JPS59175629A - Clutch control device - Google Patents

Clutch control device

Info

Publication number
JPS59175629A
JPS59175629A JP58046944A JP4694483A JPS59175629A JP S59175629 A JPS59175629 A JP S59175629A JP 58046944 A JP58046944 A JP 58046944A JP 4694483 A JP4694483 A JP 4694483A JP S59175629 A JPS59175629 A JP S59175629A
Authority
JP
Japan
Prior art keywords
rotation speed
prime mover
clutch
slip
setting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58046944A
Other languages
Japanese (ja)
Other versions
JPH0117010B2 (en
Inventor
Osamu Nagata
修 永田
Hajime Yamada
一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP58046944A priority Critical patent/JPS59175629A/en
Publication of JPS59175629A publication Critical patent/JPS59175629A/en
Publication of JPH0117010B2 publication Critical patent/JPH0117010B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • F16D48/066Control of fluid pressure, e.g. using an accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10443Clutch type
    • F16D2500/1045Friction clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/11Application
    • F16D2500/1105Marine applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/30406Clutch slip
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/3041Signal inputs from the clutch from the input shaft
    • F16D2500/30415Speed of the input shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/3042Signal inputs from the clutch from the output shaft
    • F16D2500/30426Speed of the output shaft

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

PURPOSE:To allow a propeller of a ship to rotate below the specific minimum for the revolving speed of the prime mover, by furnishing a control circuit, by which a friction clutch is slip rotated in response to a driven machine revolving speed setting signal to indicate a speed below the minimum revolving speed of the prime mover. CONSTITUTION:If a number-of-revolutions setting device 50 is set to a level below the minimum number of revolutions Nmin of a prime mover 1, a number- of-revolutions setting device 51 emits a number-of-revolutions setting signal Ns for a propeller 3 as a slip number-of-revolutions signal N1s via a 6, and a number-of-revolutions setting device 54 emits the min. number of revolutions Nmin as a number-of-revolutions setting signal N2s via line 10. Thereby the prime mover 1 will operate at the minimum revolving speed Nmin, and the pressing force in a friction clutch 2 is controlled by slip signal N1s to provide slip condition. Thus the propeller 3 rotates at a speed below Nmin.

Description

【発明の詳細な説明】 本発明は、章捺クラッチを用いてスリップ制御を行なう
だめのクラッチ制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a clutch control device that performs slip control using a clutch.

船舶の推進器、ポンプなどの機器を駆動する原動機は、
使用できる最低回転数が制限されており、最低回転数以
下では使用できないのが通例である。
The prime mover that drives equipment such as ship propulsors and pumps is
There is a limit to the minimum number of revolutions that can be used, and it is common that the machine cannot be used below the minimum number of revolutions.

しかるに被駆動機器の運用上、最低回転数以下において
も連it的に回転数を制御できることが要求される場合
が多い。このような駆動する原動機側の1lil約と、
被腐むυノ根器側の要求を同時に満たす手段の1つとし
て、蛎力伝述軸の中面に設ける摩擦クラッチをすべらせ
ることにより、原動機の回転数を最低回転数以上に保っ
たまま、被駆動機器の回転数のみを最低回転数以下に制
御するスリップ制仙1がある。
However, in terms of operation of driven equipment, it is often required to be able to continuously control the rotational speed even below the minimum rotational speed. Approximately 1 lil on the driving motor side,
One of the ways to simultaneously satisfy the demands of the rotting υ roots is to keep the rotational speed of the prime mover above the minimum rotational speed by sliding a friction clutch installed on the inside of the shaft. There is a slip control 1 that controls only the rotational speed of a driven device to a minimum rotational speed or less.

第1図はスリップ制御に使用する単振クラッチの断…J
図である。スリップ制御に用いる摩擦クラッチ2は一般
に第1図に示されるように、入力軸21か原動板に結合
され、原動機によって駆動される。出力1IIII12
2il′i被駆紡徹器と結合し、クラッチ板24の摩擦
力によって駆動される。すなわち1、クラッチ板24に
作用する摩擦力によって入力軸21から出力軸22ヘト
ルクQcが伝達されるのであり、この伝達トルクQcは
原動機に対する負荷となると同時に被駆動機器に対する
駆動力となる。
Figure 1 shows the disconnection of a single-oscillation clutch used for slip control...J
It is a diagram. The friction clutch 2 used for slip control is generally connected to an input shaft 21 or a driving plate, and is driven by a motor, as shown in FIG. Output 1III12
2il'i is connected to the driven spinning device and is driven by the frictional force of the clutch plate 24. That is, 1. Torque Qc is transmitted from the input shaft 21 to the output shaft 22 by the frictional force acting on the clutch plate 24, and this transmitted torque Qc becomes a load on the prime mover and at the same time serves as a driving force for the driven equipment.

クラッチ板24はクラッチピストン23によシ押し付け
られておシ、クラッチ板24へのクラッチピストン23
の押し付は力に応じて第1式に従う伝達トルクQcを入
力軸21から出力軸22へ伝える。
The clutch plate 24 is pressed against the clutch piston 23, and the clutch piston 23 is pressed against the clutch plate 24.
The pressing transmits a transmission torque Qc according to the first equation from the input shaft 21 to the output shaft 22 according to the force.

