JPS59191577A - Electric resistance welding method using energy beam in combination - Google Patents

Electric resistance welding method using energy beam in combination

Info

Publication number
JPS59191577A
JPS59191577A JP58065973A JP6597383A JPS59191577A JP S59191577 A JPS59191577 A JP S59191577A JP 58065973 A JP58065973 A JP 58065973A JP 6597383 A JP6597383 A JP 6597383A JP S59191577 A JPS59191577 A JP S59191577A
Authority
JP
Japan
Prior art keywords
laser beam
welding
angle
electric resistance
energy beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58065973A
Other languages
Japanese (ja)
Inventor
Katsuhiro Minamida
勝宏 南田
Hideo Takato
高藤 英生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP58065973A priority Critical patent/JPS59191577A/en
Publication of JPS59191577A publication Critical patent/JPS59191577A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K28/00Welding or cutting not covered by any of the preceding groups, e.g. electrolytic welding
    • B23K28/02Combined welding or cutting procedures or apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To prevent generation of a cold junction, penetrator, etc. and to perform sure welding in the stage of using a high-frequency voltage and a laser beam in combination in welding wedge shaped welding surfaces by controlling the incident angle, beam diameter, diverging angle, etc. of the laser beam. CONSTITUTION:The wedge shaped ends 2 of a tubular body 1 formed by forming a steel plate into a pipe shape are heated by the current conducted to contactors 4a, 4b from a high-frequency power source 4. On the other hand, a laser beam LB is radiated from a laser oscillator to said part to heat and melt the ends thereby welding the same. When the beam LB adjusted in a beam diameter D and a diverging angle alpha by beam shape converters 6, 7 and an objective mirror 8 is projected toward the single Vee groove, the laser beam is multiple-reflected by PL1-PR1 to form a final heating zone Hz and a melt zone Mz. The projecting angle between the beam LB and the inside surface of the single V groove increases sharply when the number of reflection increases. The position of the zone Hz and the zone Mz is thus controlled by changing the angle alpha.

Description

【発明の詳細な説明】 本発明は、電気抵抗溶接法と、例えばレーザービームの
ようなエネルギービームの投射を併用することを特徴と
する複合溶接法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composite welding method characterized in that an electric resistance welding method is used in combination with the projection of an energy beam, such as a laser beam.

電気抵抗溶接法(以下ERWと略称する)は、溶接法と
して最もよく使用されている技術の−っである。例えば
、溶接鋼管の製造分野において、一般に電縫管と呼ばれ
る管を製造する方法は、溶接速度の速い、すなわち生産
性の高い溶接法として広く行なわれている。
Electric resistance welding (hereinafter abbreviated as ERW) is one of the most commonly used welding techniques. For example, in the field of manufacturing welded steel pipes, a method for manufacturing pipes generally called electric resistance welded pipes is widely used as a welding method with high welding speed, that is, with high productivity.

第1図は従来行なわれている高周波接片式電気抵抗溶接
法による造管方法を示すもので、銅帯を図示していない
成形ロール群によって管状に成形し、さらに該銅帯(以
下管状体という)■の端部2.2をスクイズロール3,
3によって突き合せ、突合せ部を頂点とするクサビ状に
形成する。さらに、スクイズロール3,3の上流に配設
した接触子4a、4bに高周波電源4がら高周波電圧を
印加し、一つの接触子4aがら他の接触子4bへの(あ
るいは接触子4bから接触子4aへの)高周波電流回路
をクサビ形状を呈する端部2,2に沿って形成させ、こ
の高周波電流によって端部2,2を加熱する。その結果
、クサビ形状の頂点において溶接温度に達し、スクイズ
ロール3により加圧溶接される。
Figure 1 shows a conventional pipe-making method using high-frequency contact type electric resistance welding, in which a copper strip is formed into a tubular shape by a group of forming rolls (not shown), and then the copper strip (hereinafter referred to as a tubular body )■ end 2.2 with squeeze roll 3,
3 to form a wedge shape with the abutted portion as the apex. Furthermore, a high frequency voltage is applied from the high frequency power supply 4 to the contacts 4a and 4b arranged upstream of the squeeze rolls 3 and 3, and one contact 4a is applied to the other contact 4b (or from the contact 4b to the contact 4b). A high frequency current circuit (to 4a) is formed along the wedge-shaped ends 2, 2, and the ends 2, 2 are heated by this high frequency current. As a result, the welding temperature is reached at the apex of the wedge shape, and pressure welding is performed by the squeeze roll 3.

