JPS59144127A - Optical apparatus with adjustment of image - Google Patents

Optical apparatus with adjustment of image

Info

Publication number
JPS59144127A
JPS59144127A JP58018714A JP1871483A JPS59144127A JP S59144127 A JPS59144127 A JP S59144127A JP 58018714 A JP58018714 A JP 58018714A JP 1871483 A JP1871483 A JP 1871483A JP S59144127 A JPS59144127 A JP S59144127A
Authority
JP
Japan
Prior art keywords
optical
image
wafer
imaging
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58018714A
Other languages
Japanese (ja)
Other versions
JPH059934B2 (en
Inventor
Akiyoshi Suzuki
章義 鈴木
Michio Kono
道生 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58018714A priority Critical patent/JPS59144127A/en
Priority to GB08402807A priority patent/GB2138163B/en
Priority to DE19843404063 priority patent/DE3404063A1/en
Publication of JPS59144127A publication Critical patent/JPS59144127A/en
Publication of JPH059934B2 publication Critical patent/JPH059934B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70308Optical correction elements, filters or phase plates for manipulating imaging light, e.g. intensity, wavelength, polarisation, phase or image shift
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Lenses (AREA)
  • Projection-Type Copiers In General (AREA)

Abstract

PURPOSE:To adjust magnification error occurring at the image without generating a difficult point by providing, in the optical path, a curved optical means having such an optical thicknes as not giving any substantial influence on performance of focusing an image other than deviation of focusing position. CONSTITUTION:A mask M and a wafer W move integrally in the scanning direction (y). A shielding plate S is provided with a ring-belt shaped aperture and is fixed to the position approximated to the wafer. The center light beam emitted from the mask M is reflected by an optical path converting mirror BS1, and then enters the wafer W after it is sequentially reflected by a concave mirror M1, a convex mirror M2 and a light path converting mirror BS2. A member B fixed to the area near the wafer W is curved half-cylindrically in such a thickness as not giving influence on focusing performance. A curved thin film B is so arranged that its bus matches the scanning direction (y).

Description

【発明の詳細な説明】 本発明は結像光学装置に関し、特に結像倍率誤差を調整
し得る光学装置に関する。そして本発明は半導体集積回
路パターンをウェハ上に投影結像させる精密光学系で発
生する横倍率誤差の修正番に特に有効である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an imaging optical device, and more particularly to an optical device capable of adjusting imaging magnification error. The present invention is particularly effective for correcting lateral magnification errors that occur in precision optical systems that project and image semiconductor integrated circuit patterns onto wafers.

近年、半導体集積回路の微細化への要求は急速に高まシ
つつあり、電子回路内の微細パターンの寸法は1μmに
まで迫ろうとしている。このよ5な高集積素子を製造す
る工程の1つに、マスクパターンをウェハー上に転写す
るフォト工程があ委。
In recent years, the demand for miniaturization of semiconductor integrated circuits has been rapidly increasing, and the dimensions of fine patterns in electronic circuits are approaching 1 μm. One of the steps in manufacturing these highly integrated devices is a photo process that transfers a mask pattern onto a wafer.

いわゆる半導体焼付装置とは、このようなマスクパター
ンの転写に用いられる装置であるが、それには幾つかの
方式がある。例えばマスクとウェハーを接触させて焼き
付けるコンタクト露光方式、マスクウェハを数μm離し
て焼付ける近接露光方式、レンズないしはミラーを用い
て焼き付ける光学式投影露光方式などが上げられる。
A so-called semiconductor printing device is a device used for transferring such a mask pattern, and there are several methods thereof. Examples include a contact exposure method in which a mask and a wafer are printed while being in contact with each other, a close exposure method in which a mask wafer is printed at a distance of several micrometers, and an optical projection exposure method in which a mask is printed using a lens or mirror.

一般に半導体集積回路は単層の構造ではカフ)集積度が
高まればそれだけ多層化する傾向にある。
In general, semiconductor integrated circuits have a single-layer structure; however, as the degree of integration increases, the number of layers tends to increase.

その為、フォト工程においては、前述の幾つかの焼付方
式を適宜使い分けて、一枚のウエノ・−上に各層毎に異
なるマスクパターンを、高い寸法精度で重ね焼きしてい
く必要がある。また一方では、回路の生産性を高める為
にウェハー径の大型化が進められている。そして現在で
は5′径のものが主流になりつつある。
Therefore, in the photo process, it is necessary to use the several printing methods described above as appropriate to overprint different mask patterns for each layer on a single sheet of wafer with high dimensional accuracy. On the other hand, wafer diameters are being increased in order to increase circuit productivity. Nowadays, 5' diameter ones are becoming mainstream.