Qc−Kc・μ・FC・・・(1) 第1式において、Kcは摩擦クラッチ2の形状により決
まる定数、μはクラッチ板24の摩擦係数、Fc uク
ラッチピストン23による押し付は力である。スリップ
制御においては、クラッチピストン23による押し付は
力Fcを加減することによって伝達トルクQcを操作し
、出力軸22の回転数を制御するのである。
Qc-Kc・μ・FC...(1) In the first equation, Kc is a constant determined by the shape of the friction clutch 2, μ is the friction coefficient of the clutch plate 24, and the pressing force by the Fc u clutch piston 23 is the force. . In slip control, the pressing force by the clutch piston 23 manipulates the transmitted torque Qc by adjusting the force Fc, thereby controlling the rotation speed of the output shaft 22.

ところで弗、1式の摩擦係数μは、入力IIIIl]2
1と出力軸22との回転数差ΔN(=久方軸回転数−出
力軸回転数)にLじて変化するものであり、第2図で示
すように回転数差ΔNが大きくなると摩′  擦係数μ
が小さくなるという特性を有している。
By the way, the friction coefficient μ of equation 1 is the input IIIl]2
1 and the output shaft 22 (= rotational speed of the long shaft - rotational speed of the output shaft), and as shown in Fig. 2, as the rotational speed difference ΔN increases, wear increases. Friction coefficient μ
It has the characteristic that it becomes small.

このため伝達トルクQcは入力軸21および出力軸22
0回転数変動に対して次のように変化する。
Therefore, the transmitted torque Qc is
It changes as follows with respect to 0 rotation speed fluctuation.

すなわち、入力軸21の回転数が増加(もしくは減少)
した場合には、回転数差ΔNが増加(′#、少)するた
めに摩擦係数μが減少(増加)シ、伝達トルクQcは減
少(増加)する。一方出力軸22の回転数が瑞加(減少
)した場合には、回転数差ΔNが敗少(増加)するだめ
に#擦係数μが増加(秋夕)シ、伝達トルクQcは増加
(減少)する。
In other words, the rotation speed of the input shaft 21 increases (or decreases)
In this case, since the rotational speed difference ΔN increases ('#, decreases), the friction coefficient μ decreases (increases) and the transmitted torque Qc decreases (increases). On the other hand, when the rotation speed of the output shaft 22 increases (decreases), the rotation speed difference ΔN decreases (increases), the #friction coefficient μ increases (Chuseok), and the transmitted torque Qc increases (decreases). )do.

このことは、入力軸21を駆動する原動機側から見ると
、回訟数が増加(減少)すると負荷トルクが数少(増加
)シ、捷すまず回転数の増加(減少)を助長するという
不安定な負荷を駆動することと等価である。一方出力軸
22により駆動される被駆動板器側から見ると、回転数
が増加(減少)すると駆動トルクが増加(顛少)シ、ま
す捷す回転数の増加(減少)を助長するという不安定な
w、if!IJ aにより駆動されていることと等価で
ある。
This means that, from the perspective of the prime mover that drives the input shaft 21, as the number of rotations increases (decreases), the load torque decreases (increases) by a small amount, which causes the problem that the number of revolutions increases (decreases) instead of changing. This is equivalent to driving a stable load. On the other hand, when viewed from the side of the driven plate device driven by the output shaft 22, as the number of rotations increases (decreases), the driving torque increases (decreases). Stable lol, if! This is equivalent to being driven by IJ a.

スリップ制御を実施するに際しては、駆動する原動機と
被駆動機器の両方に発生する前記摩擦係数μに起因した
不安定性を解消する必要がある。
When implementing slip control, it is necessary to eliminate instability caused by the friction coefficient μ that occurs in both the driving prime mover and the driven equipment.

従来のスリップ制御を目的としたクラッチ制御装置は、
出力軸220回転数を回転′#、設定値と比較すること
により、出力軸220回転数を回転数設定値に保つよう
に前記押し付は力Fcを操作するものであり、押し付は
力Fcは入力軸210回転数変動にかかわらず決定され
ていた。すなわち、従来のクラッチ制御装置では、前記
問題点のうち被部#機器側に発生する不安定性は解消で
きるが、駆動する原動機側に発生する不安定性について
は何ら解決することなく、すべてj氷!l!IJ at
の回転数制御に依存していた。このため、スリップ制御
に使用される原動機は最低回転数以下に4fJ当する低
出力で前記のような不安定な特性の負荷の回転数を安定
に制御せねばならず、原!I!IJ機の回転数制御にと
って大きな負担となっていた。
Conventional clutch control devices aimed at slip control are
The pressing operation operates the force Fc so as to maintain the output shaft 220 rotational speed at the rotational speed setting value by comparing the output shaft 220 rotational speed with the rotational speed set value. was determined regardless of fluctuations in the input shaft 210 rotation speed. In other words, with the conventional clutch control device, among the problems mentioned above, the instability that occurs on the covered equipment side can be solved, but the instability that occurs on the driving motor side cannot be solved at all, and all of the problems are solved! l! IJ at
It depended on the rotation speed control. For this reason, the prime mover used for slip control must stably control the rotation speed of a load with unstable characteristics as described above at a low output equivalent to 4 fJ below the minimum rotation speed. I! This was a big burden on the rotation speed control of the IJ machine.

