JPS59182338A - Optical measuring device - Google Patents

Optical measuring device

Info

Publication number
JPS59182338A
JPS59182338A JP5755783A JP5755783A JPS59182338A JP S59182338 A JPS59182338 A JP S59182338A JP 5755783 A JP5755783 A JP 5755783A JP 5755783 A JP5755783 A JP 5755783A JP S59182338 A JPS59182338 A JP S59182338A
Authority
JP
Japan
Prior art keywords
laser
sample
measurement
measured
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5755783A
Other languages
Japanese (ja)
Other versions
JPH043494B2 (en
Inventor
Takuhiro Ono
小野 拓弘
Takashi Iwabuchi
岩渕 俊
Takeo Miyata
宮田 威男
Shinichiro Aoki
新一郎 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5755783A priority Critical patent/JPS59182338A/en
Publication of JPS59182338A publication Critical patent/JPS59182338A/en
Publication of JPH043494B2 publication Critical patent/JPH043494B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/171Systems in which incident light is modified in accordance with the properties of the material investigated with calorimetric detection, e.g. with thermal lens detection

Abstract

PURPOSE:To take a high-precision measurement by making an optical element stable to large-output laser light in a measuring device for the fine amounts of absorption of optical products for a laser, and to support optical products in various shapes easily by improving a supporting mechanism. CONSTITUTION:A sample 9 to be measured is placed in a calorie meter container 8' by a three-point supporting two-axis angle adjusting support 13. The calorie meter container has double structure and cooling water 20 under temperature control is flowed between the internal wall 8 and external wall 8''. Measuring laser light 2 from an infrared laser 1 and a visible light beam 11 for alignment from an He-Ne laser 10 are superposed on each other by a holed mirror 3 whose heat generation is suppressed and strike the sample 9. When the sample 9 is made of transparent parts, transmitted light is made incident to a power meter 15 and its reflected light enters an absorber 12. The heat generation of the sample 9 resulting from the passing of the laser light for measurement is measured by a thermocouple 18.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、レーザー用光学製品の分野において、その光
学製品の微弱吸収量の測定を行う光学測定装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical measuring device for measuring the weak absorption amount of optical products in the field of optical products for lasers.

従来例の構成とその問題点 従来この種の測定法は、比較的容易に低い吸収量が測定
可能な方法として利用されている。
Conventional Structure and Problems Conventionally, this type of measurement method has been used as a method that allows relatively easy measurement of low absorption amounts.

第1図は、従来法による測定装置の概略図である。赤外
レーザ(C02)1からのレーザ光2にビームスプリッ
タ−3により、透過光4と反射光4′に分離される。ビ
ームスプリッタ−3により反射されたレーザ光4′は、
パワーメーター6で受けらヘレーザ出力の常時監視が行
なわれる。−万、透過されたレーザー光4は、ンヤッタ
ー6及び透明窓7を通ってカロリメータ容器8内に設置
されている被測定物9に照射される。測定試料9とレー
ザー光4のアライメントを容易にするだめ、He −N
eレーザー10からの可視光ビーム11をビームスグリ
ツタ−3で反射させて、測定用のレーザー光4に重畳さ
せている。測定試料9は、周囲の温度安定性を良くする
ため前記のカロリーメータ容器8で外部と空気流通を防
いである。更に測定試料9は、入射する測定用レーザー
光4の通過で発生した熱のロスを最少限とするよう、接
触面積を小さくするために、2本の糸12により支持さ
れ、全体が上下できるベンチ13上に載せられている。
FIG. 1 is a schematic diagram of a conventional measuring device. Laser light 2 from an infrared laser (C02) 1 is separated by a beam splitter 3 into transmitted light 4 and reflected light 4'. The laser beam 4' reflected by the beam splitter 3 is
A power meter 6 constantly monitors the laser output. - The transmitted laser beam 4 passes through the printer 6 and the transparent window 7 and is irradiated onto the object to be measured 9 placed in the calorimeter container 8 . To facilitate the alignment of the measurement sample 9 and the laser beam 4, He-N
A visible light beam 11 from an e-laser 10 is reflected by a beam sinter 3 and superimposed on a laser beam 4 for measurement. The measurement sample 9 is protected from air circulation with the outside by the calorimeter container 8 described above in order to improve the stability of the surrounding temperature. Furthermore, the measurement sample 9 is supported by two threads 12 and is mounted on a bench that can be moved up and down in order to minimize the loss of heat generated by the passage of the incident measurement laser beam 4 and to minimize the contact area. It is listed on 13.

