JPS59157433A - Method of controlling water temperature - Google Patents

Method of controlling water temperature

Info

Publication number
JPS59157433A
JPS59157433A JP58028942A JP2894283A JPS59157433A JP S59157433 A JPS59157433 A JP S59157433A JP 58028942 A JP58028942 A JP 58028942A JP 2894283 A JP2894283 A JP 2894283A JP S59157433 A JPS59157433 A JP S59157433A
Authority
JP
Japan
Prior art keywords
water
temperature
time
flow quantity
mpu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58028942A
Other languages
Japanese (ja)
Other versions
JPH0148472B2 (en
Inventor
Takanao Tanzawa
丹沢 孝直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Corp
Original Assignee
Mikuni Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corp filed Critical Mikuni Corp
Priority to JP58028942A priority Critical patent/JPS59157433A/en
Publication of JPS59157433A publication Critical patent/JPS59157433A/en
Publication of JPH0148472B2 publication Critical patent/JPH0148472B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/08Regulating fuel supply conjointly with another medium, e.g. boiler water
    • F23N1/082Regulating fuel supply conjointly with another medium, e.g. boiler water using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/08Microprocessor; Microcomputer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/36PID signal processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/18Measuring temperature feedwater temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

PURPOSE:To provide a method of controlling the water temperature capable of measuring the flow quantity of water as well as the temperature thereof by use only of a temperature sensor. CONSTITUTION:Water flows within a water feed pipe 1 via a flowing water switch 2 and reaches a heat exchanger 3 wherein water is subjected to a heat exchange. Thereafter, hot water is supplied through a water plug 4. Reference numeral 12 designates a temprrature detecting thermistor which is provided in the vicinity of the heat exchanger 3. The thermistor 12 detects the temperature of supply hot water and supplies a detected value to a microcomputer (MPU) 13. The MPU carries out an operational processing by a water temperature signal to PID control a proportional control valve 10. When the increment of the reference value is set at 10%, for example, with respect to the step temperature output in a time TS produced from the MPU, differences in time t1 and t2 required for reaching this reference value are introduced depending on the flow quantity. In the case of the time t2(curve b), the flow speed is slow (small flow quantity). In the case of the time t1, the flow speed is large (large flow quantity). Accordingly, when the inner diameter of the water pipe is set at a predetermined value, the flow quantity can be obtained indirectly by measuring the above described times.

Description

【発明の詳細な説明】 本発明は、温度制御方法、特に温度センサーのみを用い
て流量測定も併せて行なうようにした温度制御方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature control method, and particularly to a temperature control method in which flow rate measurement is also performed using only a temperature sensor.

湯沸器等の温度制御にはマイクロコンピュータを用いた
m個微分、積分方式(以後PIDコントロールと云う)
が一般に用いられている。
Temperature control for water heaters, etc. uses m-differential and integral methods (hereinafter referred to as PID control) using a microcomputer.
is commonly used.

第1図の従来装置によってこれを説明する。即ち、第1
図に示されるように、水は給水管1の内部を流水スイッ
チ2を経由して熱交換器3に至シ、仁こで熱交換された
後に水栓4から給湯される。
This will be explained using the conventional device shown in FIG. That is, the first
As shown in the figure, water travels through a water supply pipe 1 via a water flow switch 2 to a heat exchanger 3, where it is heat exchanged and then supplied from a faucet 4.

一方、ガスはガス管5によシ、主弁6を経由して種火7
を燃焼させると共に、給湯弁8、ガス圧調整装置9及び
比例制御弁lOを介してメインバーナ11に至り、ここ
で燃焼させるように構成されている。12は温度検知用
のザーミスタであって熱交換器3の近傍に装置され、給
湯温度を検出してマイクロコンピュータ(MPU) l
 3へ入力される。
On the other hand, gas is passed through the gas pipe 5, through the main valve 6, and then through the pilot flame 7.
It is configured to combust the gas, reach the main burner 11 via the hot water supply valve 8, the gas pressure regulator 9, and the proportional control valve 1O, and combust there. Reference numeral 12 denotes a thermistor for temperature detection, which is installed near the heat exchanger 3, detects the hot water temperature, and sends it to a microcomputer (MPU).
3.

そしてMPUでは温度センサー12がらの水温信号によ
って演算処理し、比例制御弁10(以下PCVと云う)
をPIDコントロールする。
Then, the MPU performs arithmetic processing based on the water temperature signal from the temperature sensor 12, and operates the proportional control valve 10 (hereinafter referred to as PCV).
is controlled by PID.

