JPS59184431A - Cathode structure for cathode-ray tube - Google Patents

Cathode structure for cathode-ray tube

Info

Publication number
JPS59184431A
JPS59184431A JP5749183A JP5749183A JPS59184431A JP S59184431 A JPS59184431 A JP S59184431A JP 5749183 A JP5749183 A JP 5749183A JP 5749183 A JP5749183 A JP 5749183A JP S59184431 A JPS59184431 A JP S59184431A
Authority
JP
Japan
Prior art keywords
heater
cathode
emitter
ribbon
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5749183A
Other languages
Japanese (ja)
Inventor
Shigeya Ashizaki
芦崎 重也
Haruki Nakamichi
中道 春樹
Katsuyuki Yamashita
山下 克之
Jun Endo
遠藤 順
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP5749183A priority Critical patent/JPS59184431A/en
Publication of JPS59184431A publication Critical patent/JPS59184431A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/15Cathodes heated directly by an electric current
    • H01J1/16Cathodes heated directly by an electric current characterised by the shape

Landscapes

  • Electrodes For Cathode-Ray Tubes (AREA)

Abstract

PURPOSE:To obtain at a low cost a cathode structure having no possibility of causing sags by attaching an electron-discharging emitter to the flat intermediate top surface of a heater, which is formed by curving a ribbon-like metallic piece in its longitudinal direction in an almost W-shape, and fixing the ends of the heater to a pair of conductive terminals. CONSTITUTION:A heater 1 consists of a ribbon-like metallic piece 2, in which Ni for example is used as a base metallic layer and which is made of an alloy containing at least one metal chosen from among W, Mo, Fe and Cr. The ribbon- like metallic piece 2 is curved in an almost W-shape in its longitudinal direction. An electron-discharging emitter 3 is attached to the flat intermediate top surface of the heater 1. The ends 1a and 1b of the heater 1 are fused and fixed to a pair of conductive terminals 4 and 5. The emitter 3 consists of a disk-like cathode base metal coated with an electron-discharging oxide layer. The conductive terminals 4 and 5 are the flat heads of two lead wires 7 and 8 penetrating a disk-like insulator 6 made of glass or the like.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、受像管、観測管または撮像管等の陰極線管に
用いられる陰極構体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a cathode assembly used in a cathode ray tube such as a picture tube, observation tube or image pickup tube.

従来例の構成とその問題点 リボン状金属片からなるヒータの中間部頂面に電子放射
性エミッタを付設してなる直熱型の陰極構体では、動作
時に熱i張したヒータがその伸長によりたるみを生じる
ので、ヒータの伸長分を吸収させるだめの工夫が必要と
なる。そこで、リボン状金属片からなるヒータの一端に
スプリングを結合し、このスプリングによりヒータを常
時緊張させる構成の陰極構体が案出された。この場合、
前記たるみの発生をほぼ完全に防止することができるが
、ヒータにかなりの張力が作用するため、ヒータが約8
00°Cに温度上昇することによってクリープ現象を生
じ、ヒータの寿命を著しく短縮させる。また、ヒータの
伸長分2エミッタ付設領域の回転により吸収させる形式
の陰極構体では、ヒータのたるみを十分に防止し91L
いのみならず、特殊形状のヒータを要し、しかもヒータ
のとぐにエミッタ付設領域に捩り歪みを生じ、エミッタ
の脱落やヒータの変形あるいは断線といった好ましくな
い結果を招く。
Conventional configuration and its problems In a directly heated cathode structure in which an electron emitter is attached to the top surface of the middle part of a heater made of a ribbon-shaped metal piece, the heater, which is heated during operation, expands and sag. Therefore, it is necessary to devise a way to absorb the expansion of the heater. Therefore, a cathode assembly was devised in which a spring is connected to one end of a heater made of a ribbon-shaped metal piece, and the heater is constantly kept under tension by this spring. in this case,
Although the above-mentioned sagging can be almost completely prevented, since a considerable tension is applied to the heater, the heater
A temperature rise to 00°C causes a creep phenomenon, which significantly shortens the life of the heater. In addition, with a cathode structure in which the expansion of the heater is absorbed by rotation of the emitter attachment area, sagging of the heater can be sufficiently prevented.
In addition, a specially shaped heater is required, and torsional distortion occurs in the emitter attachment area immediately after the heater, resulting in undesirable results such as the emitter falling off, the heater being deformed, or the wire breaking.

