JPS59193633A - Current control circuit in wire transmission line - Google Patents

Current control circuit in wire transmission line

Info

Publication number
JPS59193633A
JPS59193633A JP6793883A JP6793883A JPS59193633A JP S59193633 A JPS59193633 A JP S59193633A JP 6793883 A JP6793883 A JP 6793883A JP 6793883 A JP6793883 A JP 6793883A JP S59193633 A JPS59193633 A JP S59193633A
Authority
JP
Japan
Prior art keywords
transistor
current
turned
transmission line
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6793883A
Other languages
Japanese (ja)
Inventor
Kenichi Kishi
健一 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6793883A priority Critical patent/JPS59193633A/en
Publication of JPS59193633A publication Critical patent/JPS59193633A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/32Reducing cross-talk, e.g. by compensating

Abstract

PURPOSE:To prevent crosstalk from being generated in other transmission lines by making a coupling transistor (TR) nonconductive when the TR is electrically conducted by a switching control circuit and a large current flows to a cable. CONSTITUTION:When a photocoupler 2 and a TR3 are turned on, terminals C, D are electrically conducted, a large current flows to the cable by a voltage induced transiently, a voltage is produced across a resistor R4 and a TR5 is turned on. Thus, a current (i) flowing from the coupler 2 is by-passed and flows directly to the terminal D, and no current flows to the base of the TR3. Thus, the TR3 is turned off, the terminals C, D are made nonconductive and no large current flows. Since no current flows to the resistor R4 owing to the turning-off of the TR3, a base-emitter voltage of the TR5 becomes zero again, the TR5 is turned off and the TR3 is turned on conversely. A large current more than a prescribed value does not flow by repeating such operations.

Description

【発明の詳細な説明】 (A)発明の技術分野 本発明は有線伝送路に係り特にスイッチング動作に伴っ
て発生する過渡的な大電流に対する対策を講じた有線伝
送路における電流制御回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (A) Technical Field of the Invention The present invention relates to a wired transmission line, and particularly relates to a current control circuit for a wired transmission line that takes measures against transient large currents generated in conjunction with switching operations. be.

(B)技術の背景 ホスト計算機の大型化に伴い、その機能を最大限に発揮
させるため様々な周辺機器が接続されている。そして、
それら周辺機器は、ポスト計算機から離れた場所でも使
用されるため、情報の長距離伝送が行なわれており、そ
のためのインターフェイスもますます重要になっている
(B) Technical Background As host computers become larger, various peripheral devices are connected to them in order to maximize their functions. and,
These peripheral devices are used even in locations far away from the post-computer, so information is transmitted over long distances, and interfaces for this purpose are becoming increasingly important.

(C)従来技術と問題点 従来の有線伝送路における電流制御回路は、第1図に示
すような回路構成になっている。同図において1はオプ
ンコレクタタイプの”I゛TI、ゲート(以下Gと称す
)、2はスイッチング制御手段。
(C) Prior Art and Problems A current control circuit in a conventional wired transmission line has a circuit configuration as shown in FIG. In the figure, 1 is an open collector type ITI gate (hereinafter referred to as G), and 2 is a switching control means.

3はトランジスタ、4は電流検出回路(以下、DETと
称す)である。またR、、R2,Jはそれぞれ抵抗素子
であり、βは長さ!のケーブルを表わしている。同図に
おいて端子AおよびBには抵抗Rz、R3を含む電圧V
CC,VEEの電源が接続されている。以下端子C−D
を送信側、端子A−Bを受信側として説明する。G′の
入力(ケーブル起動信号)力筒(igh(1)になると
ゲートが開き電圧Vc C7なる電源よりGの出力端子
へ電流が流れスイッチング制御手段(フォトカプラ)2
が導通(ON) し、I−ランシスタ3も導通ずる。し
たがって端子CD間が導通するためDET4に電流が流
れる。またGの入力がLOW (0)の時にはフォ1−
カプラ2.トランジスタ3が非導通(OFF)となるた
め端子CD間は非導通状態である。したがってDET4
にば電流ば流れない。このようにDET4に電流が流れ
たか流れないかによって端子A−BからC−Dへ信号を
伝送している。
3 is a transistor, and 4 is a current detection circuit (hereinafter referred to as DET). Also, R, , R2, and J are each resistance elements, and β is the length! represents the cable. In the figure, a voltage V including resistors Rz and R3 is applied to terminals A and B.
CC and VEE power supplies are connected. Below terminal C-D
will be explained assuming that terminal A is the transmitting side and terminals A and B are the receiving side. When the input of G' (cable start signal) becomes high (1), the gate opens and a current flows from the power source of voltage Vc C7 to the output terminal of G, switching control means (photocoupler) 2
becomes conductive (ON), and I-run transistor 3 also becomes conductive. Therefore, since conduction occurs between the terminals CD, a current flows through DET4. Also, when the G input is LOW (0), the FO1-
coupler 2. Since the transistor 3 is non-conductive (OFF), there is no conduction between the terminals CD. Therefore DET4
If there is no current, it will not flow. In this way, a signal is transmitted from terminal A-B to CD depending on whether current flows through DET4 or not.