ところが、このERWも溶接物が厚肉になったり、ある
いは溶接速度を高めようとした場合には、問題がある。
However, this ERW also has problems when the welded object becomes thick or when an attempt is made to increase the welding speed.

例えば厚肉になると、第2a図に示すように端部2のコ
ーナ一部2a、2bの高周波電流密度が板厚中央部2c
の高周波電流密度より高くなり、その結果、温度分布は
Ha2に示すように、板厚中央部に低温部を生じ、冷接
欠陥が発生する。また冷接をなくすために高入熱状態に
すると温度分布はHalに示すようになり、ペネトレー
ター欠陥が発生する。
For example, when the wall is thick, the high frequency current density at the corner portions 2a and 2b of the end portion 2 is lower than the center portion 2c of the thickness, as shown in Fig. 2a.
As a result, the temperature distribution produces a low temperature region in the center of the plate thickness as shown by Ha2, and cold welding defects occur. Furthermore, if a high heat input state is created to eliminate cold welding, the temperature distribution will become as shown in Hal, and a penetrator defect will occur.

本発明は、このような]Σ、RWの問題点を解決するこ
とを目的としてなされたもので: 相同い合う溶接面が漸近し、溶接点を頂点とするクサビ
形状をなす被溶接物へ電気エネルギーを供給し、発生す
るジュール熱でクサビ形状の頂点の温度を溶接温度まで
加熱し溶接する電圧抵抗溶接法において; 該クサビ形状の開放側から溶接点へ、該クサビ形状およ
び電気抵抗溶接法による加熱温度分布に応じて、入射角
ビーム径2発散角およびエネルギー出力を制御したエネ
ルギービームを投射してエネルギービームによる加熱お
よび溶融部を制御する。
The present invention was made with the aim of solving the problems of Σ and RW as described above. In the voltage resistance welding method in which energy is supplied and the generated Joule heat is used to heat the apex of the wedge shape to the welding temperature and weld; An energy beam whose incident angle, beam diameter, divergence angle, and energy output are controlled according to the heating temperature distribution is projected to control the heating and melting part by the energy beam.

以下図面を参照して本発明を実施例に基づいて詳細に説
明する。
Hereinafter, the present invention will be described in detail based on embodiments with reference to the drawings.

第3図は本発明を電縫鋼管の製造に適用しかつエネルギ
ービームとしてレーザービームを使用した場合の実施例
を示す説明図であり、1は鋼帯を管状に成形した管状体
、2はそのクサビ形端部である。4は高周波電源、4a
、4.bは接触子である。
FIG. 3 is an explanatory diagram showing an embodiment in which the present invention is applied to the manufacture of ERW steel pipes and a laser beam is used as the energy beam, in which 1 is a tubular body formed from a steel strip, and 2 is the tubular body. Wedge shaped end. 4 is a high frequency power supply, 4a
,4. b is a contact.

5はレーザー発振器、51.52はその内部に設けた共
振ミラー、6および7はビーム形状変換器、8は対物ミ
ラー、9はレーザービームLBを通過させるビームダク
ト、1oは酸化防止用ガス供給管、10aはその先端の
ノズル部である。また、2aは接触端部の上端、2bは
下端、2Cは中央部である。
5 is a laser oscillator, 51 and 52 are resonant mirrors provided therein, 6 and 7 are beam shape converters, 8 is an objective mirror, 9 is a beam duct through which the laser beam LB passes, and 1o is a gas supply pipe for preventing oxidation. , 10a is a nozzle portion at the tip thereof. Further, 2a is the upper end of the contact end, 2b is the lower end, and 2C is the center part.