発明の目的 したがって本発明の目的とするところは、ヒータに緊張
や捩り歪みを生じることなく前記たるみの発生の危惧が
ない陰極構体を安価に提供することにある。
OBJECTS OF THE INVENTION Accordingly, it is an object of the present invention to provide a cathode assembly at a low cost that does not cause tension or torsional strain on the heater and is free from the risk of sagging.

発明の構成 本発明の陰極構体では、リボン状金属片をその長さ方向
に略W字状に折り曲げてヒータとなし、かつその平坦な
中間部頂面に直接または絶縁層を介して電子放射性エミ
ッタを付設する。そして、前記ヒータの両端部を1対の
通電端子に固定するのであって、これを以下図面に示し
た実施例とともに詳しく説明する。
Structure of the Invention In the cathode structure of the present invention, a ribbon-shaped metal piece is bent into a substantially W-shape in the length direction to serve as a heater, and an electron radiation emitter is attached to the top surface of the flat intermediate portion directly or through an insulating layer. Attached. Then, both ends of the heater are fixed to a pair of current-carrying terminals, and this will be explained in detail below together with embodiments shown in the drawings.

実施例の説明 第1図および第2図において、略W字状のヒータ1を形
成するリボン状金属片2は、ニッケノνNi)を基体金
属とし、タングステン(W)、モリプデ4M01゜鉄(
Fe)およびクローム(Or)のうちから選ばれた少な
くとも1つを含有する合金からなり、その長さ方向に略
W字状に折り曲げられている。そしてヒータ1の平坦な
中間部頂面には電子放射性エミッタ3が付設されている
。また、ヒータ1の両端部;        1a、1
bは、1対の通電端子4,5に溶着されて固定されてい
る゛。ただし、エミッタ3は電子放射性酸化物層を表面
に付着した円板状の陰極基体金属からなる。また、通電
端子4,5はガラス等からなる円盤状絶縁体6を貫通し
た2本のリード線7,8の扁平な頭部であって、絶縁体
6はこれを囲−克する金属環体9およびリード線7,8
とともにヘッダを構成しており、このヘッダは図外の有
底筒状の制御電極内に挿入されて、金属環体9の部分で
制御電極の筒状部に溶着される。
DESCRIPTION OF THE EMBODIMENTS In FIGS. 1 and 2, the ribbon-shaped metal piece 2 forming the approximately W-shaped heater 1 has a base metal of Nikkeno νNi), tungsten (W), molybdenum 4M01° iron (
It is made of an alloy containing at least one selected from Fe) and chromium (Or), and is bent into a substantially W-shape in its length direction. An electron radiation emitter 3 is attached to the top surface of the flat intermediate portion of the heater 1. Also, both ends of the heater 1; 1a, 1
b is welded and fixed to a pair of current-carrying terminals 4 and 5. However, the emitter 3 is made of a disk-shaped cathode base metal with an electron-emitting oxide layer adhered to its surface. The current-carrying terminals 4 and 5 are the flat heads of two lead wires 7 and 8 that pass through a disc-shaped insulator 6 made of glass or the like, and the insulator 6 is a metal ring that surrounds this. 9 and lead wires 7, 8
Together, they constitute a header, which is inserted into a bottomed cylindrical control electrode (not shown) and welded to the cylindrical portion of the control electrode at the metal ring 9 portion.