試料9を透過した測定用レーザー光4は、後方にある透
過窓14を通り、パワーメーター16により受けられ、
アンプ16で増幅した後、レコーダ17で記録される。
The measurement laser beam 4 that has passed through the sample 9 passes through a transmission window 14 at the rear and is received by a power meter 16.
After being amplified by an amplifier 16, it is recorded by a recorder 17.

カロリーメーター容器8内の試料9内で、測定用レーザ
ー光4の通過に伴なって発生した熱は、試料9の表面に
接着剤等により付けら九た熱電対18により測定され、
増幅器19で増幅後、レコーダー17で記録されるよう
構成されている。このような従来装置では、一般に、測
定試料が棒状(例えば1010XlX1程度)が適して
おり、透明光学材料の物理的特性解明の手段として活用
されるものであり、一般に使用されているレーザー光学
製品、全反射鏡、透明窓等の完成品の評価には、不適当
である。その理由は、測定試料の反射率が広範囲にわた
っており、特に反射鏡の場合には、反射光の処理が困難
となる事、他の理由は、測定試料の形状に種々のものが
あり、特に外径では、直径で25mmから、150mm
のものまで分布しているため、それら試料の支持法が問
題である事、又、光学製品の実用上の試料厚が一般的な
ものでは、3mm程度と薄く、測定時の発生熱が少なく
、測定:隋度を高めるためには、出力の大きい(例えば
200W以上)測定光が必要となる。しかし、従来法の
場合、ビームスプリッタ−に透明材料(ZnSe等)を
用いる必要がある。このビームスプリッタ−が、太きい
出力のレーザー光に対して発熱し、反射光、通過光の分
割の不安定さの増大と、ビームの位置ずれを発生し、精
度の高い測定が困難である等の問題が生じている。
The heat generated as the measurement laser beam 4 passes through the sample 9 in the calorimeter container 8 is measured by a thermocouple 18 attached to the surface of the sample 9 with adhesive or the like.
The signal is amplified by an amplifier 19 and then recorded by a recorder 17. In such conventional devices, the measurement sample is generally suitable for a rod-shaped sample (for example, about 1010X1X1), and is used as a means of elucidating the physical characteristics of transparent optical materials, and generally used laser optical products, It is unsuitable for evaluating finished products such as total reflection mirrors and transparent windows. The reason for this is that the reflectance of the measurement sample ranges over a wide range, making it difficult to process the reflected light, especially in the case of a reflecting mirror.Another reason is that the measurement sample has a variety of shapes, especially when used outside. The diameter ranges from 25mm to 150mm.
However, the sample thickness is generally around 3 mm, which means that less heat is generated during measurement. Measurement: In order to increase the intensity, a measurement light with high output (for example, 200 W or more) is required. However, in the case of the conventional method, it is necessary to use a transparent material (such as ZnSe) for the beam splitter. This beam splitter generates heat in response to high-output laser light, which increases the instability of splitting reflected light and passing light, and causes beam position deviation, making highly accurate measurements difficult. A problem has arisen.

発明の目的 本発明は、このような従来技術の欠点を改善し、実用の
レーザー用光学製品について、高い精度で安定してその
製品の光学評価を行なえるようにした光学測定装置を提
供するものである。
Purpose of the Invention The present invention provides an optical measurement device that improves the drawbacks of the prior art and enables optical evaluation of practical laser optical products with high accuracy and stability. It is.

