JPS59190313A - Manufacture of steel material having superior weldability - Google Patents

Manufacture of steel material having superior weldability

Info

Publication number
JPS59190313A
JPS59190313A JP6268783A JP6268783A JPS59190313A JP S59190313 A JPS59190313 A JP S59190313A JP 6268783 A JP6268783 A JP 6268783A JP 6268783 A JP6268783 A JP 6268783A JP S59190313 A JPS59190313 A JP S59190313A
Authority
JP
Japan
Prior art keywords
steel
alloy
molten steel
steel material
deoxidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6268783A
Other languages
Japanese (ja)
Inventor
Hiroyuki Honma
弘之 本間
Shigeru Okita
茂 大北
Naomichi Mori
直道 森
Koichi Yamamoto
広一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6268783A priority Critical patent/JPS59190313A/en
Publication of JPS59190313A publication Critical patent/JPS59190313A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To manufacture a steel material having superior weldability by deoxidizing molten steel with Ti or a Ti alloy. CONSTITUTION:Molten steel predeoxidized with one or more among Si, Mn and Al as reuired is deoxidized with Ti or a Ti alloy, and one or more among Al, Ca, Mg, Zr and a rare earth element are added to the deoxidized molten steel as required. A steel material having superior weldability, especially a steel material having superior toughness at its weld heat-affected zone can be manufactured.

Description

【発明の詳細な説明】 本発明は溶接性の優れた鋼材の製造法に係)、特に溶接
熱影響部の靭性の優れた鋼材の製造法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a steel material with excellent weldability, and particularly to a method of manufacturing a steel material with excellent toughness in a weld heat affected zone.

近年、溶接用鋼神の材質特性に対する要求は厳しくなっ
ており、とくに溶接部の低温靭性を向上することが望ま
れている。一般に鋼材を溶接すると、溶接部のうち母材
と溶接金属の境界部(以後溶接ボンド部と称する)と溶
接ボンド部近傍の溶接熱影響部(以後HAZと称する)
の靭性が最も低下するのが普通であや、その原因は主と
してオーステナイト結晶粒の粗大化にあるとされている
In recent years, requirements for the material properties of steel sheets for welding have become stricter, and in particular, it is desired to improve the low-temperature toughness of welded parts. Generally, when steel materials are welded, the boundary between the base metal and the weld metal (hereinafter referred to as the weld bond) and the weld heat affected zone (hereinafter referred to as HAZ) near the weld bond are formed in the weld.
Normally, the toughness of steel deteriorates the most, and the cause of this is said to be mainly due to coarsening of austenite crystal grains.

そこで従来、溶接がンド部と)IAZの靭性向上対策と
してこれら部分の組織を微細化する方法が提案されてい
る。
Therefore, as a measure to improve the toughness of the weld joint (IAZ), methods have been proposed to refine the structure of these parts.

その一つとして、TiN ’p ZrN等の微細窒化物
を析出させてオーステナイト粒の粗大化を防止する方法
がとられているが、これら析出物を有効活用するために
は、製鋼もしくは圧延工程を厳密に制御して鋼中に縦折
出物を均一、微細に分散させる必要があった。さらに折
角このように分散させても溶接時、特に大入熱溶接時に
析出物が溶解もしぐは粗大化してしまい、溶接ボンド部
、HAZにおいて所期の効果が得られないという問題が
あった。
One method is to precipitate fine nitrides such as TiN'p ZrN to prevent coarsening of austenite grains, but in order to effectively utilize these precipitates, it is necessary to change the steelmaking or rolling process. It was necessary to strictly control the vertical precipitates to be uniformly and finely dispersed in the steel. Furthermore, even if dispersed in this way, the precipitates will dissolve or even become coarse during welding, especially during high heat input welding, and there is a problem that the desired effect cannot be obtained at the weld bond area and HAZ.

また上記TiNの析出に加え、希土類元素(La。In addition to the precipitation of TiN, rare earth elements (La.

Ce ) 、 Caを添加して微細酸化物もしくは硫化
物を形成させ、γ粒の微細化をはかるとともに、酸化物
もしくは硫化物の周囲にフェライトを核生成させ、フェ
ライトを微細化する方法も提案されている。しかしTi
Nが上述の如く溶接熱サイクル時に溶解してγ粒狙犬化
防止の効力を失なう一方、十分:/i:債の微細酸化物
を存在させることが困難なため、溶接ボンド部が脆化す
る問題を完全に解決するにはいたっていない。
A method has also been proposed in which γ grains are refined by adding Ce) and Ca to form fine oxides or sulfides, and ferrite is nucleated around the oxides or sulfides to refine the ferrite. ing. However, Ti
As mentioned above, N dissolves during the welding heat cycle and loses its effectiveness in preventing γ-grain formation, while the weld bond becomes brittle because it is difficult to have sufficient oxides present. It has not yet been possible to completely solve the growing problem.

