JPS5918196A - Preparation of thin film of single crystal - Google Patents

Preparation of thin film of single crystal

Info

Publication number
JPS5918196A
JPS5918196A JP12568982A JP12568982A JPS5918196A JP S5918196 A JPS5918196 A JP S5918196A JP 12568982 A JP12568982 A JP 12568982A JP 12568982 A JP12568982 A JP 12568982A JP S5918196 A JPS5918196 A JP S5918196A
Authority
JP
Japan
Prior art keywords
single crystal
thin film
opening
base
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12568982A
Other languages
Japanese (ja)
Inventor
Toshio Kobayashi
俊雄 小林
Kazumasa Takagi
高木 一正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12568982A priority Critical patent/JPS5918196A/en
Publication of JPS5918196A publication Critical patent/JPS5918196A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/08Epitaxial-layer growth by condensing ionised vapours

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To form a thin film of single crystal free from the occurrence of crack, by setting amorphous insulating film having an opening on a base of single crystal, irradiating it with an ionized given substance through the opening so that it is crystallized. CONSTITUTION:When Si is used as a base for a semiconductor of single crystal, the amorphous insulating material layer 7 such as SiO2, Al2O3, SiN4, etc. resisting to at least 1,100 deg.C high temperature, having the opening 8, is formed on the surface of the Si base 6. It is irradiated with Si particles by crystal growth method of thin film using ionic beam. In the operation, the temperature of the base 6 is kept at about 600-1,100 deg.C. The Si particles having reached the space above the base 6 are passed through the opening 8, attached preferentially to the base 6, the growth of single crystal starts from the surface of the base 6 in the opening 8 by migration effect. After the opening 8 is embedded, the thin film 9 of Si single crystal is grown gradually on the amorphous insulating material layer 7. Consequently, the thin film 9 of single crystal having extremely low existence of transition free from the occurrence of crack is obtained.

Description

【発明の詳細な説明】 本発明は非晶質体上に単結晶薄膜を成長させるラテラル
クロス法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a lateral cross method for growing single crystal thin films on amorphous materials.

単結晶薄膜は一般に、高温度の単結晶基板上に気相化学
反応などによって所望物質を輸送し、数分から数時間の
間で、通常は数μm程度の厚さに結晶成長を行なうこと
によって形成される。また、10−8〜10−”Tor
r程度ノ高真2中”’c単M晶基板表面へ所望物質を蒸
着した後、基板を加熱して結晶成長を行ない、単結晶薄
膜を形成することも行なわれている。これらの方法はい
ずれも単結晶基板上に単結晶薄膜を形成すべき物質を輸
送して、エピタキシャル成長を行なうものであるから、
単結晶基板表面を用いることが不可欠でろb、JP晶質
物質上に単結晶膜を形成することは不可能であった。
Single-crystal thin films are generally formed by transporting a desired substance onto a high-temperature single-crystal substrate through a gas-phase chemical reaction, and growing crystals to a thickness of several micrometers over a period of minutes to several hours. be done. Also, 10-8 to 10-”Tor
It is also possible to form a single crystal thin film by depositing a desired substance on the surface of a single M crystal substrate and then heating the substrate to grow the crystal. Both methods involve transporting a substance to form a single-crystal thin film on a single-crystal substrate to perform epitaxial growth.
Although it was essential to use a single crystal substrate surface, it was not possible to form single crystal films on JP crystalline materials.

しかし、最近では、各種半導体装置の発達にともなって
、絶縁膜など、非晶質物質上に単結晶膜を形成すること
が強く望′まれるようになシ、そのだめの研究が行なわ
れるようになってきた。例えばこのような技術の1種に
ラテラルクロス法なる方法がある。第1図にこの方法の
工程図を示す。
However, in recent years, with the development of various semiconductor devices, there has been a strong desire to form single crystal films on amorphous materials such as insulating films, and research has begun to be conducted on how to do so. It has become. For example, one type of such technology is the lateral cross method. FIG. 1 shows a process diagram of this method.