本発明の目的は、l#擦係数に起因す、る不安定性をす
べて解消し、原動機の回転数制御に依存することの少な
い安定なスリップ制御を実現するとともに、被部wJ機
器の操作に便利なように、スリップ制御の有無にかかわ
らず被駆動機器の回転数を設定できるようにしたクラッ
チ制御装置を提供することである。
The purpose of the present invention is to eliminate all instability caused by l# friction coefficient, to realize stable slip control that is less dependent on the rotational speed control of the prime mover, and to conveniently operate the covered wJ equipment. Thus, it is an object of the present invention to provide a clutch control device that can set the rotation speed of a driven device regardless of whether or not slip control is performed.

以下、図ilI]IVcよって本発明の詳細な説明する
The present invention will now be described in detail with reference to Figures ilI]IVc.

第3図は本発明の一実施例の系統図であり、クラッチ制
御装置5を船舶6に使用した状態を示す。
FIG. 3 is a system diagram of an embodiment of the present invention, showing a state in which the clutch control device 5 is used in a boat 6. As shown in FIG.

原動機1は動力伝達軸11を介して摩擦クラッチ2に結
合され、咄擦クラッチ21−、J:動力伝達lII[I
]12を介して被部wJ機器としての推進器3に結合さ
れる。クラッチ制御装置5は、原卯j板1と摩擦クラッ
チ2に対して指令@号を与えるものである。
The prime mover 1 is coupled to a friction clutch 2 via a power transmission shaft 11, and a friction clutch 21-, J: power transmission lII[I
] 12, it is coupled to the propulsion device 3 as a covered wJ device. The clutch control device 5 is a device that gives commands to the base plate 1 and the friction clutch 2.

第4区は不発りJの一実施例のブロック図である。The fourth section is a block diagram of one embodiment of the misfire J.

犀剣穢1にはクラッチ制御装置5から出力される席すジ
ノ機回転数設定信”ij N 2 sがライン11を介
して入力され、原動機回転数設定信号N2sに相当する
回転数を保持するように運転される。原wJ桜1に連設
される前力伝達軸11は、もう一方で摩擦クラッチ2の
入力軸21に結合され、原動機1の出力を摩擦クラッチ
2に伝える。M擦りラッチ2には、クラッチ制御装置5
から出力される押し付は力設定信号Fcsがライン12
を介して入力され、押し付は力設定信号Fcsに相当す
る力でクラッチ板24を押し付け、入力軸21から出力
軸22へ所定のトルクが伝達される。−ツカ伝達軸12
は摩擦クラッチ2の出力軸22と推進器3とを結合し、
I#′擦クツクラッチ2力軸21から出力軸22へ伝え
られた伝達トルクを推進器3に伝え、推進器3を産制す
る。
The engine rotation speed setting signal "ij N2s" output from the clutch control device 5 is input to the Saiken 1 via the line 11, and the rotation speed corresponding to the prime mover rotation speed setting signal N2s is maintained. The front force transmission shaft 11 connected to the original wJ Sakura 1 is connected to the input shaft 21 of the friction clutch 2 on the other end, and transmits the output of the motor 1 to the friction clutch 2.M friction latch 2 includes a clutch control device 5
The force setting signal Fcs output from line 12
The pressing forces the clutch plate 24 with a force corresponding to the force setting signal Fcs, and a predetermined torque is transmitted from the input shaft 21 to the output shaft 22. - Tsuka transmission shaft 12
connects the output shaft 22 of the friction clutch 2 and the propulsion device 3,
The transmission torque transmitted from the I#' friction clutch 2 force shaft 21 to the output shaft 22 is transmitted to the propulsion device 3, and the propulsion device 3 is put into production.

第1の回転数発信器13は、摩擦クラッチ2の出力軸2
2の回転数すなわち被駆動機器である推進器3の回転数
を検出し、推進器回転故伯づN1をライン13を介して
クラッチ制御装置5へ出力する。第2の回転数発信器1
4は、華掠クラッチ2の入力軸21の回転数すなわち原
!Ipノ機1の回転数を検出し、原!I!lJ機回転数
倍七N2をライン14を介してクラッチ制御装置5へ出
力する。
The first rotation speed transmitter 13 is connected to the output shaft 2 of the friction clutch 2.
2, that is, the rotation speed of the propeller 3 which is a driven device, and outputs the propeller rotation speed N1 to the clutch control device 5 via the line 13. Second rotation speed transmitter 1
4 is the number of rotations of the input shaft 21 of the Hanako clutch 2, that is, the original! Detect the rotation speed of Ipno machine 1 and start! I! 1J machine rotation speed times 7N2 is output to the clutch control device 5 via the line 14.

クラッチ制御装置5において、第3の回転数設定器50
は、11L進器3の回転数を設定する推進器回転数設定
信号Nsをライン15を介して第1の回転数設定器51
へ出力する。第1の回転数設定器51はq1=進器回転
奴設定信号べSを交信して、スリップ回転41K設定侶
号Nlsケライン16を介して出力する。
In the clutch control device 5, the third rotation speed setting device 50
The propeller rotation speed setting signal Ns for setting the rotation speed of the 11L advancer 3 is sent to the first rotation speed setting device 51 via the line 15.
Output to. The first rotation speed setting device 51 communicates with q1 = advance gear rotation setting signal S, and outputs it via the slip rotation 41K setting signal Nls key line 16.