発明の構成 本発明においては、種々の実用レーザー光学製品の微弱
吸収量を安定して高精度に測定するため出力の大きい(
600W和度)光源に対しても使用可能な可視光重畳用
穴付反射鏡の採用と1種々の形状の光学製品の支持を容
易にするだめの3点支持機構を有し、更に、反射鏡にお
いても使用可能なように支持具を2軸角度調節が出来る
機能を有するようにしたもので、必要に応じ測定精度を
高め、外部の温度変化の影響を極力少なくする目的でカ
ロリーメーター容器を2重構造として、温度制御された
冷却水を通水出来るようにした事を特徴とした光学測定
装置である。
Structure of the Invention In the present invention, in order to stably and accurately measure the weak absorption amount of various practical laser optical products,
It has a reflector with a hole for visible light superimposition that can be used for a 600W (W) light source, and a three-point support mechanism that makes it easy to support optical products of various shapes. The calorimeter container has a function that can adjust the angle on two axes so that it can be used even in This is an optical measurement device characterized by a layered structure that allows temperature-controlled cooling water to pass through it.

実施例の説明 第2図は本発明による実施例の概略構成図である。赤外
レーザ(C02)1からのレーザ光2は、シャッター6
の開閉により制御され、可視光レーザー重畳用、穴付ミ
ラー3で反射レーザー光4と一部通過光4′に分けられ
る。通過光4′はパワーメータ又は吸収体6により吸収
されるよう配置されている。
DESCRIPTION OF EMBODIMENTS FIG. 2 is a schematic diagram of an embodiment according to the present invention. The laser beam 2 from the infrared laser (C02) 1 is transmitted to the shutter 6
It is controlled by opening and closing of the visible light laser, and is separated into reflected laser light 4 and partially transmitted light 4' by a mirror 3 with a hole for superimposing visible light laser. The transmitted light 4' is arranged to be absorbed by a power meter or absorber 6.

穴付ミラー3で反射された測定用のレーザー光4は、ア
パーチャσでビーム整形の後、透明窓7を通って、カロ
リーメーター容器8内に導かれる。
The measuring laser beam 4 reflected by the holed mirror 3 is beam-shaped by the aperture σ and then guided into the calorimeter container 8 through the transparent window 7.

測定試料9と測定用レーザー光4のアライメントを容易
にするため、He−Neレーザ10からの可視光ビーム
11は、穴付ミラー3の開口部を通して、測定用レーザ
ー光4に重畳されている。
In order to facilitate alignment of the measurement sample 9 and the measurement laser beam 4, the visible light beam 11 from the He-Ne laser 10 passes through the opening of the mirror 3 with a hole and is superimposed on the measurement laser beam 4.

カロリーメーター容器8内の測定試料9は、接触部が点
状又は線状又は線状からなる3ケ所の支持接点を有する
試料支持具13に取りつけられている。試料支持具13
は、例えば、第3図で示さ八るように構成されている。
The measurement sample 9 in the calorimeter container 8 is attached to a sample support 13 having three support contacts each having a dotted, linear, or linear contact portion. Sample support 13
is configured, for example, as shown in FIG.

支持具筐体131に上、下2個のセンターピン132に
よジ取り付けら九でいる角度調整板133ば、左右角度
調整ネジ134によシ左右に角度調整される。基板支持
リング135は、前記センターピン132の回転軸と直
交する位置に設けられている煽り角センターピン136
により、角度調整板133に取りつけられておシ、煽9
角調節ネジ137により、上下方向に角度調整出来るよ
うになっている。測定試料9は、基板支持リング136
に設けられた、31固の基板支持ピン138によりその
外周部で支えられるようになっている。測定試料9に入
射する測定用レーザー光4の測定試料9での反射光4′
は、基板支持具13に設けられた、角度調節ネジ134
+i37によりその反射方向を制御し、カロリーメータ
ー又は、吸収体12に反射光4″を入射させることが出
来る角度調整機構を有している。
An angle adjustment plate 133 is attached to the support housing 131 by two center pins 132, upper and lower, and its angle is adjusted left and right by left and right angle adjustment screws 134. The substrate support ring 135 has a tilt angle center pin 136 provided at a position orthogonal to the rotation axis of the center pin 132.
Due to this, it is attached to the angle adjustment plate 133.
An angle adjustment screw 137 allows the angle to be adjusted in the vertical direction. The measurement sample 9 is attached to the substrate support ring 136
It is supported at its outer periphery by a 31-strong board support pin 138 provided on the board. Reflected light 4' on the measurement sample 9 of the measurement laser beam 4 incident on the measurement sample 9
is an angle adjustment screw 134 provided on the substrate support 13
It has an angle adjustment mechanism that can control the direction of reflection by +i37 and make the reflected light 4'' enter the calorimeter or the absorber 12.

