JPS59165895A - Impeller of centrifugal pump - Google Patents

Impeller of centrifugal pump

Info

Publication number
JPS59165895A
JPS59165895A JP3978483A JP3978483A JPS59165895A JP S59165895 A JPS59165895 A JP S59165895A JP 3978483 A JP3978483 A JP 3978483A JP 3978483 A JP3978483 A JP 3978483A JP S59165895 A JPS59165895 A JP S59165895A
Authority
JP
Japan
Prior art keywords
vane
impeller
vanes
plane
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3978483A
Other languages
Japanese (ja)
Inventor
Sadahiko Nishizawa
西澤 貞彦
Koichi Nishimura
西村 弘一
Hitoshi Ishibashi
石橋 仁志
Yosuke Takemoto
洋介 竹本
Teruaki Fukamachi
深町 輝昭
Yorio Tsukamoto
塚本 順夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP3978483A priority Critical patent/JPS59165895A/en
Publication of JPS59165895A publication Critical patent/JPS59165895A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/24Vanes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To prevent lowering of efficiency, by a method wherein, provided height of a vane is (h) and a distance between two vanes is (a), a ratio h/a of the length to the width of a plane, which is present between the entry end of a vane and the back of an adjoining vane and extends at right angles to the virtual curve of fluid flowing between adjoining vanes, is set to a specified value. CONSTITUTION:In an impeller 3, a plane, which extends at right angles to the virtual curve l of fluid flowing between an optional vane 4a and a vane 4b located adjacent to the vane 4a and has length, being (h) that is the height of the vanes 4a and 4b, and the breadth being (a) that is a distance between the two vanes 4a and 4b, is imagined to be present between the vane 4a and the back of the vane 4b, and a ratio h/a of the length to the breadth of the plane is set to a value less than 2, for exmple, a value being nearly 1. Even if a suction specific speed is approximately 2000, this permits maintenance of sufficient cavitation performance, and besides, enables prevention of lowering of the pump efficiency, and allows to prevent the occurrence of low frequency pulsation and the like, with which reverse flow is attended, at a partial flow rate range.

Description

【発明の詳細な説明】 本発明は高キャビテーション性能を有する遠心うず巻ポ
ンプの羽根車に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an impeller for a centrifugal centrifugal pump with high cavitation performance.

従来、遠心うず巻ポンプに於いて、キャビテーション性
能あ向上を図る場合、その具体策として、 TI)  羽根車の入口直径を大きくする。
Conventionally, when trying to improve the cavitation performance of a centrifugal centrifugal pump, the specific measures are as follows: TI) Increase the inlet diameter of the impeller.

(2)羽根の入口角を大きくする。(2) Increase the entrance angle of the blade.

(3)羽根の入口先端を細くする。(3) Make the inlet tip of the blade thinner.

(4)羽根枚数を少くする。(4) Reduce the number of blades.

(5)吸込ケーシングから羽根車に至る経路を滑らかに
する。
(5) Smooth the path from the suction casing to the impeller.

等の手段がとられてきた。Such measures have been taken.

これらの内、(1)の羽根車の入口直径を大きくするこ
とは、吸込性能の向上を図る上で有効な手段として広く
認知されているが、最近のようにポンプの大形化、高速
化が一段と進み、それに伴ってより高いキャビテーショ
ン性能が要求される状況下に於いて、このような要請に
対処するために、羽根車の入口直径を安易に大きくする
ことは、効率□の低下を招いたり、或いは部分流量域で
の逆流による低同波脈動の発生等、ポンプの運転上、好
ましくない弊害を招く虞がある0 因みに、ポンプの吸込性能の良さを表わす指標として一
般に次式が広く用いられている。
Of these, (1) increasing the impeller inlet diameter is widely recognized as an effective means of improving suction performance, but recently, pumps have become larger and faster. As technology continues to progress and higher cavitation performance is required, simply increasing the impeller inlet diameter to meet these demands will lead to a decrease in efficiency. There is a risk of causing undesirable effects on pump operation, such as the occurrence of low frequency pulsation due to backflow in the partial flow range. It is being

S : n X Q3A/ N P S、Hr 4S:
吸込比速度 n:ポンプの回転数(rpm) Q:ポンプの吐出し量(扉/TIdn)NPSHrq 
:必要吸込水頭(ハ) 上式よシボンプが大形化すればポンプの吐出し量Qが増
大し、また高速化すればポンプの回転数nが大きくなる
S: n X Q3A/ N P S, Hr 4S:
Suction specific speed n: Pump rotation speed (rpm) Q: Pump discharge amount (door/TIdn) NPSHrq
: Required suction head (c) According to the above equation, if the pump becomes larger, the discharge amount Q of the pump will increase, and if the speed increases, the number of revolutions n of the pump will increase.