第1の回転数設定器51は、第5図に示すように、推進
器回紘政設定価号Nsが予め定められた原動機1の最低
回転数Nm1n未満であれば、推進器四転玖6之定(S
号Nsτスリップ回転故設定イgづNlsとし、推進器
回転故設定侶号Nsが最低回転数Nm1n以上であれば
、スリップ回転数設定信号N’lsが光分に大きな値と
なるような特性を有する。
As shown in FIG. 5, the first rotation speed setting device 51 sets the propeller rotation speed setting device 6 to 6 if the propeller rotation setting price Ns is less than the predetermined minimum rotation speed Nm1n of the prime mover 1. Fixed (S
The slip rotation speed setting signal N'ls has a characteristic that the slip rotation speed setting signal N'ls becomes an extremely large value if the propeller rotation failure setting signal Ns is equal to or higher than the minimum rotation speed Nm1n. have

第1の減算器52には、第1の回転数設定器51から出
力されるスリップ回転数設定信号Nlsがライン16を
介して入力され、また第1の回転数発信器1−3から出
力される推進器回転牧信号N1がライン13を介して入
力される。第1の減算器52では、この入力されたスリ
ップ回転数設定器9Nlsと推進器回獣数信号N1とを
演算し、回転数設定器りΔN1(=N1s−N’l)を
ライン17を介してスリップ制佃1演算器53へ出力す
る。
The first subtractor 52 receives the slip rotation speed setting signal Nls output from the first rotation speed setter 51 via the line 16, and also receives the slip rotation speed setting signal Nls output from the first rotation speed transmitter 1-3. A propeller rotation signal N1 is input via line 13. The first subtractor 52 calculates the input slip rotation speed setter 9Nls and the propeller rotation speed signal N1, and calculates the rotation speed setting value ΔN1 (=N1s-N'l) via the line 17. The output signal is output to the slip control unit 1 arithmetic unit 53.

スリップ制御演算器53は、第1の減算器52から出力
される回私W、偏左伯彊ΔN1に比例、微分、積分など
の適当な演算を施し、推進糸回転数をスリップ回転欽課
冗倍号Nlsに見合ったものとなるように押し付は力を
設定する制御信号Fclをライン18’z介して加算器
57へ出力する。
The slip control calculation unit 53 performs appropriate calculations such as proportionality, differentiation, and integration on the rotation speed W and the rotation angle ΔN1 outputted from the first subtractor 52, and calculates the propulsion yarn rotation speed by slip rotation speed. A control signal Fcl is output to the adder 57 via the line 18'z to set the pressing force so as to correspond to the multiple Nls.

一方、ia記第3の回転数設定器5oがら出力される推
進船回転&設定信号Nsは、ライン15がら分岐してラ
インI!9を介して第2の回転数設定器54へ入力され
る。第2の回転数設定器54は、推進器回仏数設定信号
Nsを交信して原動機回転数設定信号N2sをラインf
lOを介して出力する。
On the other hand, the propulsion ship rotation & setting signal Ns output from the third rotation speed setting device 5o in IA branches from line 15 to line I! 9 is input to the second rotation speed setting device 54. The second rotation speed setter 54 communicates the propeller rotation speed setting signal Ns and sets the prime mover rotation speed setting signal N2s on the line f.
Output via lO.

第2の回転数設定器54は第6図に示すように、推進糸
回転奴設定信号Nsが最低回転数Nm1n未満でろれば
、最低回転数Nm1nを原動機回転数設定信号N2’s
とし、推進器回転数設定信号Nsが最低回転数Nm1n
以上であれば、推進器回転数設定信号Nsを原動機回転
数設定信号N2sとする特性に句する。
As shown in FIG. 6, the second rotation speed setting device 54 sets the minimum rotation speed Nm1n to the prime mover rotation speed setting signal N2' if the propulsion line rotation setting signal Ns is less than the minimum rotation speed Nm1n.
and the thruster rotation speed setting signal Ns is the minimum rotation speed Nm1n
If the above is the case, the characteristic is that the propeller rotation speed setting signal Ns is set as the prime mover rotation speed setting signal N2s.

第20漱、算器55には、第2の回転数設定器54から
出力される1足動機回!肱奴設定イー号N2sがライン
llOを介して入力され、また第2の回帖故発イ8器1
4から出力びれる原動機回転牧伯号N2かライン14を
介して入力される。第2の減算器55では、この入力さ
れた糸切執回転故設定侶号N2sと犀動振回転数佑彊N
2とを演算し、回転牧備1座イd号ΔN2(=N2−N
2S )をラインJllを介して補償演算器56へ出力
する。
The 20th station, the calculator 55, has the number of rotations outputted from the second rotation speed setting device 54! The second circular setting number N2s is input via the line llO, and the second circular error is inputted via the line llO.
It is input via line 14 to the prime mover rotary motor N2 outputted from line 14. In the second subtractor 55, the input thread cutting rotation speed setting number N2s and the rhino vibration rotation speed N2s are calculated.
2, and calculate the number of rotary stock 1 d number ΔN2 (=N2-N
2S) is output to the compensation calculator 56 via line Jll.

補償演算器568−j第2の減算器55から出力される
回転数偏差信号ΔN2に比例、微分などの適当なび算を
施し、μバ動機回転故が増加(もしくは減少)すれば、
それに応じて席動徐1の負匈トルクすなわち摩擦クラッ
チ2の伝達トルクが増加(もしくは減少)するように、
補償信% F c 2をライン112を介して加算器5
7へ出力する。
Compensation calculation unit 568-j If the rotational speed deviation signal ΔN2 output from the second subtractor 55 is subjected to appropriate multiplication such as proportionality or differentiation, and the μ motor rotation error increases (or decreases),
Accordingly, the negative torque of the seat movement control 1, that is, the transmission torque of the friction clutch 2 increases (or decreases).
The compensation signal % F c 2 is sent to adder 5 via line 112.
Output to 7.