一般に酸化物をフェライト組織の微細化に利用すること
は、酸化物が窒化物に比較して熱的に安定なので、溶接
部の材質向上に対し原理的に優れているが、必要とする
酸化物を微細分散させる経済的手段が得られていないの
が現状である。
In general, the use of oxides to refine the ferrite structure is superior in principle to improving the material quality of welds because oxides are thermally stable compared to nitrides, but Currently, there is no economical means to finely disperse the particles.

すなわち従来、例えばTi + Zr + Ca 、 
Mgの如き酸系と親和力の強い元素を鋼に添加する場合
には、まずAIを溶鋼に添加して十分に脱酸を行った後
、これらの元素を添加するのが歩留向上上必要とされて
きた。すなわち従来法においては溶鋼の酸素ブテンシア
ルを十分に低下せしめることによシこれら元素の酸化消
耗を防止しつつ、窒化物(TIN 、 ZrN )もし
くは硫化物(CaS 、 Mgs )の生成を促して、
NもしくはSの固定をはかるのが目的であるから、当然
の帰着とはいえ鋼中に残留する酸化物はh1203. 
MnOr 5i02などが主体であった。
That is, conventionally, for example, Ti + Zr + Ca,
When adding elements that have a strong affinity for acid systems, such as Mg, to steel, it is necessary to first add AI to molten steel to sufficiently deoxidize it, and then add these elements to improve yield. It has been. In other words, in the conventional method, the oxygen butential content of molten steel is sufficiently reduced to prevent oxidative consumption of these elements while promoting the formation of nitrides (TIN, ZrN) or sulfides (CaS, Mgs).
Since the purpose is to fix N or S, it is natural that the oxides remaining in the steel are h1203.
The main products were MnOr 5i02.

そこでこれに対し本発明者らは鋼中に酸化物を微細分散
させて、溶接ボンド部、H’AZの靭性を改善する方法
を鋭意検討し溶鋼をT1もしくはT1合金で脱酸すれば
、溶接ボンド部、ならびにHAZの靭性が大幅に向上す
ることを見出した。
In response to this, the present inventors have intensively investigated a method of finely dispersing oxides in steel to improve the toughness of the weld bond and H'AZ.If molten steel is deoxidized with T1 or T1 alloy, welding It has been found that the toughness of the bond part and HAZ is significantly improved.

即ち、本発明者らは、微細酸化物による溶接部の材質向
上を目的として種々の元素で溶鋼を脱酸し、その脱酸生
成物を含む鋼塊を圧延、熱処理し、得られた鋼板を溶接
し、溶接部のシャルピー@撃特性と、ミクロ組織を詳細
に検討した。第1表は鋼塊への元素添加順序と、得られ
た鋼材の化学成分を示す。0.08 C−1,4Mnの
基本成分からなる鋼をあらかじめ大気中にて溶製後、表
中aは脱酸剤を何ら添加せぬもの、bは従来通!1lA
l添加を行ったもの、CはTi添加のみを行ったもの、
dはAI添加後フェロTiを添加したもの、eは7工ロ
T1添加後Mを、fはTi添加後AlとSi−’Ca合
金を同時にそれぞれ添加したものである。g、hは7エ
ロTi添加後、それぞれフェロZr 、ミツシーメタル
を添加したものである。同表は参考のため第1図の合金
を添加した後の酸素量も示す。これら合金元素を添加後
溶鋼をすみやかに鋳型に注入して得た鋼塊を1200℃
にて1時間加熱後、900℃の仕上温度で板厚12.5
mに圧延し、さらに900 ’Cにて25分加熱するノ
ルマ処理を行った。溶接は溶接電流120OA、アーク
電圧33V、速度40−mi nによλ)入熱59.4
 kJ/11nの1パス溶接を行ない、第1図に示す如
く、裏当材6を用いて鋼材5,5′を溶接して溶接金属
1を形成せしめたのち、切欠位置4を溶接ボンド部7か
らHAZ 2側へlff1m入った所としてシャルピー
衝撃試験片3を採取し、−30℃にて試験を行った。そ
の結果もあわせ、第1表の最古aK示す。同表から明ら
か次如く、aの強脱酸剤を少しも添加しない調料は、−
30℃でのシャルピー衝撃値が極端に低くなっている。
That is, the present inventors deoxidized molten steel with various elements for the purpose of improving the material quality of the welded part with fine oxides, rolled and heat-treated a steel ingot containing the deoxidized products, and processed the obtained steel plate. Welded parts were welded, and the Charpy @ impact characteristics and microstructure of the welded parts were examined in detail. Table 1 shows the order of addition of elements to the steel ingot and the chemical composition of the obtained steel material. After melting steel consisting of the basic component of 0.08 C-1,4Mn in the atmosphere, a in the table shows the steel without adding any deoxidizing agent, and b shows the conventional steel! 1lA
For C, only Ti was added.
d is the one in which ferro-Ti was added after the addition of AI, e is the one in which M was added after seven steps of T1 was added, and f is the one in which Al and Si-'Ca alloy were added at the same time after the addition of Ti. g and h are those obtained by adding Ferro Zr and Mitsushi Metal, respectively, after adding 7Ero Ti. The same table also shows the amount of oxygen after adding the alloy shown in Figure 1 for reference. After adding these alloying elements, the molten steel is immediately poured into a mold and the obtained steel ingot is heated to 1200℃.
After heating for 1 hour at a finishing temperature of 900℃, the plate thickness was 12.5
The sample was rolled to a diameter of 1.5 m, and then subjected to a norm treatment of heating at 900'C for 25 minutes. Welding was performed using a welding current of 120 OA, an arc voltage of 33 V, and a speed of 40 min. λ) Heat input: 59.4
One-pass welding is performed at kJ/11n, and as shown in FIG. A Charpy impact test piece 3 was taken at a point where lff1m was entered from the HAZ 2 side to the HAZ 2 side, and the test was conducted at -30°C. The results are also shown in Table 1 for the oldest aK. As is clear from the same table, the preparation that does not contain any strong deoxidizer (a) is -
The Charpy impact value at 30°C is extremely low.