本発明により溶接を行なうには、第1図の場合と同様に
、銅帯を成形用ロール(図示せず)により管状に成形し
、高周波電源4からの高周波電流を、接触子4aおよび
4bを介して管状体1のクサビ状端部2,2に流し、該
部分を加熱する。
To perform welding according to the present invention, as in the case of FIG. It flows through the wedge-shaped ends 2, 2 of the tubular body 1 and heats these parts.

一方、レーザー発振器5から、内蔵する共振ミラー51
.52により第7a図あるいは第7b図に示すような形
状に制御したレーサービームL Bを放射し、さらにビ
ーム形状変換器6および7(これはミラーおよびレンズ
によって構成されている)によってビーム径りおよび発
散角αを調整し、対物ミラー8に射入させ、該ミラー8
によって、管状体1の端部2,2を高周波電流ともども
加熱溶融することができる。
On the other hand, from the laser oscillator 5, the built-in resonant mirror 51
.. 52 emits a laser beam L B whose shape is controlled as shown in FIG. 7a or FIG. Adjust the divergence angle α, make the light incident on the objective mirror 8, and the mirror 8
By this, the ends 2, 2 of the tubular body 1 can be heated and melted together with the high frequency current.

第4図は前記クサビ状端部2,2(以下V開先という)
に対するレーザービームLB照射の詳細を示すもので、
Oは■開先の開角、δは管状体1の突合せ角である。2
a−3aは溶接線、2a−2bは溶接点である。また、
FO+F1はレーザービームLBの投入方向、γは投入
角度、αは発散角、D r 1は21点におけるレーザ
ービームの水平方向のビーム径である。また、Dr2は
22点におけるレーザービームの水平方向のビーム径、
D z 2は同じく垂直方向のビーム径である。Qは2
1点と22点との距離である。
Figure 4 shows the wedge-shaped ends 2, 2 (hereinafter referred to as V-bevel).
This shows details of laser beam LB irradiation for
O is the open angle of the groove, and δ is the butt angle of the tubular body 1. 2
a-3a is a welding line, and 2a-2b is a welding point. Also,
FO+F1 is the input direction of the laser beam LB, γ is the input angle, α is the divergence angle, and D r 1 is the horizontal beam diameter of the laser beam at 21 points. In addition, Dr2 is the beam diameter in the horizontal direction of the laser beam at 22 points,
D z 2 is also the beam diameter in the vertical direction. Q is 2
This is the distance between point 1 and point 22.

本発明は、レーザービームLBなどのエネルギービーム
の出力、ビーム径2発散角および投入角を制御すること
により、■開先形状内の接合面の加熱位置、溶融域等を
制御することが特徴であり、本発明の好ましい実施例で
は、レーザービームによって、 (1)溶接線方向における加熱部の位置と加熱分布。
The present invention is characterized by controlling the heating position, melting area, etc. of the joint surface within the groove shape by controlling the output of the energy beam such as the laser beam LB, the beam diameter, the divergence angle, and the injection angle. In a preferred embodiment of the present invention, the laser beam determines (1) the position and heating distribution of the heated part in the direction of the welding line;

(2)板厚方向における加熱部の選択と加熱分布。(2) Selection of heating area and heating distribution in the plate thickness direction.

(3)突合せ面の突合せ角δに対する外部散乱光等の制
御を行なうことによって電気抵抗溶接を確実に行なう。
(3) Electric resistance welding is reliably performed by controlling external scattered light and the like with respect to the butt angle δ of the butt surfaces.

以下具体的に説明すると、本発明は前記のように電気抵
抗溶接法に、エネルギービームたとえばレーサービーム
を併用することにより■開先内の加熱位置、溶融域等の
制御を行なうものであるが、先ず溶接線方向における制
御について説明する。
Specifically, the present invention uses an energy beam, such as a laser beam, in combination with the electric resistance welding method as described above to (1) control the heating position, melting area, etc. within the groove. First, control in the weld line direction will be explained.

