JPS59184561A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPS59184561A
JPS59184561A JP58060236A JP6023683A JPS59184561A JP S59184561 A JPS59184561 A JP S59184561A JP 58060236 A JP58060236 A JP 58060236A JP 6023683 A JP6023683 A JP 6023683A JP S59184561 A JPS59184561 A JP S59184561A
Authority
JP
Japan
Prior art keywords
bit line
peripheral circuit
channel stopper
stopper layer
semiconductor memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58060236A
Other languages
Japanese (ja)
Inventor
Koichiro Masuko
益子 耕一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58060236A priority Critical patent/JPS59184561A/en
Publication of JPS59184561A publication Critical patent/JPS59184561A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices

Abstract

PURPOSE:To enable to ensure the withstand voltage of a peripheral circuit while contriving to increase the read-out voltage by alleviating the floating capacitance CB of a bit line by making the impurity concentrations of the channel stopper layers of the bit line part and the peripheral circuit part different from each other. CONSTITUTION:Regarding the peripheral circuit part 13 of a semiconductor memory chip 12, the amount of ion implantation to form a channel stopper layer is increased as conventional. While, regarding a bit line part 14, the amount of ion implantation to form the channel stopper layer is reduced. This method enables to increase the read-out voltage of the bit line while maintaining the withstand voltage of the peripheral circuit in a large amount.

Description

【発明の詳細な説明】 、 〔発明の技術分野〕 この発明は半導体メモリ装置に係り、特に周辺回路部の
耐圧を高く保ちつつ、太きい読み出し電圧が得られるよ
うにした改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a semiconductor memory device, and particularly relates to an improvement in which a large read voltage can be obtained while maintaining a high breakdown voltage in a peripheral circuit section.

〔従来技術〕[Prior art]

第1図は従来から一般に用いられている半導体Rand
o: Access MWry (RAM)の基本メモ
リセルの等価回路図で、fi+は電界効果形トランジス
タ(FET) 、(21は一方の電極がFF、T(1)
のソースに接続され他方の電極は基準電位点(3)に接
続されたメモリキャパシタ、(4)はFETfllのド
レインが接続されたビット線、(5)はygT(11の
ゲートが接続されたワード線である。基準電位点(3)
は電源電位または大地電位に保持される。
Figure 1 shows a semiconductor Rand that has been commonly used.
o: Equivalent circuit diagram of basic memory cell of Access MWry (RAM), fi+ is field effect transistor (FET), (21 is one electrode is FF, T(1)
The memory capacitor is connected to the source of FET and the other electrode is connected to the reference potential point (3), (4) is the bit line to which the drain of FETfl is connected, and (5) is the word line to which the gate of ygT (11 is connected). It is a line.Reference potential point (3)
is held at power supply potential or ground potential.

この回路で、ビット線(4)の容量をCB1メモリキャ
パシタ(2)の容量をCsとすると、ワード線(6)が
選択されFET(11が導通したときのビット線(4)
の電位変化量はC8/  に比例する。半導体メモリ装
置では各セル間の特性のばらつき、電気的雑音があっで
も、このビット線(4)の電位変化を再現性よく検知し
なければならない。従って、ビット線(4)に読み出さ
れる電位変化量をできるだけ大きくすることが特性のば
らつきにも強く、動作の安定な半導体メモリ装置を実現
する基本事項である。そして、この読み出1電位を大き
くするには、ビット線(4)の容量CBを小さくするか
、メモリキャパシタ(2)の容量C8を大きくするかの
2通りの手段がある。しかし、チップ寸法の制約がある
ので、ビット線容量CRを小さくする方法が現実的であ
る。
In this circuit, if the capacitance of the bit line (4) is CB1 and the capacitance of the memory capacitor (2) is Cs, then when the word line (6) is selected and the FET (11 is conductive), the bit line (4)
The amount of potential change is proportional to C8/. In a semiconductor memory device, potential changes on the bit line (4) must be detected with good reproducibility even if there are variations in characteristics between cells and electrical noise. Therefore, making the amount of potential change read to the bit line (4) as large as possible is a basic requirement for realizing a semiconductor memory device that is resistant to variations in characteristics and has stable operation. There are two ways to increase this read 1 potential: reducing the capacitance CB of the bit line (4) or increasing the capacitance C8 of the memory capacitor (2). However, since there are restrictions on chip size, a method of reducing the bit line capacitance CR is practical.