このような回路において、トランジスタ3がOFF→○
Nとなる場合を考えると、トランジスタ3がOFFの場
合トランジスタ3のコレクタ・エミッタ間(端子CD間
)にはVcc−VEfEという大きな電圧が印加されて
いる。またトランジスタ3がONの場合、トランジスタ
3のコレクタ・エミッタ間の電圧は約IV(フォトカプ
ラ2のトランジスタのコレクタ・エミッタ間およびl・
ランジスタ3のベース・エミッタ間の電圧)となる。
In such a circuit, transistor 3 is OFF→○
Considering the case where the voltage is N, when the transistor 3 is OFF, a large voltage of Vcc-VEfE is applied between the collector and emitter of the transistor 3 (between the terminals CD). Furthermore, when the transistor 3 is ON, the voltage between the collector and emitter of the transistor 3 is approximately IV (the voltage between the collector and emitter of the transistor of the photocoupler 2 and l.
voltage between the base and emitter of transistor 3).

したがってトランジスタ3が0FF−ONに変化する場
合、電圧変化量がVcc−VEE−1(V)となるが、
これは一般に大きな電圧変化量である。このためケーブ
ルβの長さが長い場合、過渡現象を生じ1例えば端子C
を流れる電流は第2図のように変化する。そして、ケー
ブルは一般に数ライン束になっているため他の伝送路に
対し、大きなりロストローフを誘起して、誤動作の原因
となる。
Therefore, when transistor 3 changes to 0FF-ON, the amount of voltage change becomes Vcc-VEE-1 (V),
This is generally a large amount of voltage change. Therefore, if the length of the cable β is long, a transient phenomenon will occur 1, for example, at terminal C.
The current flowing through changes as shown in FIG. Since the cable is generally bundled with several lines, it induces a large loss loaf with respect to other transmission lines, causing malfunction.

(D)発明の目的 本発明の目的は上記従来の欠点に鑑み、過渡現象を生じ
ないようにできる有線伝送路における電流制御回路を提
供することにある。
(D) Object of the Invention In view of the above-mentioned conventional drawbacks, an object of the present invention is to provide a current control circuit in a wired transmission line that can prevent transient phenomena from occurring.

(E)発明の構成 そしてこの発明の目的は送信側と受信側を接続するケー
ブルのスイッチングを行うトランジスタと、該トランジ
スタをケーブル起動信号が入力されている間ば導通状態
に保つスイッチング制御手段とを備えた有線伝送路にお
いて、前記スイッチング制御手段によって前記トランジ
スタが導通状態にされた時に前記ケーブルに所定値以上
の電流が流れると該トランジスタを非導通状態にする電
流制限回路を設けたことを特徴とする有線伝送路におけ
る電流制御回路を提供することによって達成される。
(E) Structure of the invention and the object of the invention is to provide a transistor for switching a cable connecting a transmitting side and a receiving side, and a switching control means for keeping the transistor in a conductive state while a cable activation signal is input. The wired transmission line is characterized by being provided with a current limiting circuit that makes the transistor non-conductive if a current of a predetermined value or more flows through the cable when the transistor is made conductive by the switching control means. This is achieved by providing a current control circuit in the wired transmission line.

(F)発明の実施例 以下1本発明の実施例を図面によって詳細に説明する。(F) Examples of the invention EMBODIMENT OF THE INVENTION Below, one embodiment of the present invention will be described in detail with reference to the drawings.

第3図は本発明の一実施例を示す回路図である。FIG. 3 is a circuit diagram showing one embodiment of the present invention.