いくらアライメント系作を行なっても、1μmあるいは
それ以下の微小量まで両者を所望の位置関係に追い込め
ない現象が時折化ずる。即ちマスク像トウエバー上の既
パターンが正規の関係からずれてしまうわけである。
No matter how much alignment system production is performed, a phenomenon sometimes occurs in which the two cannot be brought into the desired positional relationship down to a microscopic distance of 1 μm or less. In other words, the existing pattern on the mask image toe bar deviates from the normal relationship.

この横方向の変位の仕方は千差万別であるが、その大半
はいわゆる倍率誤差と呼ばれるもので、倍率誤差は位置
の一次関数として表わし得る。ただこの倍率誤差が入る
とウェハー上のマスクの像は第1図(A)(B)に描く
様に正規の寸法より拡大あるいは縮小されて転写され、
その結果、既パターンとの結合がうまく行かず、不良品
となる。
There are many different ways of this lateral displacement, but most of them are what is called a magnification error, and the magnification error can be expressed as a linear function of position. However, if this magnification error is introduced, the image of the mask on the wafer will be enlarged or reduced from the normal size and transferred, as shown in Figure 1 (A) and (B).
As a result, the combination with the existing pattern is not successful, resulting in a defective product.

一般に倍率誤差の原因を考えてみると、第1に上述した
投影方式の差に依存するマスク像の倍率差があり、第2
に、同じ方式の装置でも各装置に個有の倍率差が上げら
れる。その他にも加工工程中の温度変化に伴うウェハー
の伸び縮みなども倍率誤差和尚の作用となる。
Generally speaking, when we consider the causes of magnification errors, the first is the difference in magnification of the mask image depending on the difference in projection method mentioned above, and the second is
Furthermore, even devices of the same type have their own unique magnification differences. In addition, expansion and contraction of the wafer due to temperature changes during the processing process also causes magnification error.

マスク像に誤差が入)込むことはどの方式にとっても不
都合であるが、ミラー投影露光方式ではよシ深刻である
。そこでこの方式を取上げて説明する。
Introducing errors into the mask image is an inconvenience in any method, but it is even more serious in the mirror projection exposure method. Therefore, this method will be explained.

ここで言うミラー投影露光方式というのは、主として鏡
面で構成された光学系において、収差の補正された、軸
外の輪帯状の領域を用いて、マスクパターンをウェハー
上に焼き付ける方式である。
The mirror projection exposure method referred to here is a method in which a mask pattern is printed onto a wafer using an off-axis annular region in which aberrations are corrected in an optical system mainly composed of mirror surfaces.

そして、この方式では光学系の良像域が輪帯状になって
いる。それ散大面積のマスクをウニ/・−上に焼き付け
る為には、ウエノ・−上に投影された輪帯(第2図のT
)の方向と直角方向にマスクMとウェハーWを同期して
走査させている。
In this method, the good image area of the optical system is annular. In order to print a mask with a large area onto the sea urchin, the annular zone (T in Figure 2) projected onto the sea urchin must be
) The mask M and the wafer W are scanned synchronously in a direction perpendicular to the direction.

以上の構成を具体的に示す為−例として構成図を第3図
に示す。図中Isは照明系、ASはマスクとウェハーの
アライメント系でちる。PSがミラー光学系でオシ、こ
れによシマスフMのパターンがウェハーW上に転写され
る。
In order to specifically illustrate the above configuration, a configuration diagram is shown in FIG. 3 as an example. In the figure, Is is an illumination system, and AS is an alignment system between the mask and the wafer. PS is rotated by a mirror optical system, whereby the pattern of the striped surface M is transferred onto the wafer W.

ミラー光学系P8はその光軸OO′に対して軸対称な系
であり、像高Rにおいて収差が補正されている。そして
、この良像域である半径Rの円周の一部を含む輪帯状の
領域を用いて、 上の微細パターンをウェハー上に転写するしくみになっ
ている。また結像関係としては、マスクM反射した後、
凹面縛!Jである凸面鏡M2、そして再び凹面鏡M1で
反射し、平面ミ9−E3s2で光路を曲げられてウェハ
ーW上の一点に収束する。
The mirror optical system P8 is an axially symmetrical system with respect to its optical axis OO', and aberrations are corrected at the image height R. Then, the above fine pattern is transferred onto the wafer using a ring-shaped area including a part of the circumference of the radius R, which is the good image area. In addition, regarding the image formation relationship, after reflection from the mask M,
Concave binding! The light is reflected by the convex mirror M2, which is J, and then again by the concave mirror M1, and the optical path is bent by the plane M9-E3s2, and it converges on one point on the wafer W.

この装置で生ずる倍率誤差は、投影光学系で光学的に発
生するものとし、マスクとウェハーを走査する際の機械
的な送シ誤差に起因するものに分けられるが、後述する
様に後者の難点は解決されている。
The magnification error that occurs in this device can be divided into two types: one is optically generated in the projection optical system, and the other is due to mechanical feed error when scanning the mask and wafer.As will be explained later, the latter has its drawbacks. has been resolved.