今、仮に必要吸込水頭NPSHrqを一定とすれば、吸
込比速度Sはポンプの大形化や高速化に伴って大きくな
る。
Now, if the required suction head NPSHrq is kept constant, the suction specific speed S increases as the pump becomes larger and faster.

従来はこの吸込比速度Sが1000前後が通常のレベル
とされてきたが、最近では吸込比速度Sが2000前後
を要求される場合が多くなっている。
Conventionally, a suction specific speed S of around 1000 has been regarded as a normal level, but recently, a suction specific speed S of around 2000 is often required.

そこで、この吸込比速度Sが200 o’U後になるよ
うなポンプに於いて、キャビテーション性能を十分に満
足し得るポンプを得る目的で種々の実験を繰返して試行
錯誤した結果、下記のことが判明した。
Therefore, in order to obtain a pump with a suction specific speed S of 200 o'U after which the cavitation performance is sufficiently satisfied, various experiments were repeated through trial and error, and the following was discovered. did.

すなわち、第2図に示すように、羽根入口における相対
流速のベクトルに直交する而Aの面積(以下AWという
)を考え、Awをパラメータにとって(Awl >Aw
2)Aw3>A’w4) 、吸込比速度Sと縦横比h 
/ aとの関係を求めたところ、第4図に示す如き結果
が得られた。なおh及びaは、第3図に示す如く、而A
においてh=h’+h二、a=a’−−二” f h 
ッテ、htri 、羽根4 a 。
That is, as shown in Figure 2, consider the area of A (hereinafter referred to as AW) that is orthogonal to the vector of relative flow velocity at the blade inlet, and take Aw as a parameter (Awl > Aw
2) Aw3>A'w4), suction specific speed S and aspect ratio h
/a, the results shown in FIG. 4 were obtained. Note that h and a are as shown in Figure 3, and A
h=h'+h2, a=a'--2" f h
tte, htri, feather 4 a.

2          2 4b間の平均高さ、aは内羽根4a、4b間の距離の平
均距離である。
2 2 4b, and a is the average distance between the inner blades 4a and 4b.

したがって、第4図からも理解されるように、Awが同
一でおっても、縦横比h / aが小さくなれば吸込比
速度Sは大きくなる。
Therefore, as can be understood from FIG. 4, even if Aw remains the same, the suction specific speed S increases as the aspect ratio h/a decreases.

一方、同一の吸込比速度Sを得ようとすれば、縦横比h
 / aに関係なく、該当するAwのうち大きなもの、
例えばA w 4を選ぶか、或いは縦横比h / aの
関係を考慮してこれをなるべく小さくすべく“Awのう
ち小さなもの、例えばA Wlを選ぶか、2通りの方法
があることが解る。
On the other hand, if we try to obtain the same suction specific speed S, the aspect ratio h
/ Regardless of a, the larger of the applicable Aw,
For example, it can be seen that there are two methods: to select A w 4, or to select the smaller value of Aw, for example A Wl, in order to make this as small as possible considering the relationship of the aspect ratio h/a.

ところで、吸込比速度Sが1500ffrJ後であれば
、前者の方法でもす分゛目的を達成できたが、吸込比速
度Sが2’0OOD後になると、この上うな方法では効
率の低下や部分流量域での逆流による低周波脈動の発生
等の弊害を生じる。
By the way, if the suction specific speed S is after 1500ffrJ, the purpose could be achieved with the former method, but if the suction specific speed S is after 2'0OOD, such a method will cause a decrease in efficiency and a problem in the partial flow area. This causes problems such as low-frequency pulsation due to backflow.