第5図はその実際を示すもので、レーザー発振器5から
ビーム形状変換器6,7および対物ミラー8を径でビー
ム径り2発散角αに調整されたレーザービームLBを■
開先内に向けて投射すると、レーザービームL Bの左
右の最外端は■開先内のP L 1 +  ・・・PR
lで多重反射して進入し、その結果、最終加熱部Hzお
よび溶融部Mzが図示のように形成される。なお、ρm
は接合点から溶融点までの距離、whは加熱部の幅であ
る。
Figure 5 shows the actual situation, in which the laser beam LB is adjusted from the laser oscillator 5 to the beam shape converters 6 and 7 and the objective mirror 8 to have a beam diameter of 2 and a divergence angle of α.
When projected into the groove, the left and right outermost ends of the laser beam LB are ■P L 1 + ...PR inside the groove
As a result, a final heating zone Hz and a melting zone Mz are formed as shown in the figure. In addition, ρm
is the distance from the junction point to the melting point, and wh is the width of the heating section.

この場合レーザービームL Bと■開先の内面とでなす
投入角βは反射回数が増加するに従って急激に増大する
(βn = (2n −1−1)β0 + n:反射回
数)。
In this case, the entrance angle β between the laser beam LB and the inner surface of the groove increases rapidly as the number of reflections increases (βn = (2n -1-1) β0 + n: number of reflections).

従って発散角αを変化することにより集束点が変化する
ので、最終加熱部Hz、溶融部Mzの位置を制御するこ
とができる。
Therefore, by changing the divergence angle α, the convergence point changes, so the positions of the final heating zone Hz and the melting zone Mz can be controlled.

第6a図および第6b図は、その詳細を示すもので、■
開先の開角θが一定の場合、第6a図に示すように、発
散角αが正の場合(すなわちレーザービームがB′の場
合)、レーザービームの最終収束位置P3′は平行ビー
ム(図中Bで示す)の最終収束位置P3と比較して接合
点CPより離れる。また第6b図に示すように発散角α
が負の場合(図中B′で示す)は、レーザービームの最
終収束位置P3′は平行ビーム(図中Bで示す)のそれ
よりも接合点CPに近くなる。従って発散角αを調整す
ることによって、加熱域を制御することができる。次に
発散角αの調整方法について説明する。
Figures 6a and 6b show the details, and
When the opening angle θ of the groove is constant, as shown in FIG. It is further away from the junction point CP compared to the final convergence position P3 (indicated by B in the middle). Also, as shown in Figure 6b, the divergence angle α
When is negative (indicated by B' in the figure), the final convergence position P3' of the laser beam is closer to the junction point CP than that of the parallel beam (indicated by B in the figure). Therefore, by adjusting the divergence angle α, the heating area can be controlled. Next, a method of adjusting the divergence angle α will be explained.

第7a図および第7b図は、レーザー発振器5の内蔵共
振ミラー51.52の構成を示すもので、このミラーの
構成によってレーザービームの発散角αを制御すること
ができる。すなわち、リアミラー51を凹面に構成し、
出力窓側のミラー52を平面に構成すると、出力される
レーザービームの発散角α1は負になり(第7a図)、
逆にリアミラー51を平面に構成し、出力窓側のミラー
52を凹面に構成すると、出力されるレーザービームの
発散角α2は正になる(第7b図)。なお、同様の効果
は外部に凹凸のミラーを設けることでも達成できる。
FIGS. 7a and 7b show the configuration of built-in resonant mirrors 51 and 52 of the laser oscillator 5, and the divergence angle α of the laser beam can be controlled by the configuration of this mirror. That is, the rear mirror 51 is configured to have a concave surface,
When the mirror 52 on the output window side is configured to be flat, the divergence angle α1 of the output laser beam becomes negative (Fig. 7a),
Conversely, if the rear mirror 51 is made flat and the mirror 52 on the output window side is made concave, the divergence angle α2 of the output laser beam becomes positive (FIG. 7b). Note that the same effect can also be achieved by providing an uneven mirror on the outside.