この方法では単結晶基板l上に非晶質絶縁膜2を形成し
、絶縁膜の必要な場所をエツチングして単結晶基板lに
達する開口部3を形成し、ついで非晶質あるいは多結晶
の半導体層4を形成した後、レーザー、電子線などの照
射してアニールを行なう。この結果、非晶質するいは多
結晶半導体層4は開口部3全通して基板の単結晶領域l
と接触している領域から半導体層4の結晶化が進み、非
晶質絶縁膜2上にも結晶性の半導体層5が形成される。
In this method, an amorphous insulating film 2 is formed on a single-crystal substrate l, an opening 3 reaching the single-crystal substrate l is formed by etching the required location of the insulating film, and then an amorphous or polycrystalline insulating film 2 is formed on the single-crystal substrate l. After forming the semiconductor layer 4, annealing is performed by irradiating with a laser, an electron beam, or the like. As a result, the amorphous or polycrystalline semiconductor layer 4 extends through the entire opening 3 into the single crystal region l of the substrate.
Crystallization of the semiconductor layer 4 progresses from the region in contact with the amorphous insulating film 2, and a crystalline semiconductor layer 5 is also formed on the amorphous insulating film 2.

以上が従来の2テ2ルグロス法による単結晶薄膜の製造
法である。しかし、このような単結晶薄膜の製造法では
レーザー等を照射して単結晶化を図る際、しばしば熱応
力による細かいクランクが発生するという問題点かあシ
、半導体装置の製造に適用することは不可能でおった。
The above is the conventional method for producing a single crystal thin film using the 2-tel 2-gross method. However, this method of manufacturing single-crystal thin films suffers from the problem that fine cracks often occur due to thermal stress when irradiating lasers etc. to achieve single crystallization, and this method cannot be applied to the manufacture of semiconductor devices. It was impossible.

本発明は上述の問題点を解決するためになされたもので
、第1の目的は成長した単結晶薄膜中にクラックが発生
することを防止する方法を提供すること、第2の目的は
成長した単結晶薄膜中に発生する転移を減少させること
、第3の目的は半導体装置を製造するプロセス数を減少
し、容易に単結晶薄膜を成長させる方法を提供すること
、第4の目的は単結晶基板および開口部を設けない新し
い単結晶薄膜の製造方法を提供することにある。
The present invention has been made to solve the above-mentioned problems, and the first purpose is to provide a method for preventing the occurrence of cracks in the grown single crystal thin film, and the second purpose is to provide a method for preventing the occurrence of cracks in the grown single crystal thin film. The third purpose is to reduce the number of dislocations that occur in single crystal thin films.The third purpose is to reduce the number of processes for manufacturing semiconductor devices and to provide a method for easily growing single crystal thin films.The fourth purpose is to reduce the number of processes for manufacturing semiconductor devices. An object of the present invention is to provide a new method for manufacturing a single crystal thin film without providing a substrate and an opening.

本発明は上述の目的を達成するためになされたものであ
υ、非晶質体上に単結晶薄膜を成長させるラグ2ルグロ
ス法において、イオン化した所望物質を照射することに
よシ結晶化を行なうことを特徴とする単結晶薄膜の製造
方法を提供するものである。
The present invention has been made to achieve the above-mentioned object, and in the lag-2-gross method for growing a single crystal thin film on an amorphous material, crystallization is achieved by irradiating an ionized desired substance. The present invention provides a method for manufacturing a single crystal thin film characterized by carrying out the following steps.

近年、イオンビームを利用した結晶性薄膜の作・製に関
する研究が盛んになυつつあり、スパッタリング法、イ
オングレーティング法、イオンビームデポジション法、
モレキュラビームエピタキシイ法、クラスタイオンビー
ム法等によって薄膜形成が検討されている。これらの方
法では所望物質の全部あるいは一部をイオン化し、電界
を印加することによって加速したイオンを基板上に照射
することによって結晶性薄膜を作製することができる。
In recent years, research on the production and fabrication of crystalline thin films using ion beams has become active, with sputtering methods, ion grating methods, ion beam deposition methods,
Thin film formation is being investigated using molecular beam epitaxy, cluster ion beam methods, etc. In these methods, a crystalline thin film can be produced by ionizing all or part of a desired substance and irradiating a substrate with ions accelerated by applying an electric field.