一方、前者については次の様な原因が考えられる。On the other hand, the following reasons can be considered for the former.

先にも述べたようにウェハー径の大型化に伴い、現在で
は5インーチ径のものが使われている。ミラー投影露光
方式において、この大きさのウェハーを焼き付ける為に
は、凹面鏡M1は直径400’mm近い大きさになる。
As mentioned earlier, with the increase in wafer diameter, 5-inch diameter wafers are currently being used. In the mirror projection exposure method, in order to print a wafer of this size, the concave mirror M1 has a diameter of nearly 400'mm.

このようなミラーの大口径化にも答えながら、一方では
1μm近い微細ノ(ターンを忠実にウエノ・−上に転写
してい(為には、鏡面の研摩後の面歪を波長の゛−〇以
下の高精度に抑えなげればならない。なぜなら、第6図
に点線で示されるように、もし、鏡面上光束のあたる位
置に面歪があると、光束は、本来反射していくべき方向
からそれて進んでしまうからである。その結果、ウェハ
ー上では規定の位置から光軸に垂直な方向へ変位した位
置に結像するので、像に倍率誤差が生じることになる。
While responding to the increase in the diameter of mirrors, on the other hand, it is possible to faithfully transfer minute turns of nearly 1 μm onto the Ueno surface (in order to reduce the surface distortion after polishing the mirror surface to a wavelength of ゛-〇 It must be kept to the following high precision.This is because, as shown by the dotted line in Figure 6, if there is surface distortion at the position on the mirror surface where the light beam hits, the light beam will be reflected from the direction it should originally be reflected. As a result, the image is formed on the wafer at a position displaced from the specified position in the direction perpendicular to the optical axis, resulting in a magnification error in the image.

そしてこの種の誤差は走査型のミラー光学系ではウェハ
ー上の主に走査方向yに直交する方向に発生し、これを
第4図(5)に小矢印で模式的に示した。これに対して
、第2番目の機械的原因から発生する寸法誤差は、マス
クとウエノ・−の移動に伴なって起きるものであり、第
4図(ロ)に描(様に主に走査方向yl沿って発生する
In a scanning mirror optical system, this type of error occurs mainly in a direction perpendicular to the scanning direction y on the wafer, and this is schematically shown by a small arrow in FIG. 4(5). On the other hand, dimensional errors caused by the second mechanical cause occur as the mask and wafer move, and are mainly caused in the scanning direction as shown in Figure 4 (b). Occurs along yl.

そこで、この2つの倍率誤差を客々独立に除は愁ば、ウ
ェハー全面にわたり集積回路の重ね焼き精度が向上し、
他の焼付装置との混用も可能となる訳である。
Therefore, by removing these two magnification errors independently, the accuracy of overprinting of integrated circuits over the entire wafer can be improved.
This allows for mixed use with other printing devices.

特にこのミラー光学系は物体側、像面側双方ともテレセ
ンドリンクであシ、物体であるマスクや、ウェハーの光
軸方向での位置を変化させても結像倍率が全く変化しな
いという光学的特殊性を持っている。従って走査方向と
垂直方向の倍率誤差は光学系によって定まる事になり、
これを補正する手段は知られていなかった。
In particular, this mirror optical system has telescopic links on both the object side and the image side, and has an optical special feature in that the imaging magnification does not change at all even if the position of the object mask or wafer in the optical axis direction changes. have sex. Therefore, the magnification error in the scanning direction and vertical direction is determined by the optical system.
No means were known to correct this.

一方、倍率誤差の機械的原因の主なものは機械の組立及
び工作精度の悪さき考えられる。例えば、第5図に描(
様にガイド面G上に活ってマスクとウェハーを載置した
摺動体Kを静圧気体ベアリングblとb2で支持しつつ
移動させた場合、もしガイド面が上に凸の形状をしてい
たとすれば、摺動体には走査範囲の前後で傾くことにな
る。従ってウェハー面も傾くことにカリ、これが第4図
(B)に示す形態の誤差を発生させ万ことになる。従っ
てこれを防止する一法としては、走査範囲の前端ではベ
アリングblに供給する圧力を高め、また後端ではベア
リングb!に供給する圧力を高めて、摺動体Kが常に水
平に移動する様に圧力制御するのが良い。
On the other hand, the main mechanical causes of magnification errors are thought to be poor machine assembly and machining accuracy. For example, as shown in Figure 5 (
If the sliding body K on which the mask and wafer are placed on the guide surface G is moved while being supported by the hydrostatic gas bearings bl and b2, if the guide surface has an upwardly convex shape, In this case, the sliding body will be inclined at the front and rear of the scanning range. Therefore, the wafer surface is also tilted, which causes an error of the type shown in FIG. 4(B). Therefore, one way to prevent this is to increase the pressure supplied to the bearing bl at the front end of the scanning range, and to increase the pressure supplied to the bearing b! at the rear end. It is preferable to increase the pressure supplied to and control the pressure so that the sliding body K always moves horizontally.