加算器57はスリップ制御演算器53がらライン18を
介して出力される制御48号Fclと、補償演算器56
からライン112を介して出力される袖償佑号Fc2と
を加算し、押し付は力設定(M号Fc5(=Fcl+F
c2)として、外擦クラッチ2ヘライン127介して出
力する。
The adder 57 receives the control No. 48 Fcl output from the slip control calculator 53 via the line 18 and the compensation calculator 56.
The pressing force is set by adding the force setting (M number Fc5 (=Fcl+F
As c2), it is output via the line 127 to the external friction clutch 2.

次に本発明のクラッチ制御装置5による推進器3の操絖
について説明する。まず、第3の回転数シ定器50を糸
!l!IJ懺1の最低回転数N min以下に設定した
場合について説明する。この場合、giJ記特性により
第1の回転数設定器51は推進糸回転奴設定(8号Ns
 をスリップ回転数信号Nlsとしてライン16を介し
て出力し、第2の回転数設定器54は最低回転数Nm1
nを原UJ楓回転奴設定倍号N2sとしてライン1!1
0を介して出力する。したがって原動@lは最低回転数
Nm1nで運転され、推進器3は摩擦クラッチ2のスリ
ップにより第3の回1区数設定器50で設定した最低回
転数Nm1n以下の回転′#、に制佃1される。特に、
原動機1が発生する駆動トルクが摩擦クラッチ2の伝達
トルクに等しく、かつ摩擦クラッチ2の伝達トルクが推
進器3の吸収トルクに等しい平衡状態においては、原動
峨回転数段定価号N2sと爪ジシJ後回転故信号N2が
いずれも最低回転数NIn1nとなし、補償演算器56
の入力となる回訟故偏差伯号ΔN2および補償演算器5
6の出力である補償D−;Mfc2はいずれも零となる
。すなわち、スリップ制御演算装置5゛ 3がライン1
8を介して出力する制御倍力Fclが11記平衡状憑を
保持するために必要な摩擦クラッチ2の伝達トルクを与
える押し付は力を設定する。
Next, the operation of the propulsion device 3 by the clutch control device 5 of the present invention will be explained. First, set the third rotation speed constant device 50! l! A case where the IJ control 1 is set to a minimum rotational speed N min or less will be explained. In this case, due to the giJ characteristic, the first rotation speed setting device 51 is set to the propulsion thread rotation speed setting device (No. 8 Ns
is output as the slip rotation speed signal Nls via line 16, and the second rotation speed setting device 54 outputs the minimum rotation speed Nm1 as the slip rotation speed signal Nls.
Line 1!1 with n as Hara UJ Kaede rotation guy setting double number N2s
Output via 0. Therefore, the driving force @l is operated at the minimum rotational speed Nm1n, and the propulsion device 3 is restricted to rotation '#, which is less than the minimum rotational speed Nm1n set by the third rotation number setting device 50 due to the slip of the friction clutch 2. be done. especially,
In an equilibrium state in which the driving torque generated by the prime mover 1 is equal to the transmission torque of the friction clutch 2, and the transmission torque of the friction clutch 2 is equal to the absorption torque of the propulsion device 3, the driving torque number N2s and the claw number J Both post-rotation error signals N2 are set to the lowest rotation speed NIn1n, and the compensation calculator 56
The litigation error deviation number ΔN2 and the compensation calculator 5 are input to
Compensation D-; Mfc2 which is the output of 6 becomes zero. That is, the slip control calculation device 5'3 is connected to line 1.
The control boost force Fcl outputted through 8 sets a pressing force that provides the transmission torque of the friction clutch 2 necessary to maintain the equilibrium state in 11.

ここで、推進器回転数か増加(もしくは減少)した場合
には、回転数偏差信号ΔN1が減少(増加)し、その結
果として制御イサ号Fclすなわち押し付は力設定信号
Fcsが減少(増加)する。このため推進器回転数が増
加(減少)した場合に生ずる#:擦体政の咋1加(倣少
)に伴なう摩擦クラッチ2の伝達トルクの増加(減少)
を、押し付は力設定(S彊Fcsの減少(増加)による
押し付は力の減少(増加)か相殺し、摩擦クラッチ2の
出力軸側の不安定性が解消される。
Here, when the propeller rotation speed increases (or decreases), the rotation speed deviation signal ΔN1 decreases (increases), and as a result, the control Isa number Fcl, that is, the pressing force setting signal Fcs decreases (increases). do. Therefore, when the propeller rotation speed increases (decreases), the transmission torque of the friction clutch 2 increases (decreases) due to the increase (decreased imitation) of the friction clutch 2.
, the pressing force is set by the force setting (by decreasing (increasing) S Fcs, the pressing force is decreased (increased) or offset, and the instability on the output shaft side of the friction clutch 2 is eliminated.