次にAIを単独添加したblおよびAlを先行添加した
dにおいては第1表に示すように、AI添加後の溶鋼の
酸素量は0.0O05%以下となっている一方、シャル
ピー衝撃値の平均値は比較的良好な値を示すものの、そ
の最低値がいずれも2kg6mを下まわっておシ、バラ
ツキが大きいことがわかる。一方TiもしくはフェロT
iを単独、もしくは先行添加した(! + e * f
 r g + hにおいては、Ti源を添加した後の溶
鋼の酸素量は0.0015チ以上でかつ衝撃値の平均値
、最低値とも極めて高位に安定しておシ、従来のM単独
もしくは先行添加材に比べ靭性が格段に優れていること
が明らかとなった。
Next, as shown in Table 1, in bl where AI was added alone and d where Al was added in advance, the oxygen content of the molten steel after AI addition was 0.0005% or less, while the average Charpy impact value Although the values are relatively good, the lowest values are all below 2 kg and 6 m, and it can be seen that there is a large variation. On the other hand, Ti or Ferro T
i was added alone or in advance (! + e * f
In r g + h, the oxygen content of the molten steel after adding the Ti source is 0.0015 Ti or more, and both the average value and the minimum value of the impact value are stable at extremely high levels, compared to conventional M alone or preceding. It became clear that the toughness was significantly superior to that of additive materials.

さらにこれら鋼のHAZのミクロ組織を詳細に観察し、
X線マイクロアナライザーの分析を行った所、鋼e p
 e p f h g r hにおいて含Tip化物か
ら微細フェライトが多数核生成していることが見出され
た。ところが、鋼aにおいてはMnとFe 。
Furthermore, we observed the HAZ microstructure of these steels in detail,
When analyzed using an X-ray microanalyzer, steel e p
It was found that a large number of fine ferrites were nucleated from the tip-containing material in e p f h g r h. However, in steel a, Mn and Fe.

bとdにおいてはA7を主体とする微細酸化物は存在す
るものの、それらがフェライトの核生成を促す明4象は
ほとんど認められなかった。またこれらの検討結果に基
づき、0.07 C−1,3Mnからなる溶鋼にCa 
r Mg r Zr 、 La r Ce r Y +
をそれぞれ単独添加して脱酸生成物とフェライト核生成
の関係を検討したが、優先的なフェライト核生成効果は
認められず、また低温靭性の向上も得られなかった。
In cases b and d, although there were fine oxides mainly composed of A7, there was hardly any evidence that they promoted nucleation of ferrite. In addition, based on these study results, Ca
r Mg r Zr, La r Cer Y +
The relationship between deoxidation products and ferrite nucleation was investigated by adding each of these separately, but no preferential ferrite nucleation effect was observed, and no improvement in low-temperature toughness was obtained.

なお第1表中鋼a+ b + d + g r hにお
いてフェライトの核生成が認められなかった理由は、a
は実質的にMn脱酸鋼となったため、λ4nO、FeO
系主鉢主体化物が生成し、bはAl2O3系主体の酸化
物が生成し、dFi、T1よシ脱酸力の強いA7を先に
添加したためM2O3系主体の酸化物が生成し、含Ti
酸化物の生成がないか、もしくけ量的に極めて少量であ
ったためである。
The reason why nucleation of ferrite was not observed in steel a + b + d + g r h in Table 1 is because a
is essentially Mn-deoxidized steel, so λ4nO, FeO
In b, an oxide mainly based on Al2O3 was formed, and because dFi and A7, which has a stronger deoxidizing power than T1, was added first, an oxide mainly based on M2O3 was formed,
This is because oxides were not produced or were produced in extremely small quantities.