試料9が透明な光学部品の場合には、試料9を通過した
測定用レーザ光4は、基板支持具筐体131に設けられ
た開口部139を通ジ抜は後方にある透過窓14を経て
、パワーメーター15により受けられ、アンプ16で増
幅した後、レコーダー17で記録される。パワーメータ
ー16を、透過窓14の位置に設けるか、あるいは、カ
ロリーメーター容器8内の測定試料9の後方に設置する
場合には、透過窓14は、必ずしも必要で彦い。
When the sample 9 is a transparent optical component, the measurement laser beam 4 that has passed through the sample 9 passes through the opening 139 provided in the substrate support housing 131 and passes through the transmission window 14 at the rear. , is received by a power meter 15, amplified by an amplifier 16, and then recorded by a recorder 17. When the power meter 16 is installed at the position of the transmission window 14 or behind the measurement sample 9 in the calorimeter container 8, the transmission window 14 is not necessarily required.

カロリーメーター容器8内の試料9に、測定用レーザー
光4の通過に伴って発生する熱を測定するために、試料
9の外周面に第1の接点を有するとともに、カロリーメ
ーター容器8に接触する第2の接点を有し、第2の接点
を基準温度とする熱゛電対18が設置され、その出力を
増幅器19を介して、レコーダー17で記録される構成
となっている。カロリーメータ容器8(は、2重構造に
してあり、内壁8′と外壁8“の間に冷却水20が流せ
る構造となっている。冷却水20は、入口、出口にそれ
ぞれパルプ21.22を有し必要に応じて止めた状態で
も測定が可能なようになっている。この冷却水は、温度
コントロールしである場合は流水状態で、特にコントロ
ールしていない場合は冷冷水を流動させないで断熱剤と
して利用するものであり、測定精度への効果は、長時間
測定の場合は前者が、短時間測定時には後者が有効であ
る。
In order to measure the heat generated as the measurement laser beam 4 passes through the sample 9 in the calorimeter container 8, the first contact point is provided on the outer peripheral surface of the sample 9 and is in contact with the calorimeter container 8. A thermocouple 18 having a second contact and using the second contact as a reference temperature is installed, and its output is recorded by a recorder 17 via an amplifier 19. The calorimeter container 8 (has a double structure, allowing cooling water 20 to flow between the inner wall 8' and the outer wall 8''. If necessary, measurements can be taken even when the cooling water is stopped.If the temperature is not controlled, the cooling water will be in a running state, and if there is no temperature control, the cooling water will not flow and it will be insulated. The former is effective for long-term measurements, while the latter is effective for short-term measurements.

この場合、カロリーメーター容器802重構造は、カロ
リーメーター容器8の形状によっては、必ずしも全壁に
設ける必要はなく、例えば、円筒形あるいは角筒形のよ
うな場合には、少なくとも、入 (出射端面を2重構造
にする事により、同様な効果が得られる。
In this case, depending on the shape of the calorimeter container 8, the double structure of the calorimeter container 80 does not necessarily need to be provided on the entire wall. A similar effect can be obtained by creating a double structure.