第2図は一般的な半導体メモリセルの拡散ビット線方式
のビットa部を示す断面図で、nチャネルMO6)ラン
ジスタを用いた場合を示す。図において、(6)は低不
純物濃度のp形半導体基板、(7)は素子分離用の酸化
膜、(8)は″n形不純物を拡散して形成されたビット
線、(9)は酸化膜(7)の下に反転層が形成され素子
間が導通するのを防止するために基板(6)と同形のp
形不純物を高濃度に注入したチャネル・ストッパ層、(
10)は配線、(11)は層間絶縁層である。
FIG. 2 is a sectional view showing a bit a portion of a general semiconductor memory cell using a diffusion bit line method, and shows a case where an n-channel MO6) transistor is used. In the figure, (6) is a p-type semiconductor substrate with a low impurity concentration, (7) is an oxide film for element isolation, (8) is a bit line formed by diffusing n-type impurities, and (9) is an oxide film. An inversion layer is formed under the film (7) to prevent conduction between elements.
Channel stopper layer implanted with a high concentration of type impurities (
10) is a wiring, and (11) is an interlayer insulating layer.

ビット線(8)の浮遊容量CEは3つの成分からなって
いる。即ち、配線(10)との間の容量C□、基板(6
)との間の接合容量C2およびチマネル・ストッパ層(
9)との間の接合容量C3で構成されるが、これらの成
分のうちチャネル・ストッパ層(9)との間の接合容量
C3が最も大きいことがわかっている。一般にpn接合
部に出来る空乏層の幅Wは で表される。ここで、ε8はシリコンの誘電率、qは素
電荷、NA、 NDはそれぞれp形不純物、n形不純物
の濃度、vbiはビルトインポテンシャルである。N、
〉〉NAで、かつ接合容量が空乏層の幅Wに反比例する
ことから、接合容量C3はチャネル・ストッパ層(9)
の不純物濃度のA乗に比例することがわかる。
The stray capacitance CE of the bit line (8) consists of three components. That is, the capacitance C□ between the wiring (10) and the substrate (6
) and the junction capacitance C2 between the chimanel stopper layer (
It is known that among these components, the junction capacitance C3 between the channel stopper layer (9) and the channel stopper layer (9) is the largest. Generally, the width W of the depletion layer formed at the pn junction is expressed as: Here, ε8 is the dielectric constant of silicon, q is the elementary charge, NA and ND are the concentrations of the p-type impurity and n-type impurity, respectively, and vbi is the built-in potential. N,
〉〉NA and since the junction capacitance is inversely proportional to the width W of the depletion layer, the junction capacitance C3 is the channel stopper layer (9)
It can be seen that it is proportional to the A power of the impurity concentration.

ところが、従来の半導体メモリ装置では、同一半導体チ
ップ内に形成される周辺回路部での高電圧のかかる部位
の耐圧を保証する基準で定めたチャネル・ストッパ層の
不純物濃度をチップ全体に適用しているので、さほど高
電圧かかからないビット線部に対してはチャネル・スト
ッパ層の不純物濃度が不必要に高く、ビット線(8)の
浮遊容量CBが大きくなり、ビット線(8)からの読み
出し電圧は小さくなるという欠点があった。
However, in conventional semiconductor memory devices, the impurity concentration of the channel stopper layer is applied to the entire chip, which is determined by standards that guarantee the withstand voltage of the parts to which high voltage is applied in the peripheral circuitry formed within the same semiconductor chip. Therefore, the impurity concentration of the channel stopper layer is unnecessarily high for the bit line part to which a very high voltage is not applied, and the stray capacitance CB of the bit line (8) increases, causing the read voltage from the bit line (8) to increase. had the disadvantage of being small.