イオンの持つ運動エネルギーは基板表面のスパッタリン
グあるいはエツチング効果をもつため清浄な表面に結晶
膜を形成することができるだけでなく、基板表面では運
動エネルギーが加熱効果を示し、粒子が基板上を表面拡
散するマイグレーション効果を生じ、単結晶の形成が可
能になる。
The kinetic energy of ions has a sputtering or etching effect on the substrate surface, making it possible not only to form a crystalline film on a clean surface, but also to have a heating effect on the substrate surface, causing particles to diffuse on the surface of the substrate. A migration effect occurs, allowing the formation of single crystals.

したがって、従来、高温の熱平衡条件下でのみ成長かり
能であったものが、非平衡条件下すなわち基板の温度が
比較的低くても拡散エネルギーすなわち表面移動度が増
強されて結晶学的に良質の薄膜形成ができる。
Therefore, although growth was conventionally possible only under high-temperature thermal equilibrium conditions, diffusion energy, or surface mobility, is enhanced and crystallographically high-quality growth is achieved even under non-equilibrium conditions, that is, when the substrate temperature is relatively low. Thin film formation is possible.

本発明者は2チラルグロスにおけるり2ツク発生の問題
を解決する方法として、レーザー照射の変わりに、イオ
ンビームを用いた薄膜形成法が適用できるのではないか
と考え、この方法を検討した。この結果、イオンビーム
を用いた薄膜形成法によってクシツクの発生のない単結
晶薄膜が得られることが明らかになった。したがって、
本発明はこの新しい発見にもとづいて構成されるもので
ある。
The present inventor thought that a thin film forming method using an ion beam could be applied instead of laser irradiation as a method to solve the problem of generation of 2-chilling in 2-chillar gloss, and studied this method. As a result, it was revealed that a single-crystal thin film without scratches can be obtained by a thin film formation method using an ion beam. therefore,
The present invention is constructed based on this new discovery.

、 以下に実施例により本発明の詳細な説明する。, The present invention will be explained in detail with reference to Examples below.

実施例 工 第2図に本発明による単結晶薄膜成長法の工程図を示す
。図において、6は単結晶基板、7は非晶絶縁膜、8は
開口部、9は成長した単結晶薄膜を示す。
Embodiment FIG. 2 shows a process diagram of the single crystal thin film growth method according to the present invention. In the figure, 6 is a single crystal substrate, 7 is an amorphous insulating film, 8 is an opening, and 9 is a grown single crystal thin film.

単結晶半導体基板lとしてSiを用いた場合を例にあげ
て、工程を説明する。まず、Si基板6の表面にSt 
Ox # AttO,、S iB N4等の少なくとも
1100Cの高温に耐えられる絶縁体層7を形成する。
The process will be explained by taking as an example a case where Si is used as the single crystal semiconductor substrate l. First, on the surface of the Si substrate 6, St.
An insulating layer 7 made of Ox # AttO, SiB N4, etc. that can withstand a high temperature of at least 1100 C is formed.