本発明は以上の知見に基づいてなされたもの1゛あって
、その要旨とする所は、下記のとおシである。
The present invention has been made based on the above findings, and its gist is as follows.

(1)溶鋼をTiあるいはTi合金で脱酸することを特
徴とする溶接性の優れた釘材の製造法。
(1) A method for producing a nail material with excellent weldability, characterized by deoxidizing molten steel with Ti or a Ti alloy.

(2)溶鍋をTiあるいはTi合金で脱酸し、次いでk
L、 Ca * Mg r Zr +希土類元素の1程
もしくは2F?以上を添加することを特徴とする溶接性
の優れfC銅材の仄」進法。
(2) Deoxidize the molten pot with Ti or Ti alloy, then k
L, Ca * Mg r Zr + about 1 or 2F of rare earth elements? A method for making fC copper material with excellent weldability, which is characterized by the addition of the above.

(3)St、八+In 、 Atの1秤もしくは2種以
上で予備脱酸した溶鋼をT1あるいはTi合金で脱酸す
ることを特徴とする溶接性の優れた銀材の製造法。
(3) A method for producing a silver material with excellent weldability, which comprises deoxidizing molten steel, which has been pre-deoxidized with one or more of St, 8+In, and At, with a T1 or Ti alloy.

(4)  St 、 Il#n 、 AAの1種もしく
は2種以上で予備脱酸した溶鋼をTiあるいはTi合金
で脱酸し、次いでAtr Ca a Mg r Zr 
+希土類元素の1秤もしくFi2種以上を添加すること
を%黴とする溶接性の優れた鋼材の製造法。
(4) Molten steel pre-deoxidized with one or more of St, Il#n, and AA is deoxidized with Ti or a Ti alloy, and then Atr Ca Mg r Zr
+ A method for manufacturing steel materials with excellent weldability in which one or more rare earth elements or two or more types of Fi are added.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

先ず本発明において溶鋼とは、基本成分としてC:0.
01〜0.23係、Si:0.01〜0.5係。
First of all, in the present invention, molten steel has C:0.
01-0.23 ratio, Si: 0.01-0.5 ratio.

Mn : 0.5〜3.0% 、 P : (1,03
%以下、 S : O,O’3    ’係以下のもの
を指し、又これにさらにNl:5%以下、 Cr : 
1 %以下、Mo:0.5%以下、 Nb :0−15
係以下、V:0.15%以下、Cu:2%以下、B:0
.003%以下表どの1種又i!:2 fi9以上を含
有することもできる。
Mn: 0.5-3.0%, P: (1,03
% or less, S: refers to O, O'3' or less, and in addition to this, Nl: 5% or less, Cr:
1% or less, Mo: 0.5% or less, Nb: 0-15
V: 0.15% or less, Cu: 2% or less, B: 0
.. 003% or less table which one type or i! :2 fi9 or more can also be contained.

次に本発明において、かかる溶鋼をIlNあるいはTi
合金で脱酸するのは、先にも述べた如く、これによって
γ→α変態時のフェライト核生成、即ちフェライト組織
の微細化に利用可能の含Ti酸化物を均一に9細分散さ
せることが出来るという知見に基づくものである。この
場合、溶鋼の酸素レベルとしては、n、ooo5〜o、
os%程度の範囲に−おいてTi脱酸の効果を有効に発
揮する含Ti57p化物を九゛も好ましい状態に微細分
散させるだめの酸素レベルは、0.0010〜0.02
0係の範囲である。なおTi酸化物の含有量は、Tiが
・に換算して鋼中にo、ooi〜0.05%存在すれば
十分匁効果が得られる。
Next, in the present invention, such molten steel is
As mentioned earlier, deoxidizing with an alloy allows the Ti-containing oxide, which can be used for ferrite nucleation during γ→α transformation, that is, for refining the ferrite structure, to be uniformly dispersed. This is based on the knowledge that it is possible. In this case, the oxygen level of the molten steel is n, ooo5~o,
The oxygen level necessary to finely disperse the Ti-containing 57p compound, which effectively exhibits the effect of Ti deoxidation in the range of approximately 0.005 to 0.02 os%, is 0.0010 to 0.02.
It is in the range of 0. As for the content of Ti oxide, if Ti is present in the steel in an amount of o, ooi to 0.05%, a sufficient momme effect can be obtained.

また本発明に云うTi合金とはスポンジTi + Ti
)ぐウダー、Tiブロックの他各秒フェロTi + T
i−Ni合金、 Ti−Mn合金、’rt−ht合金等
を指すものであり、目的に応じて適宜これを糾合せて使
用することもできる。
Furthermore, the Ti alloy referred to in the present invention is sponge Ti + Ti
) Guuda, Ti block and other ferro Ti + T
It refers to i-Ni alloy, Ti-Mn alloy, 'rt-ht alloy, etc., and it is also possible to use a combination of these as appropriate depending on the purpose.

