 形成する際、下地
膜と保お膜の密着性を良くするために両方のガスの混合
物をプラズマ重合させた中間層を形成しているので、蒸
着面との棺尤+I)11が優れ、しかも動摩擦係数が小
さく、摩耗の少ない高分子薄膜を有する蒸着テープを得
ることができた。この例では、従来の装置(第1図)を
用いた場合に比べて、重合膜形成時間を約イに短縮でき
、生産コストを一部げることかできた。
Moreover, vinyltrimethoxysilane is used to form a base film with good adhesion, and tetrafluoroethylene is plasma polymerized on top of the base film to form a protective film! i = When forming, in order to improve the adhesion between the base film and the protective film, an intermediate layer is formed by plasma polymerizing a mixture of both gases, so the distance between the base film and the protective film + I) 11 is excellent. Moreover, it was possible to obtain a vapor-deposited tape having a thin polymer film with a small coefficient of dynamic friction and less wear. In this example, compared to the case where a conventional apparatus (FIG. 1) was used, the time for forming a polymer film could be shortened to about 1, and production costs could be reduced by a portion.

なお、実施例において反応容器内の圧力は03mm、 
H9としたが0.05〜5 vurb L(pの範囲で
重合が可能である。また、アルゴンガスの流量あるいは
プラズマ重合性モノマーカスの流ffiは実施例に示し
た(11:jに限定されるものではなく、放′覗出力や
蒸1:t1テープの巻取り速度に応して調整できる。放
’iL7.プラズマ発牛4′4・は反応容器の大きさに
1+j1シて2本以上何本でもつけることができ、それ
ぞれの大きさや形状も異なるものとすることができる。
In addition, in the examples, the pressure inside the reaction container was 0.3 mm,
H9 was used, but polymerization is possible in the range of 0.05 to 5 vulb L (p. In addition, the flow rate of argon gas or the flow rate ffi of plasma polymerizable monomers is shown in the example (limited to 11:j). It can be adjusted according to the output power and the winding speed of the vaporized 1:t1 tape.For plasma generation 4'4, use 2 or more tapes by adding 1+j1 to the size of the reaction vessel. Any number of wires can be attached, and each can have a different size and shape.

各放電プラズマ発生管に導入するキャリヤガスはそれぞ
れ異なるものを使用することができ、複数の放電プラズ
マ発生管の一部はキャリヤガスを導入せずにプラズマ重
合性モノマーガスだけを導入することも可能である。
Different carrier gases can be used to introduce each discharge plasma generating tube, and it is also possible to introduce only plasma polymerizable monomer gas without introducing carrier gas into some of the multiple discharge plasma generating tubes. It is.

本発明の効果 本発明では、反応容器に2個以上の放電プラズマ発生管
が取付けられており、各放電プラズマ発生管にプラズマ
重合性モノマーガス導入口が設けられているため、連続
して多層の高分子薄膜の形成が可能となり、重合膜形成
時間を著しく短縮でき、生産コストを下げることができ
る。更に本発明の装置は生産工程の自動化に適しており
、特に異種モノマーによる多層の高分子薄膜形成におい
て、生産性よく、性能の良い薄膜形成を可能とする。
Effects of the Present Invention In the present invention, two or more discharge plasma generation tubes are attached to the reaction vessel, and each discharge plasma generation tube is provided with a plasma polymerizable monomer gas inlet. It becomes possible to form a thin polymer film, significantly shortening the time for forming a polymer film, and lowering production costs. Further, the apparatus of the present invention is suitable for automation of production processes, and enables the formation of thin films with good productivity and performance, particularly in the formation of multilayer polymer thin films using different types of monomers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の装置ζ[の説明図、第2図は不発19j
の装置の一例を示す説明図である。 C))・・・・・・・・・・・・・・・反応容器(2)
(2A)(zn)(2C)・・・・・・・・・・・・・
・・・・・プラズマ発生管(:8)・・・・・・・・・
・・・・・・真空ポンプ(4)・・・・・・・・・・・
・・・・排気口(5)(5A)(511)(5C)・・
・・・・・・・・・・・・・・・・モノマーカス導入口
(1j)・・・・・・・・・・・・・・・高周波電波(
7)・・・・・・・・・・・・・・・電極(8)・・・
・・・・・・・・・・・・キャリヤガス導入IIJ(!
)戸・・・・・・・・・・・・・・ギヤリヤガス(+o
)(1oA)(1on)(toc)・・・・・・・・・
・・・・・・・・・モノマーガス(1])・・・・・・
・・・・・・・・・試料(12)・・・・・・・・・・
・・・・・巻取り装置(13)・・・・・・・・・・・
・・・・テープ特許出願人  松下電器産業株式会社 代  理  人   新  実  健  部外1名
Figure 1 is an explanatory diagram of the conventional device ζ[, Figure 2 is the unexploded
It is an explanatory view showing an example of the device. C))・・・・・・・・・・・・Reaction container (2)
(2A) (zn) (2C)・・・・・・・・・・・・
・・・・・・Plasma generation tube (:8)・・・・・・・・・
・・・・・・Vacuum pump (4)・・・・・・・・・・・・
...Exhaust port (5) (5A) (511) (5C)...
・・・・・・・・・・・・・・・ Monomarcus inlet (1j) ・・・・・・・・・・・・・・・High frequency radio waves (
7)・・・・・・・・・・・・ Electrode (8)・・・
......Carrier gas introduction IIJ (!
) Door・・・・・・・・・・・・・・・Gear rear gas (+o
) (1oA) (1on) (toc)・・・・・・・・・
......Monomer gas (1))...
......Sample (12)...
... Winding device (13) ......
... Tape patent applicant Matsushita Electric Industrial Co., Ltd. Representative Ken Minoru Arata 1 external person