〔発明の概要〕[Summary of the invention]

この発明は以上のような点に鑑みてなされたもので、ビ
ット線部と周辺回路部とのチャネル・ストッパ層の不純
物濃度を互いに異ならしめることによって、ビット線の
浮遊容量CBを軽減し、読み出し電圧の増大を図りつつ
、周辺回路部の耐圧を保証できる半導体メモリ装置を提
供するものである。
This invention was made in view of the above points, and by making the impurity concentrations of the channel stopper layers of the bit line section and the peripheral circuit section different from each other, the stray capacitance CB of the bit line is reduced and the readout is improved. The present invention provides a semiconductor memory device that can guarantee the withstand voltage of the peripheral circuitry while increasing the voltage.

〔発明の実施例〕[Embodiments of the invention]

第3図はこの発明の一実施例を示す平面図である。(1
2)は半導体メモリのチップ、(13)はその周辺回路
部、(14)はビット線部である。この実施例では周辺
回路部(laについてはチャネル中ストッパ層の形成の
ためのイオン注入量を従来通り多くして、ビット線部(
I4)についてはチャネル・ストッパ層の形成のための
イオン注入量を少なくしである。このようにすることに
よって、周辺回路の耐圧を太きく保持しつつ、ビット線
の読み出し電圧の増大が可能となった。そして、このた
めの製造工程としてはホトマスクが1枚増加するのみで
ある。
FIG. 3 is a plan view showing an embodiment of the present invention. (1
2) is a semiconductor memory chip, (13) is its peripheral circuit section, and (14) is a bit line section. In this embodiment, the amount of ion implantation for forming the stopper layer in the channel for the peripheral circuit area (la) was increased as before, and the bit line area (la) was increased as before.
Regarding I4), the amount of ion implantation for forming the channel stopper layer is reduced. By doing this, it is possible to increase the read voltage of the bit line while maintaining a high breakdown voltage of the peripheral circuit. The manufacturing process for this requires only one additional photomask.

以上、p形基板を用いたnチャネルMOSデバイスの場
合について説明したが、n形基板を用いたpチャネルM
OSデバイスの場合にも、また相補形MOSデバイスの
場合にもこれに準じてこの発明を適用できる。
The case of an n-channel MOS device using a p-type substrate has been explained above, but a p-channel MOS device using an n-type substrate has been described.
The present invention can be similarly applied to both OS devices and complementary MOS devices.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明になる半導体メモリ装置
では、チャネル・ストッパ層の形成のためのイオン注入
量を、ビット線部では少なく、周辺回路部では多くした
ので、耐圧を高く保ちつつ、読み出し電圧を大きくして
特性のばらつき、外部雑音があっても安定に情報の読み
出しを行なうことができる。
As explained above, in the semiconductor memory device of the present invention, the amount of ion implantation for forming the channel stopper layer is small in the bit line part and large in the peripheral circuit part, so that the readout can be performed while keeping the withstand voltage high. By increasing the voltage, it is possible to read information stably even when there are variations in characteristics and external noise.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来から一般に用いられている基本メモリセル
の等価回路図、第2図は一般的な半導体メモリセルの拡
散ビット線方式のビット線部を示す断面図、第3図はこ
の発明の一実施例を示す平面図である。 図において、(6)は半導体基板(第1導電形)、(7
)は酸化膜、(8)は第2導電形領域(ビット線)、(
9)はチャネル・ストッパ層、(12’lは半導体メモ
リチップ、(13)は周辺回路部、(14)はビット線
部である。 なお、図中同一符号は同一または相当部分を示す0 代理人 大岩増雄 (7) 第1図 第8図
FIG. 1 is an equivalent circuit diagram of a basic memory cell commonly used in the past, FIG. 2 is a cross-sectional view showing the bit line portion of a diffused bit line method of a general semiconductor memory cell, and FIG. FIG. 2 is a plan view showing an example. In the figure, (6) is a semiconductor substrate (first conductivity type), (7
) is an oxide film, (8) is a second conductivity type region (bit line), (
9) is a channel stopper layer, (12'l is a semiconductor memory chip, (13) is a peripheral circuit section, and (14) is a bit line section. In addition, the same reference numerals in the figure indicate the same or equivalent parts. Person Masuo Oiwa (7) Figure 1 Figure 8