まだ本発明においては、上記の如く、T1あるいはTi
合金により溶鋼を脱酸したのち、これにさらに母材、H
AZの強度、靭性、耐食性などをよp向上せしめる目的
でAtr Ca * Mg + Zr r希土類元素の
1秤もしくは2種以上を添加することができる。これら
の成分の添加量は、鉛中含有量でAt:0.09%以下
、Ca:0.01q6JR下、Mg:0.01係以下、
Zr:0.04係以下、希土類元素0,01係以下が適
当であり目的に応、じて1掠もしくは2種以上を適宜糾
合せて用いることができる。なお本発明において希土類
元素とは、原子番号57番La〜71 番Luのランタ
ノイド系、及びYを指すものである。
In the present invention, as mentioned above, T1 or Ti
After deoxidizing the molten steel with the alloy, base metal and H
For the purpose of further improving the strength, toughness, corrosion resistance, etc. of AZ, one or more rare earth elements such as AtrCa*Mg+Zrr can be added. The amounts of these components added are as follows: At content in lead: 0.09% or less, Ca: 0.01q6JR or less, Mg: 0.01% or less,
Zr: 0.04 or less and rare earth elements 0.01 or less are suitable, and depending on the purpose, one type or two or more types can be used in combination as appropriate. In the present invention, the rare earth elements refer to lanthanoids with atomic numbers La to No. 71 and Y.

さらに本発明においては、TiあるいはTi合金による
脱酸を行う溶鋼を、あらかじめSt+Mn*Atの1捗
もしくは2種以上により予備脱酸してもよい。
Furthermore, in the present invention, molten steel to be deoxidized with Ti or Ti alloy may be pre-deoxidized with one or more of St+Mn*At.

予備脱酸の目的の1つは溶鋼の酸素レベルを前述の含T
i酸化物を微細分散させるに適した酸素レベル0.00
10〜0.020%に訓整することであシ、さらにTi
源の歩留向上にも役立つ。
One of the purposes of preliminary deoxidation is to reduce the oxygen level of molten steel to the above-mentioned T content.
Oxygen level 0.00 suitable for fine dispersion of i-oxides
By training the Ti to 10% to 0.020%,
It also helps improve the yield of raw materials.

なお、本発明によって得られる鋼材は通常の圧延′?f
、まのもの、制御圧延をしだもの、さらにこれらに伺制
御冷却を組合せたもの、焼入れ、焼戻しまたは規準およ
び両者を組合せた熱処理を施しだものであってもTj脱
酸法の効果は何らの影響も受けることが力い。
It should be noted that the steel material obtained by the present invention can be processed by ordinary rolling. f
The Tj deoxidation method has no effect even if it is rolled, rolled, controlled rolled, combined with controlled cooling, quenched, tempered, or subjected to standard heat treatment or a combination of both. It is powerful to be influenced by

次に本発明の効果を実施例によってさらに具体的に述べ
る。
Next, the effects of the present invention will be described in more detail with reference to Examples.

実施例 第2表に本発明例と比較例の合金元素添加順序と化学成
分とを示す。ここでA 、 B 、 D 、 F 、 
H。
Table 2 shows the order of addition of alloying elements and chemical compositions of the invention examples and comparative examples. Here A, B, D, F,
H.

Jは本発明例、C、E、、G 、 I 、には比較例で
ある。A−CはLT 33鉛に関するもので0.08C
−1、4Mn系を、D、gは50キロ級高張力缶に関す
るもので0.09 C−1,3Mn系を、F、CはAP
I −X70級に関するもので、0.05C−0,3S
i−1、55PAn系を、H,Iは60キロ級高張力鋼
に関するもので、0.06 C−0,3St −1Mn
系を、J、には80キロ級高張力鍋に関するもので0.
09C−0,9Mn系をそれぞれ主成分とする銅を、先
ず溶製し、次いで第2表に示す順序に従って脱酸元素を
添加した。またさらにり、EについてはNi。
J is an example of the present invention, and C, E, , G, and I are comparative examples. A-C is related to LT 33 lead and is 0.08C
-1,4Mn system, D, g are related to 50 kg class high tension canisters, 0.09 C-1,3Mn system, F, C are AP
Regarding I-X70 class, 0.05C-0.3S
i-1, 55PAn system, H, I are related to 60 kg class high tensile strength steel, 0.06 C-0,3St -1Mn
The system, J, is related to an 80 kg class high tension pot and is 0.
Copper containing 09C-0,9Mn as its main component was first melted, and then deoxidizing elements were added in the order shown in Table 2. Furthermore, for E, Ni.