この絶縁体層7は非晶質であって良く、また膜厚の制限
もない。しかし、半導体基板6との接触によシ生ずる歪
は少ない方が好ましく、歪の大きい場合は成長した単結
晶薄膜に転移が多数発生する。ついで、イオンビームを
利用した薄膜結晶成長法、すなわち、スパッタリング法
、イオングレーティング法、イオンビームデポジション
法、モレキュラビームエビタキシイ法、クラスタイオン
ビーム法等によってSi単結晶薄膜全形成する。このと
き、基板6の温度は600〜1100Cに保持し、この
温度で十分な表面拡散が行なわれて単結晶が形成できる
ようにするため、数十e■から数百e■のエネルギーを
もつSi粒子を照射することが必要である。例えばスパ
ッタリング法では数KVの電界を印加してArイオンを
ターゲットに当て、たたき出されたSiは平均1Oev
のエネルギーをもっているが、さらに基板との間に電界
を印〃lして(バイアス・スノ(ツタリング) 7JL
I速し、尚いエネルギーを与えることが好ましい。一方
、イオンブレーティング法ではSi粒子を直接イオン化
して、電界による加速を行なうことができるため、平均
1ooev程度のエネルギー奮もつSi粒子を照射する
ことができる。このようにして基板6上に達したSi粒
子は開口部8を通って基板6上に優先的に付層し、マイ
グレーション効果によって開口部内の基板表面から成長
を開始しこの結果、開口部を埋めた後は序々に非晶質絶
縁1−上にSi単結晶薄膜の成長が継続する。この結果
、非晶質絶縁層上には基板6と同じSi単結晶薄膜9が
成長する。得られた単結晶部、膜にはクランクの発生が
なく、転移の存在も極めて少ない。
This insulator layer 7 may be amorphous, and there are no restrictions on the film thickness. However, it is preferable that the strain caused by contact with the semiconductor substrate 6 be small; if the strain is large, many dislocations will occur in the grown single crystal thin film. Next, a Si single crystal thin film is entirely formed by a thin film crystal growth method using an ion beam, ie, a sputtering method, an ion grating method, an ion beam deposition method, a molecular beam epitaxy method, a cluster ion beam method, or the like. At this time, the temperature of the substrate 6 is maintained at 600 to 1100 C, and in order to ensure sufficient surface diffusion at this temperature to form a single crystal, Si It is necessary to irradiate the particles. For example, in the sputtering method, an electric field of several KV is applied and Ar ions are applied to the target, and the ejected Si is 1 Oev on average.
It has the energy of
It is preferable to increase the speed and give energy. On the other hand, in the ion blating method, Si particles can be directly ionized and accelerated by an electric field, so that Si particles having an average energy of about 1 ooev can be irradiated. The Si particles that have reached the substrate 6 in this way pass through the opening 8 and are preferentially deposited on the substrate 6, and due to the migration effect, they start growing from the substrate surface inside the opening, and as a result, they fill up the opening. After that, a Si single crystal thin film gradually continues to grow on the amorphous insulator 1-. As a result, the same Si single crystal thin film 9 as the substrate 6 is grown on the amorphous insulating layer. The obtained single-crystal portion and film are free from cranking and have extremely few dislocations.

実施例 2 第3図には本発明の他の実施例を示す。図中、lOは任
意の基板、11は非晶質絶縁膜、12は所望する単結晶
薄膜と同質の単結晶チップ、13は成長した単結晶薄膜
を示す。実施例1と同様にSi単結晶薄膜の成長を例に
とって、工程を説明すると、実施例1と同様な方法で基
板10上に非晶質絶縁膜11を設けた後、非晶質絶縁膜
上には種子となる単結晶テンプ12を置く。ついで実施
例1で述べたのと同イ求にイオンビームを用いた薄膜成
長法でSi粒子を照射し、Si単結晶薄膜の育成を行な
う。基板龜匿は600〜11001?の間で選ぶのが艮
い。この結果、非晶質絶縁膜11上に飛来したSi粒子
は単結晶チップ12に優先的に付着し、育成の継続が続
くにしたがい、非晶質絶縁膜上を序々にSi単結晶部が
広カリ、増結晶薄膜13を形成する。得られた単結晶薄
膜には実施例1と同様にクランクの発生がなく、転移も
極めて少なかった。
Embodiment 2 FIG. 3 shows another embodiment of the present invention. In the figure, IO is an arbitrary substrate, 11 is an amorphous insulating film, 12 is a single crystal chip having the same quality as a desired single crystal thin film, and 13 is a grown single crystal thin film. The process will be explained using the growth of a Si single crystal thin film as in Example 1. After forming an amorphous insulating film 11 on a substrate 10 in the same manner as in Example 1, A single-crystal balance 12, which will serve as a seed, is placed in . Next, Si particles are irradiated by the thin film growth method using an ion beam in the same manner as described in Example 1 to grow a Si single crystal thin film. Is the board cover 600-11001? It's hard to choose between them. As a result, the Si particles flying onto the amorphous insulating film 11 attach preferentially to the single crystal chip 12, and as the growth continues, the Si single crystal portion gradually spreads over the amorphous insulating film. Potassium forms a crystallized thin film 13. Similar to Example 1, the single crystal thin film obtained did not have any cranks and had very few dislocations.