Claims (2)

【特許請求の範囲】[Claims] (1)2個以北の放電プラズマ発生管を、該プラズマ発
生管の開口部が反応容器内部に向かって位置するように
反応容器に取イ」け、かつ各プラズマ発生管の内部にそ
れぞれプラズマ重合性モノマーガス導入[二1を設けた
ことを特徴とする高分子薄膜形成装置。
(1) Place two or more discharge plasma generation tubes into the reaction vessel so that the openings of the plasma generation tubes are positioned toward the inside of the reaction vessel, and place the plasma inside each plasma generation tube. A polymer thin film forming apparatus characterized in that a polymerizable monomer gas introduction [21] is provided.
(2)高分子薄膜を形成される試料を、各放電プラズマ
発生盾・の開口部に而して移動するための移動手段か反
応容器内部に数例けられていることを特徴とする%J1
精求の範囲第1項記載の高分子薄膜形成装置。
(2) %J1 characterized in that several moving means are provided inside the reaction vessel for moving the sample on which the polymer thin film is to be formed through the opening of each discharge plasma generation shield.
Scope of Purpose Item 1. The polymer thin film forming apparatus according to item 1.
JP6973483A 1983-04-18 1983-04-18 Apparatus for forming thin film of polymer Pending JPS59193904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6973483A JPS59193904A (en) 1983-04-18 1983-04-18 Apparatus for forming thin film of polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6973483A JPS59193904A (en) 1983-04-18 1983-04-18 Apparatus for forming thin film of polymer

Publications (1)

Publication Number Publication Date
JPS59193904A true JPS59193904A (en) 1984-11-02

Family

ID=13411338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6973483A Pending JPS59193904A (en) 1983-04-18 1983-04-18 Apparatus for forming thin film of polymer

Country Status (1)

Country Link
JP (1) JPS59193904A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047003A (en) * 1983-08-26 1985-03-14 Res Dev Corp Of Japan Process and apparatus for plasma polymerization
US4990229A (en) * 1989-06-13 1991-02-05 Plasma & Materials Technologies, Inc. High density plasma deposition and etching apparatus
WO1997001655A1 (en) * 1995-06-29 1997-01-16 Lam Research Corporation A scalable helicon wave plasma processing device with a non-cylindrical source chamber
WO1997004478A3 (en) * 1995-07-19 1997-03-20 Chung Chan Plasma treatment apparatus for large area substrates
US5620523A (en) * 1994-04-11 1997-04-15 Canon Sales Co., Inc. Apparatus for forming film
US5702530A (en) * 1995-06-23 1997-12-30 Applied Materials, Inc. Distributed microwave plasma reactor for semiconductor processing
US6051073A (en) * 1998-02-11 2000-04-18 Silicon Genesis Corporation Perforated shield for plasma immersion ion implantation
US6103599A (en) * 1997-07-25 2000-08-15 Silicon Genesis Corporation Planarizing technique for multilayered substrates
US6228176B1 (en) 1998-02-11 2001-05-08 Silicon Genesis Corporation Contoured platen design for plasma immerson ion implantation
US6544862B1 (en) 2000-01-14 2003-04-08 Silicon Genesis Corporation Particle distribution method and resulting structure for a layer transfer process
US6790747B2 (en) 1997-05-12 2004-09-14 Silicon Genesis Corporation Method and device for controlled cleaving process
US8993410B2 (en) 2006-09-08 2015-03-31 Silicon Genesis Corporation Substrate cleaving under controlled stress conditions
US11444221B2 (en) 2008-05-07 2022-09-13 Silicon Genesis Corporation Layer transfer of films utilizing controlled shear region