Cu 、 Nb源を、鍮F、GについてはNi * M
o +Nb源を、H,IについてはMn * Cr +
 Mo r V+B源を、J、KについてはNl r 
Cr r Mo r Cu r LB源を最終的に調整
し所期の化学成分とした。
Cu, Nb source, Ni*M for brass F, G
o + Nb source and Mn * Cr + for H, I
Mor V+B source, Nl r for J and K
The Cr r Mor Cu LB source was finally adjusted to the desired chemical composition.

得られた鋼塊はさらに第2表に示す条件にて圧延し、同
じく第2表に示す条件にてA−Eは鋳型、H−には焼入
れ・焼戻しの熱処理をほどこした。
The obtained steel ingots were further rolled under the conditions shown in Table 2, and heat-treated in the molds for A-E and quenching and tempering for H- under the conditions also shown in Table 2.

溶接に用いた開先形状を第3図に、又シャルピー喬撃試
験片の採取位置を第2図に示す。HAZの靭性とHAZ
のフェライト粒径を調べだ結果を溶接条件と併せて第3
表に示す。本発明例であるA、BD、F、H,JはHA
Zのシャルピー衝撃試験においてそれぞれの試験湯度で
平均値、最低値ともに3.5kq−mを上まわる十分く
良好なgi撃値を示していることがわかる。一方C,E
、G、I、には、一部平均値で3.5kg−mを上まわ
るものもあるが、最低値を見るといずれも3.5kg−
mを下まわっている。またHAZのフェライト粒径も本
発明例のA。
Figure 3 shows the groove shape used for welding, and Figure 2 shows the sampling positions of Charpy impact test pieces. HAZ toughness and HAZ
Examine the ferrite grain size and combine the results with the welding conditions to
Shown in the table. Examples of the present invention, A, BD, F, H, and J, are HA
It can be seen that in the Charpy impact test for Z, both the average value and the minimum value exceeded 3.5 kq-m at each test hot water temperature, showing sufficiently good GI impact values. On the other hand, C, E
, G, and I have some average values exceeding 3.5 kg-m, but the lowest values are all 3.5 kg-m.
It is below m. Further, the ferrite grain size of HAZ is also A of the present invention example.

B 、 D 、 F 、 H、Jにおいてはいずれの入
熱においても100μ以下の細粒となっているが、比較
例のC、E 、 G 、 I 、 Kにおいては150
μ超となっていることがわかる。
In B, D, F, H, and J, the grain size is 100μ or less in all heat inputs, but in comparative examples C, E, G, I, and K, the grain size is 150μ or less.
It can be seen that the value exceeds μ.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はシャルピー衝撃試験片の採取位置
を示す図、第3図は実施例に用いられた溶接鋼材の開先
形状を示す図である。 1・・・溶接金属、2・・・H邸、3・・・シャルピー
衝撃試験片、4・・・切欠位置、5 、5’・・・被溶
接鋼材、6・・・裏当材、7・・・溶接ボンド部。 第1図 第2 図 手続補正書 (自発) 昭和58年6月6日 特許庁長官 若 杉 和 夫 殿 ■、 事件の表示 昭和58年特許願第062687号 2、 発明の名称 溶接性の優れた鋼材の製造法 3、補正をする者 事件との関係 特許出願人 東京都千代田区大手町二丁目6番3号 (665)新日本製鐵株式食紅 代表者 武  1)   豊 4、式理人〒100 東京都千代田区丸の内二丁目4番1号 (2)同9頁10行「発揮する含Ti酸化物を」を「発
揮する。含Ti酸化物を」に補正する。 (3〉同14頁第1表中、黒fのA7の欄[0,015
Jを「o、ots、Jに補正する。 (4)同15頁第2表中、記号りのPの欄「o、o05
Jを「0.008Jに補正する。
FIGS. 1 and 2 are diagrams showing the sampling positions of Charpy impact test pieces, and FIG. 3 is a diagram showing the groove shape of the welded steel material used in the example. DESCRIPTION OF SYMBOLS 1... Weld metal, 2... H house, 3... Charpy impact test piece, 4... Notch position, 5, 5'... Steel material to be welded, 6... Backing material, 7 ...Welding bond part. Figure 1 Figure 2 Procedural amendment (spontaneous) June 6, 1980 Mr. Kazuo Wakasugi, Commissioner of the Patent Office■, Indication of the case 1982 Patent Application No. 062687 2, Name of the invention Excellent weldability Manufacturing method for steel materials 3, relationship with the amended person case Patent applicant 2-6-3 Otemachi, Chiyoda-ku, Tokyo (665) Nippon Steel Co., Ltd. Food Coloring Representative Takeshi 1) Yutaka 4, Shikiman 〒 100 2-4-1 Marunouchi, Chiyoda-ku, Tokyo (2) On page 9, line 10, "Exhibits Ti-containing oxides" is corrected to "Exhibits Ti-containing oxides."(3> Column A7 in black f in Table 1 on page 14 [0,015
Correct J to "o, ots, J. (4) In Table 2 on page 15, the column with the symbol P "o, o05
Correct J to 0.008J.