以上の実施タリで示したように、本発明の単結晶薄膜製
造法によるとクランクの発生のない単結晶薄膜を得るこ
とができ、また、転移を減少させることができる。さら
に、従来法よシ年結晶薄膜を形成する工程を簡単化する
ことも可能であった。
As shown in the above implementation example, according to the method for manufacturing a single crystal thin film of the present invention, a single crystal thin film without occurrence of cranks can be obtained, and dislocations can be reduced. Furthermore, it was also possible to simplify the process of forming a crystalline thin film compared to the conventional method.

さらに、本発明では単結晶基板および開口部を設けない
新しい単結晶薄膜の製造法を提供することができた。
Furthermore, the present invention was able to provide a single crystal substrate and a new method for manufacturing a single crystal thin film without providing an opening.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法による単結晶薄膜の形成工程図、第2図
は本発明の一実施例の単結晶薄膜形成工程図、第3図は
同じく他の実施例の単結晶薄膜形成工程図である。 l・・・単結晶基板、2・・・非晶質絶縁膜、3・・・
開口部、4・・・非晶質あるいは多結晶半導体層、5・
・・結晶性の半導体層、6・・・単結晶基板、7・・・
非晶質絶縁膜。 8・・・開口部、9・・・成長した単結晶薄膜、10・
・・任意の基板、11・・・非晶質絶縁膜、12・・・
所望する単結晶と同質の単結晶チップ、13・・・成長
した単Y 1 区 像) 第 2 図 (幻 第 3 図 (Illj)
Fig. 1 is a process diagram for forming a single crystal thin film using a conventional method, Fig. 2 is a process diagram for forming a single crystal thin film according to an embodiment of the present invention, and Fig. 3 is a process diagram for forming a single crystal thin film according to another embodiment. be. l... Single crystal substrate, 2... Amorphous insulating film, 3...
opening, 4... amorphous or polycrystalline semiconductor layer, 5...
...Crystalline semiconductor layer, 6... Single crystal substrate, 7...
Amorphous insulation film. 8... Opening portion, 9... Grown single crystal thin film, 10.
...Arbitrary substrate, 11...Amorphous insulating film, 12...
Single crystal chip with the same quality as the desired single crystal, 13...Image of the grown single Y1 area) Figure 2 (phantom Figure 3 (Illj)

Claims (1)

【特許請求の範囲】[Claims] 1、非晶質体上に単結晶薄膜を成長させるラテラルクロ
ス法において、イオン化した所望物質を照射することに
よシ結晶化を行なうことを特徴とする単結晶薄膜の製造
方法。
1. A method for producing a single crystal thin film, which comprises performing crystallization by irradiating an ionized desired substance in the lateral cross method of growing a single crystal thin film on an amorphous material.
JP12568982A 1982-07-21 1982-07-21 Preparation of thin film of single crystal Pending JPS5918196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12568982A JPS5918196A (en) 1982-07-21 1982-07-21 Preparation of thin film of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12568982A JPS5918196A (en) 1982-07-21 1982-07-21 Preparation of thin film of single crystal

Publications (1)

Publication Number Publication Date
JPS5918196A true JPS5918196A (en) 1984-01-30

Family

ID=14916247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12568982A Pending JPS5918196A (en) 1982-07-21 1982-07-21 Preparation of thin film of single crystal

Country Status (1)