効率が低下する理由については、Ayを大きくすれば、
羽根車の入口直径Doが犬きくなシ、それ°に従ってラ
イナーリングとの間隙Scを機械加工精度上太きくしな
ければならない。ライナーリングからのもれ量QJは QJごDrS、c、八1−(ΔHニライナーリング前後
の差圧)(Dr:羽根車入口の外径) で表わされるから、羽根車の入口直径Doの大きい羽根
車ではこのもれ量QA’が大きく、その分だけポンプ効
率が低下する。
The reason why the efficiency decreases is that if Ay is increased,
If the impeller inlet diameter Do is large, the gap Sc between the impeller and the liner ring must be increased accordingly for machining accuracy. The amount of leakage QJ from the liner ring is expressed as QJ DrS, c, 81 - (ΔH differential pressure before and after the liner ring) (Dr: outer diameter of the impeller inlet), so the impeller inlet diameter Do With a large impeller, this leakage amount QA' is large, and the pump efficiency is reduced accordingly.

また一方、低周波脈動が発生する理由については、その
発生のメカニズムは明らかでないが、ポンプの入口径D
oの大きい羽根車は羽根車内のフローパターンが部分流
量域で変化し、逆流を生じるとされている。
On the other hand, the mechanism behind the occurrence of low frequency pulsation is not clear, but the inlet diameter of the pump
It is said that in an impeller with a large o, the flow pattern inside the impeller changes in the partial flow region, causing a backflow.

この脈動が生じると激しい振動や騒音を伴ない、時には
運転不能になる場合もある。また特にこの現象はキャビ
テーション性能の良い羽根車に於いてしばしば見られる
When this pulsation occurs, it causes severe vibrations and noise, and sometimes even makes it impossible to operate. In particular, this phenomenon is often observed in impellers with good cavitation performance.

本発明はこのような事情を背景になされたものであって
、その目的とするところは、吸込比速度が2000#r
J後であっても、十分なキャビテーション性能を確保す
ることができ、しかもポンプ効率が低下したシ、部分流
量域で逆流に伴う低周波脈動等の発生する虞れのない遠
心うず巻ポンプの羽根車を提供することにある。
The present invention was made against this background, and its purpose is to reduce the suction specific speed to 2000#r.
A centrifugal centrifugal pump impeller that can ensure sufficient cavitation performance even after J, and is free from the risk of reduced pump efficiency and low-frequency pulsations due to backflow in the partial flow range. It's about providing cars.

かかる目的を達成すべく、本発明は以下の如く構成した
ことを特徴とする。すなわち、羽根に隣り合う羽根の裏
面との間に、両羽根間を流れる流体の仮想流線に直交す
るとともに羽根の高さをhとし、かつ両羽根間の距離を
aとする平面を想定し、この平面の縦横比h / aを
2.0より小さい値に設定したことを特徴とする遠心う
ず巻ポンプの羽根車である。
In order to achieve this object, the present invention is characterized by the following configuration. In other words, a plane is assumed between the blade and the back surface of the adjacent blade, which is perpendicular to the imaginary streamline of the fluid flowing between the blades, the height of the blade is h, and the distance between the blades is a. This is an impeller for a centrifugal centrifugal pump characterized in that the aspect ratio h/a of this plane is set to a value smaller than 2.0.

つまり、前記平面の縦横比h/’aに注目し、この値を
2.0よシ小さい値に設定することにより、キャビテー
ション性能を劣化させることなく、ポンプの吸込比速度
Sを2000以上に引き上げることができ、しかも羽根
の入口面積を拡大するものでないため、前述したポンプ
効率の低下や、部分流量域での逆流に伴う低周波脈動等
の弊害を生じるものでない。
In other words, by paying attention to the aspect ratio h/'a of the plane and setting this value to a value smaller than 2.0, the pump's suction specific speed S can be raised to 2000 or more without deteriorating the cavitation performance. Furthermore, since the inlet area of the vanes is not expanded, the above-mentioned reduction in pump efficiency and low-frequency pulsation due to backflow in the partial flow rate region do not occur.

以下、本発明の1実施例につき図面を参照して具体的に
説明する。
Hereinafter, one embodiment of the present invention will be specifically described with reference to the drawings.

第1図は遠心うず巻ポンプを吸込口側から見た状態を示
しており、1はケーシング、2は吸込口、3は羽根車を
それぞれ示している。
FIG. 1 shows a centrifugal centrifugal pump as viewed from the suction port side, where 1 represents the casing, 2 represents the suction port, and 3 represents the impeller.

尚、同図は羽根車3の中心部に収着する羽根車ナツトを
取外した状態を示している。
Incidentally, this figure shows a state in which the impeller nut, which is attached to the center of the impeller 3, has been removed.