さらに、原動根回伝般か増加(もしくは減少)した場合
には回転数偏差@ぢΔN2が増加(減少)し、その結果
として補償(8号Fc2すなわち押し付は力設定信号F
csが増加(減少)する。このため原動根回伝般が増加
(減少)した場合に生ずる摩擦係数の減少(増加)に伴
なう摩擦クラッチ2の伝達トルクの減少(増加)全押し
付は力の増加(減少)か相殺し、摩擦クラッチ2の入力
軸側の不安定性が解消される。こうして、摩擦クラッチ
2をスリップ制御する場合に生ずる不安定性の問題はい
ずれも解消され、推進器3の回転数をJ皐粥機1の最低
回転数Nm1n以下で安定に制御することができる。
Furthermore, when the driving root rotation increases (or decreases), the rotational speed deviation @ ΔN2 increases (decreases), and as a result, compensation (No. 8 Fc2, that is, the pressing force setting signal F
cs increases (decreases). Therefore, the decrease (increase) in the transmission torque of the friction clutch 2 due to the decrease (increase) in the friction coefficient that occurs when the driving root rotation increases (decreases), and the full pressing is canceled out by the increase (decrease) in force However, instability on the input shaft side of the friction clutch 2 is eliminated. In this way, the problem of instability that occurs when the friction clutch 2 is subjected to slip control is solved, and the rotational speed of the propulsion device 3 can be stably controlled to be equal to or lower than the minimum rotational speed Nm1n of the J porridge machine 1.

次に第3の回転数設定器50を原動機1の最低回転数N
m1n以上に収電した場合について説明する。この場合
、前記特性によって、第1の回転数設定器51は、充分
に大きな飽をスリップ回転数設定信号Nlsとしてライ
ンI!6を介して出力し、第2の回転W設定器54は、
推進糸回転故設定倍力Ns を原動機回転故設定伯号N
2sとしてライン110を介して出力する。このため回
1版政偏差侶号Δ、Nlは、推進器回転数によらず充分
大きな値となシ、スリップ制御演算器53からライン7
8i介して田力妊れる制01伯づFclも充分に大きな
値となる。したかつて摩擦クラッチ2の押し付は力か大
きくなり、I”I”htクラッチ2の入力11i121
と■力甲山22とが1自」じ回ll楓政で、スリップす
ることなく駆u+’Jされる。このことに、原動機1が
1目、接推通話3を1&前するということと同様の結果
となる。
Next, set the third rotation speed setting device 50 to the lowest rotation speed N of the prime mover 1.
A case will be described in which a charge of m1n or more is collected. In this case, due to the above-mentioned characteristics, the first rotation speed setting device 51 sets a sufficiently large amount of the slip rotation speed setting signal Nls to the line I! 6, and the second rotation W setting device 54 is
The boost force Ns is set due to the rotation of the propulsion string, and the boost force Ns is set due to the rotation of the prime mover.
2s via line 110. Therefore, the first edition political deviation numbers Δ and Nl are sufficiently large values regardless of the propeller rotation speed, and from the slip control calculator 53 to the line 7
Through 8i, Taiki's 01 Hakuzu Fcl also becomes a sufficiently large value. Once the friction clutch 2 was pressed, the force increased, and the input 11i121 of the I"I"ht clutch 2
and ■Rikikozan 22 were 1st and the same time Kaedemasa drove u+'J without slipping. This results in the same result as when the prime mover 1 moves 1 and the contact call 3 moves 1 & forward.

びらに、犀すνj懺回私欽置疋伯号掴2Sは第3の回転
K BZ ’7器50からライン19を介して出力さn
る員り通話1−jj帖奴設定倍ちNS と等しいから、
推進器3は]1E進通話私牧設定仙号Nsに見合う回転
数で型切されることになる。
On the other hand, the 2S is output from the third rotation K BZ '7 via line 19 from the 50
Since it is equal to 1 - jj call setting times NS,
The propulsion device 3 will be cut at a rotational speed that corresponds to the 1E base call private setting number Ns.

この結果、操船者は第3の回転数設定器50を操作する
たけでよく、原動機1の最低回転数Nm1n 以下の回
転数の設定に対しては、原動機1は最低回転数N m 
i nで一定速度で回転し、摩擦クラッチ2かスリップ
することによって、推進器3が所望の回転数で駆動され
る。し〃・も、外乱等の印加による原動機回転数の装動
に対しても摩擦クラッチ2のスリップ制御に対し、素早
い補償信号を発して、推進器3は安定に所望の回転数で
回転することかできる。
As a result, the operator only needs to operate the third rotation speed setting device 50, and for setting the rotation speed of the prime mover 1 to the minimum rotation speed Nm1n or less, the prime mover 1 is set to the minimum rotation speed Nm.
The thruster 3 is driven at a desired rotational speed by rotating at a constant speed and causing the friction clutch 2 to slip. Also, even when the prime mover rotational speed is increased due to the application of disturbances, etc., a quick compensation signal is issued for the slip control of the friction clutch 2, so that the propulsion unit 3 can stably rotate at the desired rotational speed. I can do it.

また、席切楓1の最低回転数Nm1n以上の回転数設定
に対しては、辱−孫クラッチ2に大きな押し付は力を加
え、摩擦クラッチ2をスリップさぞないように保持し、
推進器3ヶ原切悼11と同じ回転数で回転させることが
自動的かつ安定的に行なうことかできる。このようにし
て操船者は、船舶6の停止から最大速力までを第3の回
転数設定器50によって操作できることになる。
In addition, when the rotation speed of Kaede Shikiri 1 is set to the minimum rotation speed Nm1n or more, a large pressing force is applied to the friction clutch 2, and the friction clutch 2 is held so as not to slip.
It is possible to automatically and stably rotate the propeller at the same number of rotations as the three propellers 11. In this way, the boat operator can operate the boat 6 from stop to maximum speed using the third rotation speed setting device 50.