通電によって略800°Cに温度上昇したヒーターは少
なからず熱膨張し伸長する。長さ5 jnHのリボン状
金属片2を用いたヒータにおける伸長量はし 0.05 mW−Q、I Inにも達する。しか(、ヒ
ーターを構成する金属片2は、略W字状に折り曲げられ
ていて、その両端部1a、1bは1対の通電端子4.5
に固定されているので、前記伸長の方向は第3図に矢印
で示すように交互に相反したものとなる。そして、ヒー
ターは伸長によりその折り曲げ角度を変え、破線で示す
形状に変形するが、それは復元自在の変形であり、しか
もエミッタ付設領域の占める位置は、伸長方向の相殺に
よりほとんど変化しないから、エミッタ3の偏倚量は微
小となる。しかもヒーターに緊張力や捩り歪みを生しる
ことがないので、ヒータの寿命の短小化が免れる。
The heater, whose temperature rises to approximately 800° C. by energization, undergoes considerable thermal expansion and elongation. The amount of elongation in a heater using a ribbon-shaped metal piece 2 with a length of 5 jnH reaches as much as 0.05 mW-Q, I In. However, the metal piece 2 constituting the heater is bent into a substantially W-shape, and both ends 1a and 1b are connected to a pair of current-carrying terminals 4.5.
3, the directions of the elongation are alternately opposite as shown by the arrows in FIG. As the heater stretches, its bending angle changes and it deforms into the shape shown by the broken line, but this is a deformation that can be restored, and the position occupied by the emitter attachment area hardly changes due to the cancellation of the stretching direction, so the emitter 3 The amount of deviation is small. Furthermore, since no tension or torsional strain is generated in the heater, shortening of the heater's lifespan can be avoided.

エミッタ3の前記偏倚量は、略W字状のヒータ1の4辺
が同一長であれば略零とガるが、同一長となす必要性は
ない。ヒータ1のエミッタ付設領域は熱伝導損が少なく
、その池の領域に比して高い温度となることもあって、
エミッタ3は温度上昇に伴って若干偏倚する。しかし、
この偏倚量は高だか0.01mπ程度であって実用上の
支障はない。
The amount of deviation of the emitter 3 will be approximately zero if the four sides of the substantially W-shaped heater 1 have the same length, but there is no need to make them the same length. The area where the emitter of heater 1 is attached has little heat conduction loss, and the temperature may be higher than that of the pond area.
The emitter 3 shifts slightly as the temperature increases. but,
This amount of deviation is at most about 0.01 mπ, which poses no practical problem.

また、この偏倚量は予め推定できる。から、温度上層後
のエミッタが最適位置を占めるように陰極を配置してお
けばよい。
Further, this amount of deviation can be estimated in advance. Therefore, the cathode may be arranged so that the emitter after the temperature rises will occupy the optimum position.

第4図に示した実施例のものでは、略W字状のヒータ1
がその4辺に断面円弧状の補強リブ10を有しているの
で、ヒータの4辺での変形がほとんどない。ただし、こ
のような補強リプ10を形成する代りに、断面コ字状の
リボン状金属片を用いてヒータを形成してもよい。
In the embodiment shown in FIG. 4, the approximately W-shaped heater 1
Since the heater has reinforcing ribs 10 having an arcuate cross section on its four sides, there is almost no deformation on the four sides of the heater. However, instead of forming such a reinforcing lip 10, the heater may be formed using a ribbon-shaped metal piece having a U-shaped cross section.