同図において第1図と同一番号は同一部分を表わす。本
実施例では電流制限手段7として抵抗素子R,,I−ラ
ンジスタ5を追加したものである。この回路の動作を同
図に従って説明する。本実施例ではスイッチング制御手
段2としてフォトカプラ2を用いる。まずフォトカプラ
2およびトランジスタ3がONになる端子CD間が導通
し、過渡的に誘起された電圧Vcc−VEE−1により
大電流が流れるとR,の両端に電圧を生し、トランジス
タ5はONとなる。そのためフォトカプラ2から流れ出
る電流iはトランジスタ5へ流れトランジスタ3へは流
れない。すなわち、トランジスタ5により電流iがバイ
パスされて端子りへ直接流れ、トランジスタ3のベース
側へは電流は流れない。よってトランジスタ3がOFF
となり、端子CD間は非導通となり、大電流は流れない
。この場合、R4の抵抗値によってトランジスタ5のベ
ース・エミッタ間の電圧を調整できるため、任意の所定
値以上の電流が流れるとトランジスタ5をONとするこ
とができる。
In this figure, the same numbers as in FIG. 1 represent the same parts. In this embodiment, resistance elements R, , I-transistors 5 are added as current limiting means 7. The operation of this circuit will be explained with reference to the figure. In this embodiment, a photocoupler 2 is used as the switching control means 2. First, the photocoupler 2 and the transistor 3 are turned on, which makes the terminal CD conductive. When a large current flows due to the transiently induced voltage Vcc-VEE-1, a voltage is generated across R, and the transistor 5 is turned on. becomes. Therefore, the current i flowing out from the photocoupler 2 flows to the transistor 5 and does not flow to the transistor 3. That is, the current i is bypassed by the transistor 5 and flows directly to the terminal, and no current flows to the base side of the transistor 3. Therefore, transistor 3 is OFF
Therefore, there is no conduction between terminals CD, and no large current flows. In this case, since the voltage between the base and emitter of the transistor 5 can be adjusted by the resistance value of R4, the transistor 5 can be turned on when a current of an arbitrary predetermined value or more flows.

そしてトランジスタ3がOFFとなっことによってRq
には電流が流れないようになるため、再びトランジスタ
5のベース・エミッタ間電圧が0となってトランジスタ
5はOFFとなり、逆にトランジスタ3はONとなる。
Then, transistor 3 is turned off, so that Rq
Since no current flows through , the voltage between the base and emitter of transistor 5 becomes 0 again, turning transistor 5 off, and conversely transistor 3 turns on.

以上の動作を繰り返すことによって、所定値以上の大電
流を流れないようにすることができる。
By repeating the above operations, it is possible to prevent a large current exceeding a predetermined value from flowing.

他の実施例を第4図に示す。第3図と同様に第2図と同
一部分は同一番号で表わす。本実施例では電流制限手段
としてRq、フォトカプラ6を用いて、電流を制限する
ものである。この回路の動作を以下に同図に従って説明
する。
Another embodiment is shown in FIG. Similar to FIG. 3, the same parts as in FIG. 2 are represented by the same numbers. In this embodiment, Rq and a photocoupler 6 are used as current limiting means to limit the current. The operation of this circuit will be explained below with reference to the figure.

フォトカプラ2およびトランジスタ3がONとなって端
子CD間に大電流が流れる。このときRLAに流れる電
流により、フォトカプラ6がONとなりケーブル起動信
号はバイパスされてフォトカプラ6を通じて接地される
。よってフォトカプラ2へは電流Vcc7からのケーブ
ル起動信号が流れず、OFFとなり、トランジスタ3が
OFFとなるため端子CD間は非導通となり、大電流が
流れるのを防止できる。ここでRq2フォトカプラ6を
適当に選べば、任意の所定値以上の電流がRqを流れる
と端子CD間をOFFとすることができる。そしてトラ
ンジスタ3がOFFとなるとR<=には電流が流れない
ため、フォトカプラ6はOFFとなり、トランジスタ3
がONとなって端子CD間は導通状態となる。以上を繰
り返すことによって、所定値以上の大電流を流れないよ
うにすることができる。
Photocoupler 2 and transistor 3 are turned on, and a large current flows between terminals CD. At this time, the current flowing through RLA turns on the photocoupler 6 and the cable activation signal is bypassed and grounded through the photocoupler 6. Therefore, the cable activation signal from the current Vcc7 does not flow to the photocoupler 2, and the photocoupler 2 is turned OFF, and the transistor 3 is turned OFF, so that there is no conduction between the terminals CD, and a large current can be prevented from flowing. Here, if the Rq2 photocoupler 6 is appropriately selected, when a current of an arbitrary predetermined value or more flows through Rq, the terminal CD can be turned off. When transistor 3 is turned off, no current flows through R<=, so photocoupler 6 is turned off, and transistor 3
is turned on, and the terminal CD becomes conductive. By repeating the above steps, it is possible to prevent a large current exceeding a predetermined value from flowing.

(G)発明の効果 以上、詳細に説明したように2本発明によれば。(G) Effect of invention As described above in detail, there are two aspects of the present invention.