ところで前記羽根車−3に於いて、任意の羽根4aとこ
の羽根4aに隣り合う羽根4bの裏面との間に、第2図
に示すように、内羽根4a及び4b間を流れる流体の仮
想流線lに直交するとともに、羽根4a 、4bの高さ
をhとし、かつ内羽根4 a ’、 4 b間の距離を
aとする平面Aを想定し、この平面Aの縦横比h / 
aを第3 、J(、)に示すように、2.0より小さい
値、例えば1に近い値に設定する。
By the way, in the impeller-3, between any blade 4a and the back surface of the blade 4b adjacent to this blade 4a, as shown in FIG. Assuming a plane A that is perpendicular to the line l, the height of the blades 4a and 4b is h, and the distance between the inner blades 4a' and 4b is a, and the aspect ratio of this plane A is h/
Third, set a to a value smaller than 2.0, for example, a value close to 1, as shown in J(,).

尚、羽根4a 、4bの高さh及び内羽根4a、4b間
の距離aとしては、第3図に示す如く、h一旦+ 1.
I 、 a= a’−にゝとじて平均値をとって2 いる。
Note that the height h of the blades 4a and 4b and the distance a between the inner blades 4a and 4b are once h+1.
The average value is taken if I, a=a'-.

ここで、本発明の効果を評価するにあたり、第3図(−
)に示す本発明に基づく羽根車と、例えば第3図(b)
に示すように羽根入口面積を大きくした羽根車とを製作
して、種々の角度から伽験を試みた結果、第3図(b)
に示すものでは既に述べた通り、ポンプ効率の低下及び
部分流量域での低周波脈動の発生が認められた0 これに対し、第3図(a)に示すものでは、第4図から
容易に理解されるように、吸込比速度Sが2000以上
に増大し、かつキャビテーション性能が劣化することは
なかった。勿論、ポンプ効率の低下や部分流量域での低
周波脈動等の発生も認められなかった。
Here, in evaluating the effects of the present invention, FIG.
) and an impeller based on the present invention shown in FIG. 3(b), for example.
As shown in Figure 3(b), we fabricated an impeller with a larger blade inlet area and tried the experiment from various angles.
As mentioned above, in the pump shown in Figure 3(a), a decrease in pump efficiency and the occurrence of low frequency pulsations in the partial flow range were observed. As can be seen, the suction specific speed S increased to 2000 or more, and the cavitation performance did not deteriorate. Of course, no decrease in pump efficiency or occurrence of low frequency pulsations in the partial flow range was observed.

尚、本発明では所要の吸込比速度が得られる範囲で羽根
入口面積を9.小さく設定する必要があるのは云うまで
もない。
In the present invention, the blade inlet area is set to 9.9 mm as long as the required suction specific speed can be obtained. Needless to say, it is necessary to set it small.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例を示す斜視図、第2図は同実
施例に於いて相隣り合う羽根相互の関係を示す説明図、
第3図(、) (b)はそれぞれ本発明に基づく羽根入
口面積と従来の羽根入口面積とを示す説明図、第4図は
Awをパラメータとしたときにおける縦横比h / a
と吸込比速度Sとの関係を示すグラフである。 1・・ケーシング、2・・・吸込口、3・・・羽根車、
4a、4b・・・羽根、A・・・平面、l・・・仮想流
線特許出願人  久保田鉄工株式会社 代理人 弁理士 鈴江孝− 第1頁の続き 0発 明 者 深町輝昭 枚方市中宮大池1丁目1番1号 久保田鉄工株式会社枚方機械製 造所内 0発 明 者 塚本順夫 枚方市中宮大池1丁目1番1号 久保田鉄工株式会社枚方機械製 造所内
FIG. 1 is a perspective view showing one embodiment of the present invention, FIG. 2 is an explanatory diagram showing the relationship between adjacent blades in the same embodiment,
Fig. 3 (,) (b) is an explanatory diagram showing the blade inlet area according to the present invention and the conventional blade inlet area, respectively, and Fig. 4 shows the aspect ratio h/a when Aw is taken as a parameter.
It is a graph which shows the relationship between and suction specific speed S. 1...Casing, 2...Suction port, 3...Impeller,
4a, 4b...Blade, A...Plane, l...Virtual streamline Patent applicant Kubota Iron Works Co., Ltd. Agent Patent attorney Takashi Suzue - Continued from page 1 0 Inventor Teruaki Fukamachi Nakamiya Oike, Hirakata City 1-1-1 Kubota Iron Works Co., Ltd. Hirakata Machinery Works 0 Inventors Juno Tsukamoto 1-1-1 Nakamiya Oike Hirakata City Hirakata Machinery Works Kubota Iron Works Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 羽根の入口端と、この羽根に隣り合う羽根の裏面との間
に、両羽根間を流れる流体の仮想流線に直交するととも
に羽根の高さをhとし、かつ両羽根間の距離をaとする
平面を想定し、この平面の縦横比h / aを2.0よ
り小さい値に設定したことを特徴とする遠心うず巻ポン
プの羽根車。
Between the inlet end of the blade and the back surface of the blade adjacent to this blade, there is a line that is perpendicular to the imaginary streamline of the fluid flowing between the blades, the height of the blade is h, and the distance between the blades is a. An impeller for a centrifugal centrifugal pump characterized in that the aspect ratio h/a of this plane is set to a value smaller than 2.0.
JP3978483A 1983-03-09 1983-03-09 Impeller of centrifugal pump Pending JPS59165895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3978483A JPS59165895A (en) 1983-03-09 1983-03-09 Impeller of centrifugal pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3978483A JPS59165895A (en) 1983-03-09 1983-03-09 Impeller of centrifugal pump