直熱形酸化物陰極の動作温度は通常、8 Q O’C程
度と比較的低いから、ヒータ素材に対してあま9大きい
耐熱強度は要求されず、むしろ電気比抵抗の大きいもの
が望まれる。電気比抵抗が大きいヒータ素材は、ヒータ
電圧を高く設定し得るのみならず、ヒータの全長を短か
くしうるので、とくに略W字状となされる本発明の場合
、耐熱強度の面でも有利である・そして、かかる目的に
適したヒータ素材は、Niを基体金属としてMOを6〜
35重量%、Fe11〜30重量%含有した合金である
。MoおよびFeの含有量は、希望するヒータ動作温度
、ヒータ消費電力および耐熱強度等を勘案して決めるが
、一般には、ヒータ電圧は高い方が使用しやすいので、
Mo16重量%以上含有させ、電気比抵抗を約100μ
Ω・σ以上に設定する。この場合、耐熱強度も犬となる
が、MO含有量が35重量%を越えると合金の硬度が犬
となり、加工性が悪くなる。FeはMoの含有量よりも
少なく、1〜30重量%の範囲から選択できる。
Since the operating temperature of a directly heated oxide cathode is usually relatively low, about 8 Q O'C, the heater material is not required to have a heat resistance strength of just over 9 degrees, but rather has a high electrical resistivity. A heater material with a high electrical specific resistance not only allows the heater voltage to be set high but also allows the overall length of the heater to be shortened, so it is advantageous in terms of heat resistance and strength, especially in the case of the present invention, which is approximately W-shaped.・The heater material suitable for this purpose is Ni as the base metal and MO as 6 to 6.
It is an alloy containing 35% by weight and 11 to 30% by weight of Fe. The content of Mo and Fe is determined by taking into consideration the desired heater operating temperature, heater power consumption, heat resistance strength, etc. Generally, the higher the heater voltage, the easier it is to use.
Contains 16% by weight or more of Mo, and has an electrical resistivity of approximately 100μ
Set to Ω・σ or more. In this case, the heat resistance strength is also on the order of magnitude, but if the MO content exceeds 35% by weight, the hardness of the alloy is on the order of magnitude, resulting in poor workability. The content of Fe is smaller than the content of Mo, and can be selected from the range of 1 to 30% by weight.

Nii基体金属としMo約28重量%、Fe 約5重量
%を含有するNi −Mo −Fe  合金の電気比抵
抗は約135μΩ・爪であり、加工性も良好である。=
!、た、耐熱強度は800°Cにおける引張り強さで約
4 s Ky、 /−であった。この合金を用いて幅0
.2ffiJ厚さ0.02 mm、長さ5#IIWノリ
ボン状金属片を製造し、略W字状に折り曲げてヒータを
製作した。そして、その平坦な中間部頂面にエミッタと
しての直径Q、8ffff、厚さ0.03 amの陰極
基体金属を付設し、電子放射性酸化物層を設けた。かか
る直熱型酸化物陰極のヒータ電圧はo、e V、ヒータ
消費電力はQ、15W、動作温度は750 ’Cであっ
た。
The electrical resistivity of the Ni-Mo-Fe alloy containing about 28% by weight of Mo and about 5% by weight of Fe as the Nii base metal is about 135 μΩ·min, and the workability is also good. =
! The heat resistance strength was approximately 4 s Ky, /- in terms of tensile strength at 800°C. Using this alloy, width 0
.. A 2ffiJ ribbon-shaped metal piece having a thickness of 0.02 mm and a length of 5#IIW was manufactured and bent into a substantially W-shape to manufacture a heater. Then, a cathode base metal serving as an emitter with a diameter Q of 8ffff and a thickness of 0.03 am was attached to the top surface of the flat intermediate portion, and an electron emissive oxide layer was provided. The heater voltage of this directly heated oxide cathode was o, e V, the heater power consumption was Q, 15 W, and the operating temperature was 750'C.

ヒータのエミッタ付設領域にエミッタを直接付設せず、
アルミナ等の耐熱性絶縁層を介して付設すると、傍熱型
陰極となし得る。この場合、エミッタの電子放射機能に
影響を与えるクローム(Cr)等の元素をヒータ素材合
金中に1〜30重量%含有させることが可能となる。8
Q%Ni、20%I      Qr 等のいわゆるニ
クロム合金は安価、であり、電気比抵抗は大きく耐熱強
度の面でもすぐれている。
Do not attach the emitter directly to the emitter attachment area of the heater.
When attached via a heat-resistant insulating layer such as alumina, it can be used as an indirectly heated cathode. In this case, it becomes possible to contain 1 to 30% by weight of an element such as chromium (Cr), which affects the electron emission function of the emitter, in the heater material alloy. 8
So-called nichrome alloys such as Q%Ni and 20%IQr are inexpensive, have a large electrical resistivity, and are excellent in terms of heat resistance strength.