また、第4図に示すように鋼帯1の端部2を突合せ、突
合部で真円にするためには、開口部(■開先)で突合せ
角δを生じさせることが必要である。この場合、端部に
おいてレーザービームが反射散乱し、■開先外(上方)
に逸出する可能性があるが、レーザービームの投射角γ
を調整することにより、このようなレーザービームの逸
出を防止することができる。
Further, as shown in FIG. 4, in order to abut the ends 2 of the steel strip 1 and make a perfect circle at the abutting portion, it is necessary to create an abutting angle δ at the opening (■ groove). In this case, the laser beam is reflected and scattered at the edge, and ■ outside the groove (above).
However, the projection angle γ of the laser beam
By adjusting , such escape of the laser beam can be prevented.

すなわち第8図に示すように、レーザービームを水平方
向から投入角γ1をもって上方角からV開先に投入する
と(投入方向Fl)、レーザービームは、図中A、B、
C,Dで囲まれた部分に投射し、■開先外への散乱はな
くなる。なお、この投入角の調整は対物ミラー8の角度
を変えることにより行なうことができる。
That is, as shown in FIG. 8, when a laser beam is introduced into the V groove from the upper angle at an injection angle γ1 from the horizontal direction (injection direction Fl), the laser beam will be applied at A, B,
It is projected onto the area surrounded by C and D, and scattering outside the groove is eliminated. Incidentally, this injection angle can be adjusted by changing the angle of the objective mirror 8.

また本発明においては、第3図に示すように酸化防止用
ガス供給管10から酸化防止用ガスを給電点以後の加熱
部全般にわたって吹付け、酸化を防止し、これによって
酸化膜によるレーザービームの鋼板面における反射特性
を劣化させずビーム制御の安定化を図ることができる。
Further, in the present invention, as shown in FIG. 3, an anti-oxidant gas is sprayed from an anti-oxidant gas supply pipe 10 over the entire heating section after the power supply point to prevent oxidation, thereby preventing the laser beam from being caused by the oxide film. Beam control can be stabilized without deteriorating the reflection characteristics on the steel plate surface.

次に本発明の実施結果を示すと、V開先の開角θ=3°
、突合せ角δ=0°とし、レーザービームのビーム径り
=3mm、ビーム発散角αを−1,5°、0°、+1.
5°に制御したときの加熱点および加熱域を測定したと
ころ、第9図に示す結果を得た。この結果から明らかな
ように、発散角αを大きくするに従ってビームの焦点(
加熱点)が開口側に移動し、それに伴って加熱域whは
拡大する。
Next, to show the results of implementing the present invention, the opening angle θ of the V groove is 3°.
, butt angle δ = 0°, beam radius of laser beam = 3 mm, beam divergence angle α -1, 5°, 0°, +1.
When the heating point and heating area were measured when the temperature was controlled at 5°, the results shown in FIG. 9 were obtained. As is clear from this result, as the divergence angle α increases, the focus of the beam (
The heating point) moves toward the opening side, and the heating area wh expands accordingly.