更にカロリーメーター容器8はその中を真空状態に保持
する機能を持ち、熱伝導性の悪い大きな試料(KCI)
の測定において測定の高精度化と安定性に重要な役割9
をはたしている。
Furthermore, the calorimeter container 8 has a function of maintaining the inside of the container in a vacuum state, and is capable of handling large samples (KCI) with poor thermal conductivity.
plays an important role in improving measurement precision and stability in the measurement of
is playing.

なお、23は透明な窓であり、反射光4″の角度あるい
は、測定試料9の測定時の異常状態が観測 。
Note that 23 is a transparent window through which the angle of the reflected light 4'' or the abnormal state of the measurement sample 9 during measurement can be observed.

できるようにカロリーメーター容器8に設けられている
It is provided in the calorimeter container 8 so that it can be used.

本装置を用いて、測定したCO2レーザ用全反射鏡、透
明窓の測定結果を以下に示す。
The measurement results of a total reflection mirror for a CO2 laser and a transparent window measured using this device are shown below.

(1)全反射鏡 φ76X13mm ダイヤモンド切削、銅基板 吸収率:0.70玉0.05係 反射率99.3%a 
透明窓 φ76 X 10mm、透過率92・796両
面鏡面ポリッシ KCI基板 吸収率: o、11+o、03 % (3)透明窓 φ25.4 X 3mm、透過率82.
9%両面蜆面ポリッシ Zn5e基板 片面 ARcoating (pbF2に/4)吸収率
: 0.12+0.01 % このように、本実施例によれば、種々の形状。
(1) Total reflection mirror φ76X13mm Diamond cutting, copper substrate Absorption rate: 0.70 ball 0.05 ratio Reflectance 99.3%a
Transparent window φ76 x 10mm, transmittance 92.796 double-sided mirror polish KCI substrate absorption rate: o, 11+o, 03% (3) Transparent window φ25.4 x 3mm, transmittance 82.
9% double-sided axillary polishing Zn5e substrate single side AR coating (pbF2/4) absorption rate: 0.12+0.01% As described above, according to this example, various shapes can be obtained.

材質?反射率の光学製品について、安定にかっ、高精度
で測定が可能となった。これは、He −Ne光(可視
)とCO2レーザー光との重畳にょジ測定位置2 ビー
ム入射角度の再現性が高く、又、大きな出力のレーザー
光源が使用出来るため、吸収の少ない透明光学製品につ
いても容易に測定出来、さらに、熱伝導性の悪い大きな
光学製品においても、容器を真空に保つため、試料表面
での熱放散を最少限におさえ、一定に出来る。さらに、
容器の囲シを、冷却水で満すことにより、基準温度の安
定性が図れたことなどが挙げられ、レーザ光学製品の品
質の確保と、レーザ共振器の設計に太きく貢献するもの
である。
Material? It has become possible to stably and accurately measure the reflectance of optical products. This is the position for measuring the superposition of He-Ne light (visible) and CO2 laser light.Since the reproducibility of the beam incidence angle is high and a high output laser light source can be used, it is possible to use transparent optical products with low absorption. Furthermore, since the container is kept in a vacuum, heat dissipation on the sample surface can be kept to a minimum and constant even in large optical products with poor thermal conductivity. moreover,
By filling the enclosure of the container with cooling water, we were able to stabilize the reference temperature, which greatly contributed to ensuring the quality of laser optical products and designing laser resonators. .