第2図は通常の温度制御シスーテムを示すブロック= 
Iglであり、検出された′プロセス変数X。(水温)
を設定値S、と比較して差分eI+を導出し、これを用
いて微分要素e 十T!2(en−en−1)からなる
中間変n  θ を得るようにしている。
Figure 2 shows a block diagram of a typical temperature control system.
Igl and the detected 'process variable X. (water temperature)
is compared with the set value S, to derive the difference eI+, and using this, the differential element e 1 T! An intermediate variable n θ consisting of 2(en-en-1) is obtained.

上記従来方式はサンプル値センナとしては温度センサー
(サーミスタ)のみが用いられ、この温度信号のみから
の演算処理を行ない、これをフィードバックする方式で
あ名。しがし湯沸器等にみられる流体の温度制御にあっ
ては、サンプル値と・して温度のみならず流量を加えて
こそ充分高精度な温度制御が可能となる。しかしながら
コスト上の観点から従来は温度のみのサンプル値を使用
して温度制御を行なっていたため高精度を期待すること
はでき°なかった。
The conventional method described above uses only a temperature sensor (thermistor) as a sample value sensor, performs arithmetic processing only from this temperature signal, and is famous for its method of feeding back the results. When controlling the temperature of fluids found in hot water heaters, etc., sufficiently accurate temperature control is possible by adding not only temperature but also flow rate as sample values. However, from a cost standpoint, temperature control has conventionally been performed using only temperature sample values, so high accuracy cannot be expected.

本発明は上記問題点を解決することを目的としてなされ
たものであり、温度センサーのみを用いて温度測定と共
に流量測定をも可能な温度制御方法を提供することを目
的にしている。
The present invention has been made to solve the above problems, and aims to provide a temperature control method that can measure not only temperature but also flow rate using only a temperature sensor.

そし・て本発明では、MPUから出力されるステップ温
度出力に対して、これを検知するサーミスタからの応答
には水管内径を一定とした場合、時間遅れを伴なった一
定関係が存在するとの知得を出発点としたものであり、
サーミスタによる温度上昇をある増加分の一定値として
基準値をもうけ、サーミスタからの応答信号がこの基準
値に到達する迄の時間を計ることによって間接的に流速
を測定し、直接的に測定した温度信号と間接的に測定し
た流量とを用いて温度制御しようとするものである。
In the present invention, it is known that there is a constant relationship with a time delay in the response from the thermistor that detects the step temperature output output from the MPU when the inner diameter of the water pipe is constant. The starting point is profit,
A reference value is established by setting the temperature rise caused by the thermistor as a constant value, and the flow velocity is indirectly measured by measuring the time until the response signal from the thermistor reaches this reference value. This method attempts to control temperature using signals and indirectly measured flow rates.

以下図面を参照して実施例を説明する。第3図は本発明
の骨子となるMPUからのステップ温度出力と、これを
検知したサーミスタからの応答出力との関係図である。
Examples will be described below with reference to the drawings. FIG. 3 is a diagram showing the relationship between the step temperature output from the MPU, which is the gist of the present invention, and the response output from the thermistor that detects the step temperature output.

なお、第3図の縦軸は温度を表わし、横軸は時間を表わ
している。そして図の3で示されるものはMPUから出
力されるステップ温度出力であり、b、b’で示される
ものは、前記したMPUからのステップ温度出力に対し
て、これを検知したサーミスタからの応答信号である。
Note that the vertical axis in FIG. 3 represents temperature, and the horizontal axis represents time. What is shown by 3 in the figure is the step temperature output output from the MPU, and what is shown by b and b' are the responses from the thermistor that detected this in response to the step temperature output from the MPU. It's a signal.

即ち、MI)Uから出力した1時間のステップ温度出力
に対しては、例えば基準値を増加分10%とした時、こ
の基準値に到達するまでの時間に11.12と差異があ
り、時間t2の場合(曲線b)は流速が遅い場合(小流
量)であシ、又、時間t1の場合は流速が速い場合(大
流量)であることが了解できる。したがって水管の内径
が一定であることを考慮すると、前記各L1:Il−間
を4111定することにより、間接的に流量を求めるこ
とが可能である。
In other words, for the 1-hour step temperature output output from MI)U, for example, when the reference value is set as an increase of 10%, there is a difference of 11.12 in the time it takes to reach this reference value, and the time It can be seen that in the case of time t2 (curve b), the flow rate is slow (small flow rate), and in the case of time t1, the flow rate is fast (large flow rate). Therefore, considering that the inner diameter of the water pipe is constant, it is possible to indirectly determine the flow rate by setting 4111 between each L1:Il-.