Claims (4)

【特許請求の範囲】[Claims] (1)溶鋼をTi 4るいはTi合金で脱酸することを
特徴とする溶接性の優れた鋼材の製造法。
(1) A method for producing a steel material with excellent weldability, which comprises deoxidizing molten steel with Ti 4 or a Ti alloy.
(2)  溶鋼をT1あるいはTi合金で脱酸し、次い
でA11(1,Mg l Zr +希土類元素の1mも
しくは2種以上を添加することを特徴とする溶接性の優
れた鋼材の製造法。
(2) A method for producing a steel material with excellent weldability, which comprises deoxidizing molten steel with T1 or a Ti alloy, and then adding 1 m or more of A11 (1, Mg l Zr + rare earth elements).
(3)  81 、 Mn 、 AA!の1種もしくは
2種以上で予備脱酸した溶鋼をTiあるいはT1合金で
脱酸することを特徴とする溶接性の優れた鋼材の製造法
(3) 81, Mn, AA! A method for producing steel materials with excellent weldability, which comprises deoxidizing molten steel that has been preliminarily deoxidized with one or more of the following using Ti or T1 alloy.
(4)  St 、 Mn 、 A101種もしくは2
種以上で予備脱酸した溶鋼をT1あるいはT1合金で脱
酸し、次いでAII Ca l Mg l Zr I希
土類元素の1種もしくは2種以上を添加することを特徴
とする溶接性の優れた鋼材の製造法。
(4) St, Mn, A10 type 1 or 2
A steel material with excellent weldability characterized by deoxidizing molten steel pre-deoxidized with T1 or T1 alloy, and then adding one or more of AII Cal Mg I Zr I rare earth elements. Manufacturing method.
JP6268783A 1983-04-09 1983-04-09 Manufacture of steel material having superior weldability Pending JPS59190313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6268783A JPS59190313A (en) 1983-04-09 1983-04-09 Manufacture of steel material having superior weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6268783A JPS59190313A (en) 1983-04-09 1983-04-09 Manufacture of steel material having superior weldability

Publications (1)

Publication Number Publication Date
JPS59190313A true JPS59190313A (en) 1984-10-29

Family

ID=13207440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6268783A Pending JPS59190313A (en) 1983-04-09 1983-04-09 Manufacture of steel material having superior weldability

Country Status (1)

Country Link
JP (1) JPS59190313A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270354A (en) * 1985-05-27 1986-11-29 Kawasaki Steel Corp High-toughness welding steel
JPS6256518A (en) * 1985-09-04 1987-03-12 Sumitomo Metal Ind Ltd Production of high strength steel sheet for high heat input welding
JPH01195238A (en) * 1988-01-28 1989-08-07 Nippon Steel Corp Manufacture of very low s and very low al steel
JPH02220735A (en) * 1989-02-20 1990-09-03 Nippon Steel Corp Production of high tensile strength steel for welding and low temperature including titanium oxide
JPH0543977A (en) * 1991-08-14 1993-02-23 Nippon Steel Corp Production of low temperature high toughness steel for welding
JPH05171341A (en) * 1991-12-18 1993-07-09 Nippon Steel Corp Production of thick steel plate excellent in toughness in welding heat-affected zone
KR20020041022A (en) * 2000-11-25 2002-06-01 이구택 Structural steel with superior welding property
KR100431870B1 (en) * 2000-12-20 2004-05-20 주식회사 포스코 A method for manufacturing steel for welding structure
KR100470058B1 (en) * 2000-12-14 2005-02-04 주식회사 포스코 Steel plate to be precipitating TiN and ZrN for welded structures, method for manufacturing the same
KR100470667B1 (en) * 2000-07-24 2005-03-07 주식회사 포스코 Method for manufacturing High strength steel plate having superior toughness in weld heat-affected zone
KR100470672B1 (en) * 2000-11-02 2005-03-07 주식회사 포스코 Method for manufacturing high strength steel plate having superior toughness in weld heat-affected zone
JP2021098881A (en) * 2019-12-24 2021-07-01 日本製鉄株式会社 Method for desulfurizing molten steel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829005A (en) * 1971-08-16 1973-04-17
JPS5493618A (en) * 1977-12-31 1979-07-24 Nippon Steel Corp Manufacture of slab for low carbon steel sheet
JPS54116316A (en) * 1978-03-02 1979-09-10 Nat Res Inst Metals Deacidifying alloy for molten steel
JPS5518544A (en) * 1978-07-25 1980-02-08 Natl Res Inst For Metals Deoxidizing alloy for molten steel
JPS58204117A (en) * 1982-05-22 1983-11-28 Kawasaki Steel Corp Production of steel material containing uniformly dispersed fine inclusion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829005A (en) * 1971-08-16 1973-04-17
JPS5493618A (en) * 1977-12-31 1979-07-24 Nippon Steel Corp Manufacture of slab for low carbon steel sheet
JPS54116316A (en) * 1978-03-02 1979-09-10 Nat Res Inst Metals Deacidifying alloy for molten steel
JPS5518544A (en) * 1978-07-25 1980-02-08 Natl Res Inst For Metals Deoxidizing alloy for molten steel
JPS58204117A (en) * 1982-05-22 1983-11-28 Kawasaki Steel Corp Production of steel material containing uniformly dispersed fine inclusion