所定値以上の大電流を流そうとするとケーブル駆動用の
トランジスタがOFFとなり、ケーブルに大電流が流れ
ないため、他の伝送路に対してクロスト−りを生じるこ
とはない。
If an attempt is made to flow a large current exceeding a predetermined value, the cable driving transistor is turned off, and no large current flows through the cable, so crosstalk with other transmission paths does not occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の有線伝送路における電流制御回路の回路
図7第2図は過渡的に流れる電流を説明するための図、
第3図、第4図は本発明による電流制御回路の回路図で
ある。 図面において、1はオーブンコレクタのTTLゲー1−
.2.6はフォトカプラ、3.5はトランジスタ14は
電流検出回路、7は電流検出回路。 Rt、R2,R2,Rqは抵抗素子である。
Fig. 1 is a circuit diagram of a current control circuit in a conventional wired transmission line; Fig. 2 is a diagram for explaining transiently flowing current;
3 and 4 are circuit diagrams of the current control circuit according to the present invention. In the drawing, 1 is the TTL game 1- of the oven collector.
.. 2.6 is a photocoupler, 3.5 is a transistor 14 is a current detection circuit, and 7 is a current detection circuit. Rt, R2, R2, and Rq are resistance elements.

Claims (1)

【特許請求の範囲】 1)送信側と受信側を接続するケーブルのスイッチング
を行うトランジスタと、該トランジスタをケーブル起動
信号が入力されている間は導通状態に##千保つスイッ
チング制御手段とを備えた有線伝送路〃l;あ・()で 前記スイッチング制御手段によって前記トランジスタが
導通状態にされた時に前記ケーブルに所定値以上の電流
が流れると該トランジスタを非導通状態にする電流制限
手段を設けたことを特徴とする有線伝送路における電流
制御回路。 2)前記電流制限手段は前記トランジスタべのベース電
流をバイパスして前記トランジスタを非導通とすること
を特徴とする特許請求の範囲第1項記載の有線伝送路に
おける電流制御回路。 3)前記電流制限手段は前記スイッチング制御手段に入
力されているケーブル起動信号をバイパスして前記トラ
ンジスタを非導通とすることを特徴とする特許請求の範
囲第1項記載の有線伝送路における電流制御回路。
[Claims] 1) A transistor that switches a cable connecting a transmitting side and a receiving side, and switching control means that maintains the transistor in a conductive state while a cable activation signal is input. In the wired transmission line 〃l;A, (), when the transistor is made conductive by the switching control means, current limiting means is provided which makes the transistor non-conductive if a current of a predetermined value or more flows through the cable. A current control circuit in a wired transmission line, characterized by the following. 2) The current control circuit in a wired transmission line according to claim 1, wherein the current limiting means bypasses the base current of the transistor to make the transistor non-conductive. 3) Current control in a wired transmission line according to claim 1, wherein the current limiting means bypasses a cable activation signal input to the switching control means to make the transistor non-conductive. circuit.
JP6793883A 1983-04-18 1983-04-18 Current control circuit in wire transmission line Pending JPS59193633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6793883A JPS59193633A (en) 1983-04-18 1983-04-18 Current control circuit in wire transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6793883A JPS59193633A (en) 1983-04-18 1983-04-18 Current control circuit in wire transmission line

Publications (1)

Publication Number Publication Date
JPS59193633A true JPS59193633A (en) 1984-11-02

Family

ID=13359366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6793883A Pending JPS59193633A (en) 1983-04-18 1983-04-18 Current control circuit in wire transmission line

Country Status (1)

Country Link
JP (1) JPS59193633A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0892510A1 (en) * 1997-07-17 1999-01-20 Gec Alsthom T & D Sa Low voltage link for transmission of on/off commands

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0892510A1 (en) * 1997-07-17 1999-01-20 Gec Alsthom T & D Sa Low voltage link for transmission of on/off commands
FR2766300A1 (en) * 1997-07-17 1999-01-22 Gec Alsthom T & D Sa ALL OR NOTHING LOW VOLTAGE TRANSMISSION OF ORDERS

Similar Documents

Publication Publication Date Title
KR910018890A (en) Integrated terminal circuit and its providing method
CA1270900A (en) Constant current circuits
JPS59193633A (en) Current control circuit in wire transmission line
US4721867A (en) High speed logic gate with simulated open collector output
US4267408A (en) Arrangement for applying a signal to a transmission line
EP0092156B1 (en) An input interface circuit for a logic device
US4459493A (en) Absolute magnitude circuit
US4631362A (en) Low resistance origination scan circuit
JPH0145242B2 (en)
JP3059893B2 (en) Switch circuit
JPH026685Y2 (en)
JPS61245747A (en) Pulse transformer drive circuit for burst signal transmission
JPH0416243Y2 (en)
JPS62131628A (en) Interface circuit
JP2943166B2 (en) Phase shift circuit
JPS63308420A (en) Repeater circuit
JPS60500233A (en) telecommunications terminal
JPS6339177B2 (en)
JPS61269447A (en) Pulse transformer driving circuit for burst signal transmission
JPS60128711A (en) Transistor switching circuit
JPH05122043A (en) Input device
JPH04108243A (en) Interface automatic changeover circuit
JPS61128646A (en) Bus circuit
JPS62232217A (en) Current switching type logic circcuit
JPS5810070U (en) Test circuit for pull-up bus connection/disconnection switch