以上説明したように、本発明によれば、電気4Jヌ抗溶
接法において、例えばレーザービームのようなエネルギ
ービームをイノ1用し、しかも該エネルギービームを制
御することにより、冷接、ペネトレーター等の発生を防
止し、確実な溶接を行なうことができる。また上記の説
明はエネルギービームとしてレーザービームを使用した
場合について説明したが、エネルギービームとして、電
子ビームその他のものも使用できることは言うまでもな
い。
As explained above, according to the present invention, an energy beam such as a laser beam is used in the electric 4J welding method, and by controlling the energy beam, cold welding, penetrator, etc. It is possible to prevent this from occurring and perform reliable welding. Furthermore, although the above description has been made regarding the case where a laser beam is used as the energy beam, it goes without saying that electron beams or other beams can also be used as the energy beam.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来一般に行なわれている高周波接触式電気抵
抗溶接法による造管工程の概要を示す斜視図、第2a図
および第2b図は前記従来法による管体の端部の温度鈴
布を示す説明図、第3図は本発明方法を一態様で実施す
る装置構成概略を示すブロック図、第4図は、本発明の
一実施態様でのエネルギービーム照射態様を示す斜視図
、第5図は本発明の実施における溶融部と加熱部の関係
を示す断面図、第6a図および第6b図はエネルギービ
ームの最終収束位置を示す説明図、第7a図および第7
b図はエネルギービームの形状制御の態様を示す説明図
、第8図はエネルギービームの投射角の制御による加熱
域の状態を示す説明図、第9図は本発明の一実施例での
加熱部および溶融部の分布を示すグラフである。 1:管状体       2:端部 3ニスクイズロール 4a、4b :接触子5:レーザ
ー発振器 51,52 :共振ミラー6.7:ビーム形
状変換器 8:対物ミラー9:ビームダクト    L
B:レーザニビーム10:ガス供給管    10a:
ノズル部追6a”図 鍋7日司 槽6bワ ン 斃7b回 手続補正書(方式) 特許庁長官 若杉 和犬 殿 1、事件の表示 昭和58年特許願第065973号2
、発明の名称   エネルギービーム併用電気抵抗溶接
法3、補正をする者 事件との関係   特許出願人 住所    東京都千代田区大手町二丁目6番3号名称
    (665)新日本製鐵株式合札代表者 武 1
) 豊 4、代理人  〒103  電話 03−864−60
52住 所  東京都中央区東日本橋2丁目27番6号
5、補正命令の日付 7、補正の内容 (1)明細書第6頁第7行の、「・・・どの距離である
。」の次に、次の文章を挿入する。 「このレーザービーム照射による温度分布は、第2b図
にHbで示すように、端部2の板厚中央部に高温部を生
じ、高周波電流による板厚中央部の低温(第2a図)を
補償し、高周波電流による加熱と伴って第2C図のHe
に示すように、全体として均一な温度分布とする。」 (2)明細書第11頁第6行および第7行の文章を次の
通りに訂正する。 「親図、第2a図は前記従来法による管体の端部の温度
分布を示す説明図、第2b図は本発明の一実施例におけ
るレーザービームのみによる管体の端部の温度分布を示
す説明図、第2C図は本発明の一実施例におけるレーザ
ービームと高周波電流による管体の端部の温度分布を閉
す説明図、第3図は」 以上
Fig. 1 is a perspective view showing an outline of the pipe manufacturing process using the conventional high-frequency contact electric resistance welding method, and Figs. 2a and 2b show temperature fluctuations at the end of the pipe body using the conventional method. FIG. 3 is a block diagram schematically showing the configuration of an apparatus for implementing the method of the present invention in one embodiment, FIG. 4 is a perspective view showing an energy beam irradiation mode in one embodiment of the present invention, and FIG. 5 6A and 6B are explanatory diagrams showing the final convergence position of the energy beam, and FIGS. 7A and 7
Figure b is an explanatory diagram showing the mode of controlling the shape of the energy beam, Figure 8 is an explanatory diagram showing the state of the heating area by controlling the projection angle of the energy beam, and Figure 9 is an explanatory diagram showing the state of the heating area by controlling the projection angle of the energy beam. and a graph showing the distribution of melted parts. 1: Tubular body 2: End portion 3 squeeze roll 4a, 4b: Contact 5: Laser oscillator 51, 52: Resonance mirror 6.7: Beam shape converter 8: Objective mirror 9: Beam duct L
B: Laser double beam 10: Gas supply pipe 10a:
Nozzle part addition 6a" Diagram pot 7th tank 6b One death 7b Proceedings amendment (method) Commissioner of the Patent Office Wakasugi Wainu 1, Indication of case 1981 Patent Application No. 065973 2
, Title of the invention Electric resistance welding method in combination with energy beam 3, Relationship to the case of the person making the amendment Patent applicant address 2-6-3 Otemachi, Chiyoda-ku, Tokyo Name (665) Representative of the Nippon Steel stock bid Takeshi 1
) Yutaka 4, Agent 103 Phone: 03-864-60
52 Address: 2-27-6-5 Higashi Nihonbashi, Chuo-ku, Tokyo Date of amendment order 7 Contents of amendment (1) "What distance is..." on page 6, line 7 of the specification. Then insert the following sentence: ``The temperature distribution caused by this laser beam irradiation produces a high temperature area at the center of the plate thickness at the end 2, as shown by Hb in Figure 2b, and compensates for the low temperature at the center of the plate thickness due to the high frequency current (Figure 2a). However, due to heating by high-frequency current, He as shown in Fig. 2C
As shown in , the temperature distribution is uniform throughout. (2) The sentences in lines 6 and 7 of page 11 of the specification are corrected as follows. The parent diagram, Figure 2a, is an explanatory diagram showing the temperature distribution at the end of the tube according to the conventional method, and Figure 2b shows the temperature distribution at the end of the tube only by the laser beam in one embodiment of the present invention. An explanatory diagram, Figure 2C is an explanatory diagram of closing the temperature distribution at the end of the tube body by a laser beam and high-frequency current in one embodiment of the present invention, and Figure 3 is an explanatory diagram of closing the temperature distribution at the end of the tube body by a laser beam and high-frequency current in one embodiment of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)相向い合う溶接面が漸近し溶接点を頂点とするク
サビ形状をなす被溶接物へ電気エネルギーを供給し、発
生するジュール熱でクサビ形状の頂点の温度を溶接温度
まで加熱し溶接する電気抵抗溶接法において; 該クサビ形状の開放側から溶接点へ、該クサビ形状およ
び電気抵抗溶接法による加熱温度分布に応じて、入射角
、ビーム径2発散角およびエネルギー出力を制御したエ
ネルギービームを投射し、エネルギービームによる加熱
および溶融部を制御することを特徴とするエネルギービ
ーム併用電気抵抗溶接法。
(1) Electrical energy is supplied to the welded workpiece, which has a wedge shape with opposing welding surfaces asymptotic and the welding point as the apex, and the Joule heat generated heats the apex of the wedge shape to the welding temperature and welds. In the electric resistance welding method: An energy beam is sent from the open side of the wedge shape to the welding point, with the incident angle, beam diameter, divergence angle, and energy output controlled according to the wedge shape and the heating temperature distribution due to the electric resistance welding method. An electric resistance welding method using an energy beam, which is characterized by controlling heating and melting by an energy beam.
(2)加熱面に不活性ガスを、吹きつけ、加熱面におけ
る酸化膜の発生を防止し、表面反射特性登保持する前記
特許請求の範囲第(1)項記載のエネルギービーム併用
電気抵抗溶接法。
(2) The energy beam combined electric resistance welding method according to claim (1), which blows an inert gas onto the heated surface to prevent the formation of an oxide film on the heated surface and maintain the surface reflection characteristics. .
JP58065973A 1983-04-14 1983-04-14 Electric resistance welding method using energy beam in combination Pending JPS59191577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58065973A JPS59191577A (en) 1983-04-14 1983-04-14 Electric resistance welding method using energy beam in combination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58065973A JPS59191577A (en) 1983-04-14 1983-04-14 Electric resistance welding method using energy beam in combination