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0460122B2 (en) * 1983-08-26 1992-09-25 Shingijutsu Kaihatsu Jigyodan
JPS6047003A (en) * 1983-08-26 1985-03-14 Res Dev Corp Of Japan Process and apparatus for plasma polymerization
US4990229A (en) * 1989-06-13 1991-02-05 Plasma & Materials Technologies, Inc. High density plasma deposition and etching apparatus
US5620523A (en) * 1994-04-11 1997-04-15 Canon Sales Co., Inc. Apparatus for forming film
US5702530A (en) * 1995-06-23 1997-12-30 Applied Materials, Inc. Distributed microwave plasma reactor for semiconductor processing
WO1997001655A1 (en) * 1995-06-29 1997-01-16 Lam Research Corporation A scalable helicon wave plasma processing device with a non-cylindrical source chamber
US6338313B1 (en) 1995-07-19 2002-01-15 Silison Genesis Corporation System for the plasma treatment of large area substrates
US5653811A (en) * 1995-07-19 1997-08-05 Chan; Chung System for the plasma treatment of large area substrates
AU718941B2 (en) * 1995-07-19 2000-05-04 Chung Chan System for the plasma treatment of large area substrates
WO1997004478A3 (en) * 1995-07-19 1997-03-20 Chung Chan Plasma treatment apparatus for large area substrates
US6790747B2 (en) 1997-05-12 2004-09-14 Silicon Genesis Corporation Method and device for controlled cleaving process
US6103599A (en) * 1997-07-25 2000-08-15 Silicon Genesis Corporation Planarizing technique for multilayered substrates
US6051073A (en) * 1998-02-11 2000-04-18 Silicon Genesis Corporation Perforated shield for plasma immersion ion implantation
US6228176B1 (en) 1998-02-11 2001-05-08 Silicon Genesis Corporation Contoured platen design for plasma immerson ion implantation
US6544862B1 (en) 2000-01-14 2003-04-08 Silicon Genesis Corporation Particle distribution method and resulting structure for a layer transfer process
US8993410B2 (en) 2006-09-08 2015-03-31 Silicon Genesis Corporation Substrate cleaving under controlled stress conditions
US9640711B2 (en) 2006-09-08 2017-05-02 Silicon Genesis Corporation Substrate cleaving under controlled stress conditions
US11444221B2 (en) 2008-05-07 2022-09-13 Silicon Genesis Corporation Layer transfer of films utilizing controlled shear region

Similar Documents

Publication Publication Date Title
JPS59193904A (en) Apparatus for forming thin film of polymer
US6465057B1 (en) Plasma CVD method and apparatus
US5320875A (en) Method of providing an abrasion resistant coating
US5364665A (en) Method for rapid plasma treatments
US5494712A (en) Method of forming a plasma polymerized film
JP2014534336A (en) Coating preparation method by atmospheric pressure plasma method
FR2795906B1 (en) PROCESS AND DEVICE FOR PLASMA DEPOSIT AT THE ELECTRONIC CYCLOTRON RESONANCE OF LAYERS OF CARBON NONOFIBRES TISSUES AND LAYERS OF TISSUES THUS OBTAINED
EP1044458B1 (en) Dual face shower head magnetron, plasma generating apparatus and method of coating a substrate
JPH03183782A (en) Device for producing thin film
JPS591505A (en) Article coated with low-friction film
Colthup Molecular orbital study of the Q–e scheme in free radical copolymerization
JPS6270578A (en) Coating method for inside surface of pipe
JP2011102436A (en) Thin film deposition method and thin film deposition system
CN113862644A (en) Film coating equipment
Yasuda Formation of polymeric materials by a nonpolymerization process: Glow discharge polymerization
Yu et al. Internal stress in plasma polymer films prepared by cascade arc torch polymerization
JPS61216123A (en) Production of magnetic recording medium
JPH02129377A (en) Plasma vapor growth method
JPH0677144A (en) Method and device for forming plasma cvd film
JPS63137932A (en) Surface-modified plastic film
WO2021143047A1 (en) High-precision, low-stress optical thin-film deposition method and device
US20210125820A1 (en) RF Power Source Operation In Plasma Enhanced Processes
JPS59183827A (en) Continuous plasma treating device
JPH02122070A (en) Plasma treatment-ion plating device
JPS6380406A (en) Manufacture of multi-layer film