Country Link
JP (1) JPS5918196A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5994412A (en) * 1982-11-22 1984-05-31 Agency Of Ind Science & Technol Manufacture of semiconductor element
JPS639141A (en) * 1986-06-30 1988-01-14 Canon Inc Multilayer structure and manufacture threrof
JPS6318668A (en) * 1986-07-11 1988-01-26 Canon Inc Photoelectric transducer device
JPS6318655A (en) * 1986-07-11 1988-01-26 Canon Inc Semiconductor device
JPS6376367A (en) * 1986-09-18 1988-04-06 Canon Inc Photoelectric conversion device
JPS63119218A (en) * 1986-11-07 1988-05-23 Canon Inc Semiconductor base material and manufacture thereof
JPS63265463A (en) * 1986-10-17 1988-11-01 Canon Inc Complementary mos integrated circuit device
JPS647659A (en) * 1987-06-30 1989-01-11 Canon Kk Photoelectric converter
US5362672A (en) * 1988-06-17 1994-11-08 Tadahiro Ohmi Method of forming a monocrystalline film having a closed loop step portion on the substrate
US7411232B2 (en) 2004-07-16 2008-08-12 Matsushita Electric Industrial Co., Ltd. Semiconductor photodetecting device and method of manufacturing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5994412A (en) * 1982-11-22 1984-05-31 Agency Of Ind Science & Technol Manufacture of semiconductor element
JPS639141A (en) * 1986-06-30 1988-01-14 Canon Inc Multilayer structure and manufacture threrof
JP2525773B2 (en) * 1986-06-30 1996-08-21 キヤノン株式会社 Semiconductor device and manufacturing method thereof
JPS6318668A (en) * 1986-07-11 1988-01-26 Canon Inc Photoelectric transducer device
JPS6318655A (en) * 1986-07-11 1988-01-26 Canon Inc Semiconductor device
JP2515301B2 (en) * 1986-07-11 1996-07-10 キヤノン株式会社 Method for manufacturing semiconductor device
JPS6376367A (en) * 1986-09-18 1988-04-06 Canon Inc Photoelectric conversion device
JPS63265463A (en) * 1986-10-17 1988-11-01 Canon Inc Complementary mos integrated circuit device
JPS63119218A (en) * 1986-11-07 1988-05-23 Canon Inc Semiconductor base material and manufacture thereof
JPS647659A (en) * 1987-06-30 1989-01-11 Canon Kk Photoelectric converter
US5362672A (en) * 1988-06-17 1994-11-08 Tadahiro Ohmi Method of forming a monocrystalline film having a closed loop step portion on the substrate
US7411232B2 (en) 2004-07-16 2008-08-12 Matsushita Electric Industrial Co., Ltd. Semiconductor photodetecting device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JPS5918196A (en) Preparation of thin film of single crystal
JP2765968B2 (en) Method for manufacturing crystalline silicon film
JP2743370B2 (en) Method of forming polycrystalline film
JPS5886717A (en) Forming of single crystal silicon film
JPH0810669B2 (en) Method of forming SOI film
JPS5860556A (en) Preparation of semiconductor device
JPS58182816A (en) Recrystallizing method of silicon family semiconductor material
JPS5945996A (en) Vapor growth of semiconductor
JPH059099A (en) Method for growing crystal
JPH02188499A (en) Production of polycrystal silicon film having large crystal grain diameter
JPH0361335B2 (en)
JPS60234312A (en) Formation of soi film
JP3332645B2 (en) Method for manufacturing polycrystalline semiconductor
JP2706770B2 (en) Semiconductor substrate manufacturing method
JPS5856408A (en) Method of growing single crystal silicon film
JPS58167490A (en) Formation of single crystal on amorphous film
JPS59181609A (en) Manufacture of semiconductor device
JPH0635360B2 (en) Method for manufacturing single crystal aluminum nitride film
JPS60164316A (en) Formation of semiconductor thin film
JPS61197492A (en) Method of forming semiconductor crystal
JP2793241B2 (en) SOI formation method
JPS5934626A (en) Method for formation of semiconductor film
JPS58197718A (en) Preparation of single crystal thin film
JPS59228713A (en) Manufacture of semiconductor device
JPH02105517A (en) Manufacture of semiconductor device