Publications (1)

Publication Number Publication Date
JPS59165895A true JPS59165895A (en) 1984-09-19

Family

ID=12562556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3978483A Pending JPS59165895A (en) 1983-03-09 1983-03-09 Impeller of centrifugal pump

Country Status (1)

Country Link
JP (1) JPS59165895A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5144175A (en) * 1991-05-15 1992-09-01 Siemens Energy & Automation, Inc. Cooling fan for electric motors
CZ300288B6 (en) * 2006-11-09 2009-04-15 Vysoké ucení technické v Brne Impeller, particularly centrifugal pump impeller
WO2009092711A1 (en) 2008-01-25 2009-07-30 Bitter Engineering & Systemtechnik Gmbh Impeller for a pump
WO2016179619A1 (en) 2015-05-13 2016-11-17 Bitter Engineering & Systemtechnik Gmbh Centrifugal pump with sliding rotor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5144175A (en) * 1991-05-15 1992-09-01 Siemens Energy & Automation, Inc. Cooling fan for electric motors
CZ300288B6 (en) * 2006-11-09 2009-04-15 Vysoké ucení technické v Brne Impeller, particularly centrifugal pump impeller
WO2009092711A1 (en) 2008-01-25 2009-07-30 Bitter Engineering & Systemtechnik Gmbh Impeller for a pump
WO2016179619A1 (en) 2015-05-13 2016-11-17 Bitter Engineering & Systemtechnik Gmbh Centrifugal pump with sliding rotor

Similar Documents

Publication Publication Date Title
CA2521506C (en) Pump impeller
KR100554854B1 (en) Mixed flow pump
JP3872966B2 (en) Axial fluid machine
JPH0988893A (en) Centrifugal fluid machinery
US6527509B2 (en) Turbo machines
WO2016067666A1 (en) Impeller, centrifugal fluid machine, and fluid device
JPS58104400A (en) Device for reducing abrasion of cavitation
EP1069315A2 (en) Turbo machines
JP3841391B2 (en) Turbo machine
JPS59165895A (en) Impeller of centrifugal pump
US6302643B1 (en) Turbo machines
JP2739874B2 (en) Inducer pump with shroud
JP2018138786A (en) Impeller, centrifugal fluid machine and fluid device
JP3862135B2 (en) Turbomachine and pump station using it
JPS6344960B2 (en)
KR20180056118A (en) Impeller for Efficiency Reduction Type and Centrifugal Compressor Having the Same
JPS61145399A (en) Pump
JP2005009361A (en) Centrifugal fluid machine
JPS5813760B2 (en) Pump with inducer
US11828188B2 (en) Flow control structures for enhanced performance and turbomachines incorporating the same
JP2004132209A (en) Axial-flow type fluid machine
JP2000303995A (en) Turbo machine restraining blade inlet re-circulating flow and blade rotating stall
EP1431586A1 (en) Diffuser for a centrifugal compressor
JPH03175196A (en) Vortex flow blower
JPH05248385A (en) Swirl impeller