Publications (1)

Publication Number Publication Date
JPS59191577A true JPS59191577A (en) 1984-10-30

Family

ID=13302446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58065973A Pending JPS59191577A (en) 1983-04-14 1983-04-14 Electric resistance welding method using energy beam in combination

Country Status (1)

Country Link
JP (1) JPS59191577A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2575686A1 (en) * 1985-01-10 1986-07-11 Nippon Steel Corp HIGH FREQUENCY WELDING METHOD USING ELECTRIC RESISTANCE USING LASER BEAM EXPOSURE
JPS61162280A (en) * 1985-01-10 1986-07-22 Nippon Steel Corp Electric resistance welding method making combination use of energy beam
JPS61162281A (en) * 1985-01-10 1986-07-22 Nippon Steel Corp Electric resistance welding method making combination use of energy beam
JPS61182887A (en) * 1985-02-12 1986-08-15 Nippon Steel Corp High frequency electric resistance welding method using together laser beam
US5140123A (en) * 1990-05-25 1992-08-18 Kusakabe Electric & Machinery Co., Ltd. Continuous manufacturing method for a metal welded tube and a manufacturing apparatus therefor
WO2001007194A1 (en) * 1999-07-23 2001-02-01 Linde Aktiengesellschaft Method and device for welding with compensation for welding shrinkage
US7592566B2 (en) * 2001-12-28 2009-09-22 Abb S.P.A. Method for welding contact plates and contact elements obtained with the method
JP2016517752A (en) * 2013-05-03 2016-06-20 アルフレッド イー. マン ファウンデーション フォー サイエンティフィック リサーチ High reliability wire welding for embedded devices