なお、不発明に係るクラッチ制御装誼は本実施例で示し
た船舶の推進器としてのプロペラだけでなく、ポンプ、
発電板などあらゆる械器を駆動するのに適用できること
はだう捷でもない。
Note that the clutch control device according to the invention is applicable not only to a propeller as a propulsion device of a ship shown in this embodiment, but also to a pump,
There is no doubt that it can be applied to drive all kinds of equipment such as power generation plates.

また、本発明のクラッチ制御装動□、は、機械式、電気
式などの種々の演算要素を組合せて容易に実現できるも
のである。
Further, the clutch control device □ of the present invention can be easily realized by combining various calculation elements such as mechanical and electric types.

以上のように本発明によれば、入力軸側および出力軸側
−のいずれに対しても不安定性を解消でき、原動機の回
転数制御に依存することの少ない安定なスリップ制御を
実現することができ、る。また、第3の回呟装置定器を
操作するたけで、スリップ1V1」御の何無にかかわら
ず、仮駆動懺器を原動機と同じ回転数で回11云させる
ことができる。
As described above, according to the present invention, instability can be eliminated on both the input shaft side and the output shaft side, and stable slip control that is less dependent on the rotation speed control of the prime mover can be realized. can. Furthermore, simply by operating the third rotation device regulator, the temporary drive column can be rotated 11 times at the same rotation speed as the prime mover, regardless of whether or not the slip 1V1 is controlled.

【図面の簡単な説明】[Brief explanation of drawings]

第1凶は摩擦クラッチ20断凹凶、第2図は回l賦攻差
ΔNと屋擦保奴μとの関係を示すグラフ、第3凶は本発
明の一実施例の丞抗図、刀4図は本ヴ6す1の一実施例
のブロック図、第5凶は推進器回転41f、設足侶づN
s とスリップ回転奴設定侶号N 1 sとの関係を示
すグラフ、第6図は推進糸回1伝依設定4F4号Ns 
 と原動機回転数設定飴づ°N2sとのN俤をボすグラ
フである。 1・・・原動機、2・・・摩擦クラッチ、3・・・推進
器、5・・クラッチ1NIJ御装置、11.12・・・
動力伝達軸、13・・・第1の回転数発信器、14・・
・第2の回転数発イa器、50−・第3の回転数設定器
、51・・・第1の回転数設定器、52・・第lの減算
器、53・・・スリップ$1」俳演算器、54・・・第
2の回転数設定器、55・・第2の減算器、56・・・
補償演算器、57・・加シー器 第1図 第2図 回転数1ΔN
The first difference is the friction clutch 20 disengagement and depression, the second figure is a graph showing the relationship between the rotational force difference ΔN and the Yasushi Yasuyasu μ, and the third figure is the resistance diagram of one embodiment of the present invention. Figure 4 is a block diagram of one embodiment of this V61.
A graph showing the relationship between s and the slip rotation slave setting number N 1 s, Figure 6 is the propulsion thread rotation 1 transmission setting 4F 4 Ns
This is a graph illustrating the N range between the motor rotation speed setting temperature N2s and the motor rotation speed setting temperature N2s. 1... Prime mover, 2... Friction clutch, 3... Propulsion unit, 5... Clutch 1NIJ control device, 11.12...
Power transmission shaft, 13...first rotation speed transmitter, 14...
・Second rotation speed generator, 50-・Third rotation speed setter, 51...First rotation speed setter, 52...Lth subtractor, 53...Slip $1 ” Haier operator, 54...Second rotation speed setting device, 55...Second subtractor, 56...
Compensation calculation unit, 57... Accelerator Fig. 1 Fig. 2 Rotation speed 1ΔN

Claims (2)