そこで温度のみを条件とした前記プロセス出力yに対し
て、流量を加味した補正演算を行なうととにより定数を
変更すれば、よυ精度の高い流量を加味した温度制御が
可能である。
Therefore, if the constant is changed by performing a correction calculation that takes into account the flow rate for the process output y, which is conditioned only on the temperature, temperature control that takes into account the flow rate with high υ accuracy is possible.

第4図は演算処理を説明するだめのフローチャートであ
る。先ず、ステラf41においてサーミスタ12による
温度検知を行ない、ステラf42へ移って検知結果と設
定値との比較判断を行なう。
FIG. 4 is a flowchart for explaining the arithmetic processing. First, the temperature is detected by the thermistor 12 in the Stella f41, and then the temperature is moved to the Stella f42 to compare and judge the detection result with the set value.

ここで「差アシ」と判断されると、ステップ43へ移っ
てMPUは任意のパルス幅T8のステップ温度出力を発
生し、ステップ44においてサーミスタによる検知温度
が基準値に到達する迄の時間tを計測する。この際、計
測された時間と流量とは前記した如く一定の関係にある
ため、次のステップ45において流量Qの演算を行ない
、ステップ46へ移って流量を加味した定数K e T
1 + TDを演算する。次にステラf47へ移ってP
ID制御演算を行ない、更に前記制御演算に基づきステ
ップ48において1)CVへ出力し、その後元へ戻って
前記動作を繰シ返す。
If it is determined that there is a difference, the MPU proceeds to step 43 and generates a step temperature output with an arbitrary pulse width T8, and in step 44 calculates the time t until the temperature detected by the thermistor reaches the reference value. measure. At this time, since the measured time and the flow rate have a constant relationship as described above, the flow rate Q is calculated in the next step 45, and the process moves to step 46, where a constant K e T that takes the flow rate into account is calculated.
Calculate 1 + TD. Next, move on to Stella f47 and P
An ID control calculation is performed, and based on the control calculation, 1) is output to the CV in step 48, and then the process returns to repeat the above operation.

なお」二記した実施例では温度センサーを一つとして説
明したが、これに限定゛されるものではなく複数であっ
てもよいことは勿論である。
In addition, in the embodiments described above, the temperature sensor is explained as one, but it is needless to say that the temperature sensor is not limited to this and a plurality of temperature sensors may be used.

以上説明した如く、本発明によれば温度センサーのみを
用いて温度の検知と共に間接的な流量測定も行なうよう
にしたため、制御精度の大幅な向上ばかりでなく、廉価
な温度制御方法を提供することができる。
As explained above, according to the present invention, since temperature detection and indirect flow rate measurement are performed using only a temperature sensor, not only control accuracy can be greatly improved, but also an inexpensive temperature control method can be provided. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の温度制御方法置を示す図、第2図は通常
の温度制御システムを示す図、第3図は本発明の骨子と
なるMPUからのステップ温度出力と、これを検知した
サーミスタからの応答出力との関係図、第4図は演算処
理を説明するだめのフローチャートである。 1・・・水管      2・・・水流スイッチ3・・
・熱交換器    4・・・水栓5・・・がス管   
  6・・・主弁7・・・種火      8・・・給
湯弁9・・・ガス圧調整装置10・・・比例制御弁(P
CV)11・・・メインバーナ  ]2・・・サーミス
タ13・・・MPU 特許出願人 三國工業株式会社 代理人 弁理士 石  井  紀  男第2図 第3園 第4図
Fig. 1 shows a conventional temperature control method, Fig. 2 shows a normal temperature control system, and Fig. 3 shows the step temperature output from the MPU, which is the gist of the present invention, and a thermistor that detects this. FIG. 4 is a flowchart for explaining the arithmetic processing. 1...Water pipe 2...Water flow switch 3...
・Heat exchanger 4... Faucet 5... Gas pipe
6... Main valve 7... Pilot fire 8... Hot water supply valve 9... Gas pressure regulator 10... Proportional control valve (P
CV) 11... Main burner ] 2... Thermistor 13... MPU Patent applicant Mikuni Kogyo Co., Ltd. Agent Patent attorney Norio Ishii Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 温度センサーによって給湯温度を検知し、設定温度と比
較しつつ給湯温度を制御する温度制御方法において、前
記温度センサーによって検知される応答温度信号から間
接的に流量を検知することによシ、給湯温度の制御を行
なうことを特徴”とする温度制御方法。
In a temperature control method that detects the hot water temperature with a temperature sensor and controls the hot water temperature while comparing it with a set temperature, the hot water temperature can be controlled by indirectly detecting the flow rate from the response temperature signal detected by the temperature sensor. A temperature control method characterized by controlling
JP58028942A 1983-02-23 1983-02-23 Method of controlling water temperature Granted JPS59157433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58028942A JPS59157433A (en) 1983-02-23 1983-02-23 Method of controlling water temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58028942A JPS59157433A (en) 1983-02-23 1983-02-23 Method of controlling water temperature