Claims (1)

【特許請求の範囲】[Claims] +11  第1導電形の半導体基板、この半導体基板の
表面部に選択的に形成された複数個の第2導電形領域を
それぞれビット線とする複数個のメモリ素子、上記半導
体基板の上に形成され上記メモリ素子間を分離する酸化
膜、およびこの酸化膜の下に上記ビット線と境を接する
ように形成され上記半導体基板より高い第1導電形不純
物濃度を有するチャネルストッパ層を有するビット線部
、並びに上記半導体基板の上記ビット線部以外の部分に
形成された周辺回路部を備えたものにおいて、上記ビッ
ト線部のチャネルストッパ層の不純物濃度を上記周辺回
路部に形成されるチャネルストッパ層の不純物濃度より
小さくしたことを特徴とする半導体メモリ装置。
+11 A semiconductor substrate of a first conductivity type, a plurality of memory elements each having a plurality of second conductivity type regions selectively formed on a surface portion of the semiconductor substrate as bit lines, and a plurality of memory elements formed on the semiconductor substrate. a bit line portion having an oxide film separating the memory elements; and a channel stopper layer formed under the oxide film so as to be in contact with the bit line and having a first conductivity type impurity concentration higher than that of the semiconductor substrate; In addition, in the semiconductor substrate including a peripheral circuit section formed in a portion other than the bit line section, the impurity concentration of the channel stopper layer of the bit line section is set as the impurity concentration of the channel stopper layer formed in the peripheral circuit section. A semiconductor memory device characterized by having a density smaller than that of a semiconductor memory device.
JP58060236A 1983-04-04 1983-04-04 Semiconductor memory device Pending JPS59184561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58060236A JPS59184561A (en) 1983-04-04 1983-04-04 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58060236A JPS59184561A (en) 1983-04-04 1983-04-04 Semiconductor memory device

Publications (1)

Publication Number Publication Date
JPS59184561A true JPS59184561A (en) 1984-10-19

Family

ID=13136329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58060236A Pending JPS59184561A (en) 1983-04-04 1983-04-04 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS59184561A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5192993A (en) * 1988-09-27 1993-03-09 Kabushiki Kaisha Toshiba Semiconductor device having improved element isolation area

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5192993A (en) * 1988-09-27 1993-03-09 Kabushiki Kaisha Toshiba Semiconductor device having improved element isolation area

Similar Documents

Publication Publication Date Title
JP3057661B2 (en) Semiconductor device
JP2927463B2 (en) Semiconductor storage device
KR940002772B1 (en) Semiconductor integrated circuit and its manufacturing method
KR900000820B1 (en) Semiconductor memory device
US5519243A (en) Semiconductor device and manufacturing method thereof
US4084108A (en) Integrated circuit device
US4780751A (en) Semiconductor integrated circuit device
JPH0132660B2 (en)
JPS6050066B2 (en) MOS semiconductor integrated circuit device
JPH0150114B2 (en)
KR860000159B1 (en) Semi-conductor memory
US4704625A (en) Capacitor with reduced voltage variability
KR860009489A (en) Semiconductor integrated circuit device and manufacturing method thereof
JPS5816565A (en) Insulating gate type field effect transistor
JPS61220371A (en) Mos type integrated circuit device on insulating substrate
US5347152A (en) Stacked CMOS latch with cross-coupled capacitors
JPH0410227B2 (en)
JPS59184561A (en) Semiconductor memory device
US3623217A (en) Method of manufacturing a field effect semiconductor device
JPS6386559A (en) Semiconductor storage device
JPH07302846A (en) Semiconductor memory device
JP3076248B2 (en) Semiconductor memory circuit
JPH02144964A (en) Semiconductor integrated circuit device and its manufacture
JPS5943828B2 (en) Manufacturing method of MOS type integrated circuit
JPH05304264A (en) Manufacture of semiconductor integrated circuit device