【特許請求の範囲】[Claims] (1)原動機と被部lνJ懺器との101に設置したす
べりを生じるht hxクラッチの制御装置−1におい
て、被駆動板器の回転数を原bvt機の運転−rsJ能
な最低回払奴米1両に設定する第1の回転数設定器と、
被動11νJ4戊器の回暢故を検出する第1の回転数3
6イト弓器と、 前記第1の回転4R設冗器から送出されるスリップ回1
版#、設定信号より、前記第1の回転数発信器から送出
される被部WJ硫器回私欽イ=号を減じる第1の減算器
と、 前記第1の′g、算器から送出される(1号に応答して
被tA、動機器をgiJ記第1の回転数設定器で設定し
た回転数に保つのに必要な摩擦クラッチの押し付は力を
演算するスリップ制御演算器と、原鰐機の回転数を最低
回転数以上に設定する第2の回転数設定器と、 原動機の回転数を検出する第2の回転数発信器と、 1fj記第2の回転数発信器から送出される原動機回転
数信号より、前記第2の回転数設定器から送出される原
vJ機回転数設定侶号を減じる第2の減算器と、 前記第2の′#、算器から送出される4mづにシβ答し
て原動機回転数に応じた摩擦クラッチの押し付は力を補
正する補償演算器と、 前記スリップ制御演算器から送出される制御信号と前記
補償演算器から送出される袖償侶七を加算し、摩擦クラ
ッチの押し付は力を制御する加算器とを含むことを特徴
とするクラッチ制御装置。
(1) In the control device-1 of the hthx clutch that causes slippage, which is installed at 101 between the prime mover and the driven plate, the rotational speed of the driven plate is controlled by the minimum rotation rate that can be used for the operation of the original bvt machine. a first rotation speed setting device for setting one rice car;
Driven 11νJ4 1st rotation speed 3 to detect failure of rotation
a 6-item archery device, and a slip circuit 1 sent from the first rotating 4R redundant device.
a first subtractor that subtracts the number of parts sent from the first rotational speed transmitter from the version number and setting signal; (In response to No. 1, the push of the friction clutch necessary to maintain the rotation speed of the moving equipment at the rotation speed set by the first rotation speed setting device in giJ is performed by a slip control calculator that calculates the force. , a second rotation speed setting device that sets the rotation speed of the Harawani machine to a minimum rotation speed or higher, a second rotation speed transmitter that detects the rotation speed of the prime mover, and from the second rotation speed transmitter described in 1fj. a second subtractor that subtracts the original VJ machine rotation speed setting number sent from the second rotation speed setting device from the sent prime mover rotation speed signal; A compensation calculator that corrects the force for pressing the friction clutch according to the rotational speed of the prime mover, and a control signal sent from the slip control calculator and a control signal sent from the compensation calculator. 1. A clutch control device comprising: an adder that adds seven sleeves and controls the pressing force of a friction clutch.
(2) MfJ記第1の回転数設定器およびlIJ記第
2の回−V#、数段定器へ被駆動機器回転数設定偽りを
送出する第3の回転数設定器を有し、被駆動板器が第3
の回転数設定器で設定した回転数に制御されることを特
徴とする時計請求の範囲第1項記戦のクラッチ制御装置
′。
(2) It has a third rotation speed setting device that sends the false rotation speed setting of the driven equipment to the first rotation speed setter in MfJ and the second rotation speed setting device in IIJ, V#, and the several-stage regulator. The drive plate is the third
Clutch control device' according to claim 1, characterized in that the rotation speed is controlled to a rotation speed set by a rotation speed setting device.
JP58046944A 1983-03-18 1983-03-18 Clutch control device Granted JPS59175629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58046944A JPS59175629A (en) 1983-03-18 1983-03-18 Clutch control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58046944A JPS59175629A (en) 1983-03-18 1983-03-18 Clutch control device

Publications (2)

Publication Number Publication Date
JPS59175629A true JPS59175629A (en) 1984-10-04
JPH0117010B2 JPH0117010B2 (en) 1989-03-28

Family

ID=12761408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58046944A Granted JPS59175629A (en) 1983-03-18 1983-03-18 Clutch control device

Country Status (1)

Country Link
JP (1) JPS59175629A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010767A1 (en) * 2005-07-20 2007-01-25 Toyota Jidosha Kabushiki Kaisha Ship maneuvering device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010767A1 (en) * 2005-07-20 2007-01-25 Toyota Jidosha Kabushiki Kaisha Ship maneuvering device
JP2007022422A (en) * 2005-07-20 2007-02-01 Toyota Motor Corp Navigation device for vessel
AU2006271054B2 (en) * 2005-07-20 2010-04-15 Toyota Jidosha Kabushki Kaisha Ship maneuvering device
JP4666152B2 (en) * 2005-07-20 2011-04-06 トヨタ自動車株式会社 Ship maneuvering device
US8019498B2 (en) 2005-07-20 2011-09-13 Toyota Jidosha Kabushiki Kaisha Ship-steering device

Also Published As

Publication number Publication date
JPH0117010B2 (en) 1989-03-28

Similar Documents

Publication Publication Date Title
US4354144A (en) Transmissionless drive system
US4319140A (en) Demand operated power management drive system
US6315068B1 (en) Drive control system for hybrid vehicles
US6561940B2 (en) Method of and apparatus for driving aircraft generator at a constant-speed
US10099676B2 (en) Traction system for a vehicle
US4019404A (en) Power transmission
US6248036B1 (en) Transmission and vehicle and bicycle using the same
US9333967B2 (en) Method for controlling a drive system of a vehicle, a drive system, a computer program, a computer program product and a vehicle
SG178333A1 (en) Marine propulsion device
PL179390B1 (en) Method of and apparatus for controlling speed of a ship
US3903755A (en) Gas turbine engine and hydromechanical transmission vehicle drive
US6099367A (en) Hydrostatic propulsion system for a marine vessel
JPS59175629A (en) Clutch control device
US4065702A (en) Drive system for high inertia load
US10189552B2 (en) Ship propulsion method and ship propulsion device
JP7142519B2 (en) marine power transmission
US11746855B2 (en) Transmission with dual bi-directional input and single bi-directional output, and related methods
SE1950335A1 (en) A method, a vehicle, a computer program and a computer-readable medium for determining a load applied by a power consumer on a powertrain
US3826097A (en) Variable speed hydrostatic drive
JPS5842238Y2 (en) marine power generator
US5000277A (en) Hydrostatic steering control for a tracked vehicle
SU1341065A1 (en) Vehicle power transmission
JPH08108767A (en) Clutch apparatus for vehicle
JPS6192200A (en) Controller of main shaft generator system
JPS59175630A (en) Clutch control device