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0454734B2 (en) * 1985-05-27 1992-09-01 Kawasaki Steel Co
JPS61270354A (en) * 1985-05-27 1986-11-29 Kawasaki Steel Corp High-toughness welding steel
JPS6256518A (en) * 1985-09-04 1987-03-12 Sumitomo Metal Ind Ltd Production of high strength steel sheet for high heat input welding
JPH0639614B2 (en) * 1988-01-28 1994-05-25 新日本製鐵株式会社 Ultra-low S, ultra-low A (1) steel manufacturing method
JPH01195238A (en) * 1988-01-28 1989-08-07 Nippon Steel Corp Manufacture of very low s and very low al steel
JPH02220735A (en) * 1989-02-20 1990-09-03 Nippon Steel Corp Production of high tensile strength steel for welding and low temperature including titanium oxide
JPH0543977A (en) * 1991-08-14 1993-02-23 Nippon Steel Corp Production of low temperature high toughness steel for welding
JPH05171341A (en) * 1991-12-18 1993-07-09 Nippon Steel Corp Production of thick steel plate excellent in toughness in welding heat-affected zone
KR100470667B1 (en) * 2000-07-24 2005-03-07 주식회사 포스코 Method for manufacturing High strength steel plate having superior toughness in weld heat-affected zone
KR100470672B1 (en) * 2000-11-02 2005-03-07 주식회사 포스코 Method for manufacturing high strength steel plate having superior toughness in weld heat-affected zone
KR20020041022A (en) * 2000-11-25 2002-06-01 이구택 Structural steel with superior welding property
KR100470058B1 (en) * 2000-12-14 2005-02-04 주식회사 포스코 Steel plate to be precipitating TiN and ZrN for welded structures, method for manufacturing the same
KR100431870B1 (en) * 2000-12-20 2004-05-20 주식회사 포스코 A method for manufacturing steel for welding structure
JP2021098881A (en) * 2019-12-24 2021-07-01 日本製鉄株式会社 Method for desulfurizing molten steel

Similar Documents

Publication Publication Date Title
US4629504A (en) Steel materials for welded structures
JPS601929B2 (en) Manufacturing method of strong steel
JPS59190313A (en) Manufacture of steel material having superior weldability
JPH02194115A (en) Production of high-strength steel for low temperature service containing titanium oxide and excellent in toughness at weld zone
JPH0577740B2 (en)
JPS59185760A (en) High toughness steel for welding
JPH03236419A (en) Production of thick steel plate excellent in toughness in weld heat-affected zone and lamellar tear resistance
JPH05171341A (en) Production of thick steel plate excellent in toughness in welding heat-affected zone
JPH01159356A (en) High tension steel having superior tougeness at weld heat-affected zone
JPH021208B2 (en)
JPH03177535A (en) Manufacture of low temperature high toughness steel for welding
JP2002371338A (en) Steel superior in toughness at laser weld
JPH04350113A (en) Production of case hardening steel free from coarsening of crystalline grain at the time of carburizing heat treatment
JPS58217629A (en) Preparation of low temperature steel for welding joint part excellent in toughness
JP3882701B2 (en) Method for producing welded structural steel with excellent low temperature toughness
US2295706A (en) Alloy for treatment of steel
JPH07278653A (en) Production of steel excellent in cold toughness on welding heat affected zone
JPS60152661A (en) Free-cutting austenitic stainless steel
JPH01150453A (en) Production of large diameter steel pipe having excellent ductility at low temperature
JPS637328A (en) Production of steel having excellent sulfide corrosion cracking resistance
JP2002317242A (en) High tensile strength steel for welding structure used under low temperature having excellent weld heat affected zone toughness
JP2587564B2 (en) Manufacturing method of steel with excellent low-temperature toughness of weld heat affected zone
JPH01176016A (en) Manufacture of steel stock for welded joint excellent in toughness
JPH04259349A (en) Manufacture of hot forged non-heat treated steel free from coarsening of structure at the time of hot forging
JPS6041144B2 (en) High tensile strength cast steel for centrifugal casting