また、16%Mo 、15.5%Or 、 5.6%F
e 。
Also, 16%Mo, 15.5%Or, 5.6%F
e.

4%W1残部NiのNi −Mo −Or −Fe −
W合金−一、9%MO,22%Or  、  1 B、
5%Fe  、  0.6%W1残部Ni のNi −
Mo −0r−Fe −W合金(いずれも重量%)は、
800°Cにおける引張り−強さが約4oKy/−あり
、電気比抵抗は約12Q〜130μΩ・(mを示す。
4% W1 balance Ni -Mo -Or -Fe -
W alloy-1, 9% MO, 22% Or, 1 B,
5% Fe, 0.6% W1 balance Ni -
The Mo-0r-Fe-W alloy (both weight%) is
The tensile strength at 800°C is about 4 oKy/-, and the electrical resistivity is about 12Q to 130 μΩ·(m).

エミッタとして含浸型のものを用いることができるが、
この場合の動作温度は約950〜1100°Cと高くな
るので、とくにヒータの耐熱強度を考慮しなければなら
ない。これに適したヒータ素材にNt−W合金がある。
An impregnated type emitter can be used, but
Since the operating temperature in this case is as high as about 950 to 1100°C, the heat resistance strength of the heater must be taken into consideration. A heater material suitable for this purpose is an Nt-W alloy.

一般に、Wの含有量が多いと耐熱強度および電気比抵抗
がともに大となる10重量%以上のw−4含有したNi
 −W 系合金を用いてヒータを形成した含浸型陰極は
、1000°Cの動作温度で約1000時間の連続使用
に十分に耐えることができる。Wの含有量は10〜40
重量%が適当で、この範囲を越えると加工性が著しく悪
くナル。ナオ、N1−W合金の1000’Cにおける電
気比抵抗は、10重量%Wのもので約7oμΩ・儂であ
り、40重量%Wのもので約130μΩ・αである。
In general, when the W content is high, both the heat resistance strength and the electrical resistivity are high.
An impregnated cathode whose heater is formed using a -W alloy can sufficiently withstand continuous use for about 1000 hours at an operating temperature of 1000°C. The content of W is 10-40
The weight percentage is appropriate; if it exceeds this range, workability will be extremely poor. The electrical resistivity of the N1-W alloy at 1000'C is approximately 7 .mu..OMEGA. for 10 wt. % W, and approximately 130 .mu..OMEGA..alpha. for 40 wt. % W.

発明の効果 本発明の陰極構体は前述のように構成されるので、ヒー
タが温度上昇により伸長しても、ヒータにたるみを生じ
ることがなく、エミッタを常に略一定の位置に保持させ
ることができる。また、製作が容易であるばかりでなく
、ヒータに緊張力や捩り歪みを生じることがなく、特性
変動や早期断線の危険を解消させることができる。
Effects of the Invention Since the cathode structure of the present invention is configured as described above, even if the heater expands due to a rise in temperature, the heater does not sag, and the emitter can always be held at a substantially constant position. . Moreover, not only is it easy to manufacture, but the heater does not suffer from tension or torsional distortion, and the risk of characteristic fluctuations and early disconnection can be eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施した陰極構体の斜視図、第2図は
同側断面図、第3図は同陰極構体におけるヒータの温度
上昇に伴う伸長の方向を示す図、第4図は本発明の他の
実施例の要部の斜視図である。 1・・・・・・ヒータ、2・・・・・・リボン状金属片
、3・・・・・・エミッタ、4,5・・・・・・通電端
子。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 第4図
Fig. 1 is a perspective view of a cathode assembly in which the present invention is implemented, Fig. 2 is a cross-sectional view of the same side, Fig. 3 is a diagram showing the direction of expansion of the heater in the cathode assembly as the temperature rises, and Fig. 4 is a diagram of the main body. FIG. 7 is a perspective view of main parts of another embodiment of the invention. 1... Heater, 2... Ribbon-shaped metal piece, 3... Emitter, 4, 5... Current-carrying terminal. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] リボン状金属片をその長さ方向に略W字状に折り曲げて
なるヒータと、前記ヒータの平坦な中間部頂面に直接ま
たは絶縁層を介して付設された電子放射性エミッタと、
前記ヒータの両端部を固定する1対の通電端子とを備え
てなることを特徴とする陰極線管用陰極構体。
a heater formed by bending a ribbon-shaped metal piece into a substantially W-shape in its length direction; an electron radiation emitter attached directly or via an insulating layer to the flat top surface of the intermediate portion of the heater;
A cathode assembly for a cathode ray tube, comprising a pair of current-carrying terminals for fixing both ends of the heater.
JP5749183A 1983-03-31 1983-03-31 Cathode structure for cathode-ray tube Pending JPS59184431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5749183A JPS59184431A (en) 1983-03-31 1983-03-31 Cathode structure for cathode-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5749183A JPS59184431A (en) 1983-03-31 1983-03-31 Cathode structure for cathode-ray tube