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100982A (en) * 1981-12-09 1983-06-15 Nippon Steel Corp Electric resistance welding using energy beam in combination

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100982A (en) * 1981-12-09 1983-06-15 Nippon Steel Corp Electric resistance welding using energy beam in combination

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2575686A1 (en) * 1985-01-10 1986-07-11 Nippon Steel Corp HIGH FREQUENCY WELDING METHOD USING ELECTRIC RESISTANCE USING LASER BEAM EXPOSURE
JPS61162280A (en) * 1985-01-10 1986-07-22 Nippon Steel Corp Electric resistance welding method making combination use of energy beam
JPS61162281A (en) * 1985-01-10 1986-07-22 Nippon Steel Corp Electric resistance welding method making combination use of energy beam
JPH0371948B2 (en) * 1985-01-10 1991-11-15 Nippon Steel Corp
JPS61182887A (en) * 1985-02-12 1986-08-15 Nippon Steel Corp High frequency electric resistance welding method using together laser beam
JPH0418952B2 (en) * 1985-02-12 1992-03-30 Nippon Steel Corp
US5140123A (en) * 1990-05-25 1992-08-18 Kusakabe Electric & Machinery Co., Ltd. Continuous manufacturing method for a metal welded tube and a manufacturing apparatus therefor
WO2001007194A1 (en) * 1999-07-23 2001-02-01 Linde Aktiengesellschaft Method and device for welding with compensation for welding shrinkage
US7592566B2 (en) * 2001-12-28 2009-09-22 Abb S.P.A. Method for welding contact plates and contact elements obtained with the method
JP2016517752A (en) * 2013-05-03 2016-06-20 アルフレッド イー. マン ファウンデーション フォー サイエンティフィック リサーチ High reliability wire welding for embedded devices

Similar Documents

Publication Publication Date Title
KR960037157A (en) Method of manufacturing steel pipe by using high-density energy beam
JP3762676B2 (en) Work welding method
US6087619A (en) Dual intensity multi-beam welding system
JP7362915B2 (en) Laser welding method for corner joints on workpiece parts
JPS6332554B2 (en)
JPS59191577A (en) Electric resistance welding method using energy beam in combination
JPH0890265A (en) Tube manufacturing method by laser beam welding
JP2005279744A (en) Butt welding method of different kind of material using high energy beam
JPS58100982A (en) Electric resistance welding using energy beam in combination
JPH0199789A (en) Manufacture of welded pipe
JPH10225782A (en) Combined welding method by laser and arc
JPH09216078A (en) Method and equipment for laser beam welding
JPH07323386A (en) Laser welding method
JPS59101293A (en) Production of welded pipe
JPS6284889A (en) Method and device for laser welding
JPS60216986A (en) Welding method of thin steel sheets by laser beam
JPS5942196A (en) Welding method with high energy density
JP2861528B2 (en) Laser welding method for steel sheet for press forming
WO1995029034A1 (en) Method for welding automatic pipe forming machine
JPS60221185A (en) Welding method of thin steel sheet by laser beam
JPS60127088A (en) Welding method of thin steel sheet by laser
JPS60127089A (en) Welding method of thin steel sheets by laser
JPH0753317B2 (en) Heat input control method for high frequency electric resistance welding combined with laser beam
JPS5930493A (en) Production of welded pipe
JPH0771757B2 (en) Method and apparatus for manufacturing ultra-thin metal pipe using modulated output YAG laser