発明の効果 以上のように本発明は赤外レーザー測定光と可視レーザ
ー光−とを重畳するだめの穴付反射鏡と、被測定物を収
納する筐体と、前記筐体に設けらべ可視レーザー光重畳
赤外レーザー測定光を被測定物に導くたみの窓部と、被
測定物に対し、窓部と反対側に設けられたパワー測定手
段と、被測定物の温度上昇を測定する温度測定手段と、
前記被測定物の外周面を少なくとも3ケ所で保持する支
持機構とを備え、前記支持機構が互いに略直交する二つ
の回転軸を有する角度調整機構を有していることを特徴
とする光学測定装置を提供するもので、種々の形状、材
質1反射率の光学製品について、安定にかつ高精度の測
定が可能となる利点を有する。
Effects of the Invention As described above, the present invention includes a reflector with a hole for superimposing an infrared laser measurement light and a visible laser beam, a casing for accommodating an object to be measured, and a visible A window section that guides the superimposed infrared laser measurement light to the object to be measured, a power measuring means provided on the opposite side of the object to the window section, and a power measuring means that measures the temperature rise of the object to be measured. temperature measuring means;
An optical measurement device comprising: a support mechanism that holds the outer circumferential surface of the object to be measured at at least three locations, and wherein the support mechanism has an angle adjustment mechanism having two rotation axes that are substantially perpendicular to each other. This method has the advantage that optical products of various shapes, materials, and reflectances can be measured stably and with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光学測定装置の概略構成図、第2図は本
発明による光学測定装置の概略構成図、第3図(a)、
 (b)は同一部の側面間および平面図である。 1・・・・・・C02レーザ光源、2・・・・・・ビー
ム(106μ)、3・・・・・・穴あき反射鏡(φ25
.6穴径1mmφcu/Au蒸着)、4・・・・・・反
射鏡(1o6μとHe−Ne光重畳)、4′・・・・・
・通過光(10,6μ)、4″・・・・・測定物からの
反射光、5・・・・・・吸収体、6・・・・・・ビーム
シャッター、6′・・・・・・アパーチャ、7・・・・
・・透明窓、8・・・・・・カロリーメーター容器、8
′・・・・・・内壁、8′4・・・・外壁、9・・・・
・・測定物、10・・・・・・He−Neレーザー、1
1・・・・・・可視レーザー光(6328人)、12・
・・・・・吸収体、13・・・・・・試料支持具、14
・・・・・・透明窓、16・・山・パワーメーター、1
6・・・・・・増幅器、17・・・・・・2ペンレコー
ダー、18・・・・・・熱電対、19・・・・・増幅器
、2o・・・・・冷却液、21.22・・・・・・スト
ップパルプ。
FIG. 1 is a schematic configuration diagram of a conventional optical measurement device, FIG. 2 is a schematic configuration diagram of an optical measurement device according to the present invention, and FIG.
(b) is a side view and a plan view of the same part. 1...C02 laser light source, 2...Beam (106μ), 3...Perforated reflector (φ25
.. 6 hole diameter 1mmφcu/Au vapor deposition), 4...Reflector (1o6μ and He-Ne light superimposed), 4'...
- Passing light (10,6μ), 4''... Reflected light from the measurement object, 5... Absorber, 6... Beam shutter, 6'...・Aperture, 7...
... Transparent window, 8 ... Calorimeter container, 8
'...Inner wall, 8'4...Outer wall, 9...
...Measurement object, 10...He-Ne laser, 1
1... Visible laser light (6328 people), 12.
...Absorber, 13 ... Sample support, 14
...Transparent window, 16...Mountain power meter, 1
6...Amplifier, 17...2 Pen recorder, 18...Thermocouple, 19...Amplifier, 2o...Cooling liquid, 21.22 ...Stop pulp.

Claims (1)