Publications (1)

Publication Number Publication Date
JPS59184431A true JPS59184431A (en) 1984-10-19

Family

ID=13057189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5749183A Pending JPS59184431A (en) 1983-03-31 1983-03-31 Cathode structure for cathode-ray tube

Country Status (1)

Country Link
JP (1) JPS59184431A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0343934A (en) * 1989-07-10 1991-02-25 Samsung Electron Devices Co Ltd Manufacture of direct heated cathode structure and device fitted for this
US5019744A (en) * 1988-11-17 1991-05-28 Samsung Electron Devices Co., Ltd. Direct heating type cathode structure
WO2015009457A1 (en) * 2013-07-18 2015-01-22 Schlumberger Canada Limited Cathode assembly for use in a radiation generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5019744A (en) * 1988-11-17 1991-05-28 Samsung Electron Devices Co., Ltd. Direct heating type cathode structure
JPH0343934A (en) * 1989-07-10 1991-02-25 Samsung Electron Devices Co Ltd Manufacture of direct heated cathode structure and device fitted for this
WO2015009457A1 (en) * 2013-07-18 2015-01-22 Schlumberger Canada Limited Cathode assembly for use in a radiation generator
US9355806B2 (en) 2013-07-18 2016-05-31 Schlumberger Technology Corporation Cathode assembly for use in a radiation generator

Similar Documents

Publication Publication Date Title
US20060032847A1 (en) Carbon heater
JP4159614B2 (en) Color CRT having a support frame assembly with holding means
JPS59184431A (en) Cathode structure for cathode-ray tube
US2878410A (en) Electronic tube structure
US3268305A (en) Composite wire
JP2817451B2 (en) Cathode for electron tube
JPS60236432A (en) Cathode ray tube
EP0692813B1 (en) Mount for an incandescent filament electric lamp and incandescent filament electric lamp comprising a copper-steel composite lead wire
JP7304225B2 (en) magnetron
JPS61140023A (en) Cathode structure of magnetron
US1562403A (en) Electron-discharge device
US2917653A (en) Electron discharge device
US3826947A (en) Cathode positioning retainer
KR880001976B1 (en) A cathode ray-tube
US1662032A (en) Filament support for vacuum tubes
US3822392A (en) Means for positioning a heating element with a thermionic cathode structure
JPH037879Y2 (en)
JPH0125406Y2 (en)
JPH0330229A (en) Impregnation type cathode structure
KR100446227B1 (en) Heater for CRT
JP2738694B2 (en) Method for producing impregnated cathode assembly
JP4307421B2 (en) Fluorescent display tube
US3371240A (en) Frame type electrodes for electron discharge devices
JPH03210736A (en) Electron gun for cathode-ray tube
JP4265277B2 (en) surge absorber