Publications (2)

Publication Number Publication Date
JPS59157433A true JPS59157433A (en) 1984-09-06
JPH0148472B2 JPH0148472B2 (en) 1989-10-19

Family

ID=12262457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58028942A Granted JPS59157433A (en) 1983-02-23 1983-02-23 Method of controlling water temperature

Country Status (1)

Country Link
JP (1) JPS59157433A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02223763A (en) * 1989-02-23 1990-09-06 Rinnai Corp Temperature control device for hot water supply equipment
JPH02223764A (en) * 1989-02-23 1990-09-06 Rinnai Corp Temperature control device for hot water supply equipment
JPH02223765A (en) * 1989-02-24 1990-09-06 Rinnai Corp Temperature control device for hot water supply equipment
JPH02223766A (en) * 1989-02-24 1990-09-06 Rinnai Corp Temperature control device for hot water supply equipment
JP2006312619A (en) * 2005-04-04 2006-11-16 Mitsui Chemicals Polyurethanes Inc Installation and method for producing polyisocyanate
CN100383469C (en) * 2004-09-02 2008-04-23 厦门灿坤实业股份有限公司 Method for electronic precise regulating water temperature for electric heating appliance
JP2012233004A (en) * 2005-04-04 2012-11-29 Mitsui Chemicals Inc Equipment and method for producing polyisocyanate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02223763A (en) * 1989-02-23 1990-09-06 Rinnai Corp Temperature control device for hot water supply equipment
JPH02223764A (en) * 1989-02-23 1990-09-06 Rinnai Corp Temperature control device for hot water supply equipment
JPH02223765A (en) * 1989-02-24 1990-09-06 Rinnai Corp Temperature control device for hot water supply equipment
JPH02223766A (en) * 1989-02-24 1990-09-06 Rinnai Corp Temperature control device for hot water supply equipment
CN100383469C (en) * 2004-09-02 2008-04-23 厦门灿坤实业股份有限公司 Method for electronic precise regulating water temperature for electric heating appliance
JP2006312619A (en) * 2005-04-04 2006-11-16 Mitsui Chemicals Polyurethanes Inc Installation and method for producing polyisocyanate
JP2012233004A (en) * 2005-04-04 2012-11-29 Mitsui Chemicals Inc Equipment and method for producing polyisocyanate

Also Published As

Publication number Publication date
JPH0148472B2 (en) 1989-10-19

Similar Documents

Publication Publication Date Title
KR890005133B1 (en) Process heater control
JPS59157433A (en) Method of controlling water temperature
JPH0777445A (en) Gas meter
EP1331987B1 (en) Fluid sensing arrangement and mixing system
JPH04339218A (en) Thermal flowmeter
JPS58158444A (en) Controller for heating liquid
JPH08201128A (en) Gas leakge alarm inspection system
JPS5919857Y2 (en) Furnace pressure control device in combustion furnace
KR102171750B1 (en) Flow control structure of Mass Flow mater Controller system with simultaneous temperature control and flow control
JPH04235611A (en) Mass flow controller
RU1813990C (en) Method of and device for burning process control
JPS6266051A (en) Gas hot water supplier
JPH09280648A (en) Hot water feeding machine
JPH0350446A (en) Controller for hot water feeder and the like
JPS6146450Y2 (en)
JPS5973727A (en) Flow rate measuring device
SU992925A1 (en) Apparatus for controlling air-fuel ratio
KR920010741B1 (en) Temperature control apparatus
SU826155A2 (en) Apparatus for regulating water temperature in water heating boller output
JP3191526B2 (en) Gas flow control device and gas flow control method using the same
SU1008163A1 (en) Apparatus for controlling heat duty of glass-melting batch furnace
KR200156818Y1 (en) Gas flow quantity control apparatus
JPH08178262A (en) Air/fuel ratio controller of combustor
SU779771A1 (en) Drying process automatic control method
KR920010740B1 (en) Temperature control apparatus