【特許請求の範囲】 (1)赤外レーザー測定光と可視レーザー光とを重畳す
るだめの穴付反射鏡と、被測定物を収納する筐体と、前
記筐体に設けられ、可視レーザー光重畳赤外レーザー測
定光を被測定物に導くだめの窓部と、被測定物に対し、
窓部と反対側に設けられたパワー測定手段と、被測定物
の温度上昇を測定する温度測定手段と、前記被測定物の
外周面を少なくとも3ケ所で保持する支持機構とを備え
、前記支持機構が互いに略直交する2つの回転軸を有す
る角度調整機構を有することを特徴とする光学測定装置
。 (2)パワー測定手段が筐体に取り付けられていること
を特徴とする特許請求の範囲第1項記載の光学測定装置
。 (■ パワー測定手段が筐体の外部に設けられており、
前記パワー測定手段と被測定物との間の筐体の一部にも
う一つの窓部を設けたことを特徴とする特許請求の範囲
第1項記載の光学測定装置。 (4)筐体の一部又は全部が二重構造を有することを特
徴とする特許請求の範囲第1項及至第3項のいずれかに
記載の光学測定装置。
[Scope of Claims] (1) A reflector with a hole for superimposing an infrared laser measurement light and a visible laser beam, a casing for storing an object to be measured, and a casing provided in the casing to emit a visible laser beam. A window section that guides the superimposed infrared laser measurement light to the object to be measured, and a
A power measuring means provided on the opposite side of the window, a temperature measuring means for measuring the temperature rise of the object to be measured, and a support mechanism for holding the outer circumferential surface of the object to be measured at at least three places, An optical measurement device characterized in that the mechanism has an angle adjustment mechanism having two rotation axes that are substantially orthogonal to each other. (2) The optical measuring device according to claim 1, wherein the power measuring means is attached to a housing. (■ The power measurement means is installed outside the housing,
2. The optical measuring device according to claim 1, further comprising another window provided in a part of the housing between the power measuring means and the object to be measured. (4) The optical measuring device according to any one of claims 1 to 3, wherein a part or all of the housing has a double structure.
JP5755783A 1983-03-31 1983-03-31 Optical measuring device Granted JPS59182338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5755783A JPS59182338A (en) 1983-03-31 1983-03-31 Optical measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5755783A JPS59182338A (en) 1983-03-31 1983-03-31 Optical measuring device

Publications (2)

Publication Number Publication Date
JPS59182338A true JPS59182338A (en) 1984-10-17
JPH043494B2 JPH043494B2 (en) 1992-01-23

Family

ID=13059112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5755783A Granted JPS59182338A (en) 1983-03-31 1983-03-31 Optical measuring device

Country Status (1)

Country Link
JP (1) JPS59182338A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031948A3 (en) * 2001-10-09 2004-03-04 Glucon Inc Method and apparatus for determining absorption of electromagnetic radiation by a material
US7646484B2 (en) 2002-10-07 2010-01-12 Intellidx, Inc. Method and apparatus for performing optical measurements of a material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031948A3 (en) * 2001-10-09 2004-03-04 Glucon Inc Method and apparatus for determining absorption of electromagnetic radiation by a material
US7646484B2 (en) 2002-10-07 2010-01-12 Intellidx, Inc. Method and apparatus for performing optical measurements of a material

Also Published As

Publication number Publication date
JPH043494B2 (en) 1992-01-23

Similar Documents

Publication Publication Date Title
US3930730A (en) Interferometric device for measurement of variations in length of a sample under the influence of temperature
US6515744B2 (en) Small spot ellipsometer
CA2146300A1 (en) Refractive Index Measurement of Spectacle Lenses
JPS6483135A (en) Measuring apparatus of polarized infrared ray for thin film
US4269518A (en) Stray light eliminator in a scatterometer
JPS59182338A (en) Optical measuring device
JPS60140141A (en) Optical gas sensor
Fujii et al. Volume determination of fused quartz spheres
JP2001281097A (en) Method and apparatus for measuring scattered light
US4192995A (en) Photometric testing apparatus using shaped diffuser and light beam having a spatially ill-defined energy distribution
US3369446A (en) Reflectance accessory
US3512891A (en) Spherical interferometer
US4073590A (en) Laser total reflectometer
TWM567357U (en) Probe of raman spectrometer
JPS5912981B2 (en) Repeated reflection optical device
JP2000317658A (en) Laser beam machining device
JPH02238376A (en) Probe for measuring electric field
JP2505761Y2 (en) Optical disk inspection device calibration reference plate
Slomba Application Of Lasers To Measure The Optical, Thermal And Mechanical Properties Of Materials
SU1601563A1 (en) Device for measuring angular dependence of reflection factor of material
JPS57153206A (en) Light interference measuring device
CA1115554A (en) Automated path differencing system
JPH01196523A (en) Laser apparatus
JPH087136B2 (en) Laser calorimeter
JPH0456479B2 (en)