この他には、ウェハーを温度制御する事によシ倍率誤差
を除く方式や光学系内の結像特性に寄与している光学部
材を移動させて補正する方式もある。しかしながら、温
度制御による方式では、ウェハがその中心に対して放射
状に伸縮する為に、倍率誤差を走査方向と、これに直角
な方向の各々にわけて独立に補正できない。しかも、熱
伝導を利用する為に時間がかかるという欠点もある。ま
た、光学系内の結像特性に寄与している光学部材を移動
させて補正する方式も発表されているが、その場合は投
影系の結像性能そのものも悪化させてしまう危険が伴う
In addition to this, there is also a method of eliminating the magnification error by controlling the temperature of the wafer, and a method of correcting it by moving an optical member that contributes to the imaging characteristics within the optical system. However, in the temperature control method, since the wafer expands and contracts radially with respect to its center, magnification errors cannot be corrected independently in the scanning direction and in the direction perpendicular thereto. Moreover, it also has the disadvantage that it takes time to utilize heat conduction. Additionally, a method has been announced in which compensation is performed by moving an optical member that contributes to the imaging characteristics within the optical system, but in this case, there is a risk that the imaging performance of the projection system itself will be deteriorated.

本発明の目的とする処は、難点を派生させることなく為
結像に生じた倍率誤差を調整することにある。そしてこ
の目的を達成するため、後述する実施例では物体と像を
結ぶ光路中、そして更に望ましくは物体又は像もしくは
中間結像面の近傍に、投影光学系の結像位置のずれ以外
の結像性能に殆ど影響を与えない程度の透明な薄膜部材
を挿入し、この部分がわん曲していることで結像位置を
修正している。
SUMMARY OF THE INVENTION An object of the present invention is to adjust magnification errors occurring in imaging without introducing any disadvantages. In order to achieve this purpose, in the embodiments described below, an image is formed in the optical path connecting the object and the image, and more preferably in the vicinity of the object, image, or intermediate image formation plane, except for the deviation of the image formation position of the projection optical system. A transparent thin film member that has little effect on performance is inserted, and this part is curved to correct the imaging position.

以下、本発明の詳細な説明する。第6図の光学系を構成
する部分の大半は既に説明した。即ち、Mはマスク、W
はウェハーでこれらは一体的に走査方向yへ移動する。
The present invention will be explained in detail below. Most of the parts constituting the optical system in FIG. 6 have already been explained. That is, M is a mask, W
are wafers that move together in the scanning direction y.

Sは遮光板で、第2図のTに示す形状の輪帯開口を具え
、ウエノ・−に近接した位置に固設される。BS’lと
BS2は光路転換鏡であり、また凹面鏡M1と凸面鏡M
!は球心をずらして光軸OO′上に配される。そして照
明されたへ入射する。
Reference numeral S denotes a light-shielding plate, which is provided with an annular opening in the shape shown by T in FIG. BS'l and BS2 are optical path changing mirrors, and concave mirror M1 and convex mirror M
! is placed on the optical axis OO' with its spherical center shifted. The light then enters the illuminated area.

次に、ウェハーWの近傍に固設された部材Bが本発明に
特徴的な部材で、結像性能に影響を与えない程度の厚さ
の薄体を半円筒状にわん曲させてなる。わん曲薄膜Bは
その母線が走査方向yと一致する様に配置するものとし
、図面に垂直な方向の見えは第6図、第7図の通りであ
る。
Next, the member B fixedly installed near the wafer W is a member characteristic of the present invention, and is formed by bending a thin body into a semi-cylindrical shape with a thickness that does not affect the imaging performance. The curved thin film B is arranged so that its generating line coincides with the scanning direction y, and its appearance in the direction perpendicular to the drawing is as shown in FIGS. 6 and 7.

一般にペリクルで代表される様な光学薄膜は光学的には
非常に薄い平行面として考える事ができる。。この光学
部材は非常に薄く、且つノーパワーである為、結像性能
を殆ど劣化させない事が知られている。そこで物体或い
は像面の近傍に、光束の中心となる光線(主光線)に対
して傾斜をもっての結i特性を劣化させる程度は小さい
。にもかかわらず、主光線はスネルの法則に従って、第
6図に示す様に薄体Bで屈折をうけて進む。
In general, an optical thin film such as a pellicle can be optically thought of as a very thin parallel surface. . Since this optical member is very thin and has no power, it is known that the imaging performance hardly deteriorates. Therefore, the extent to which the i-characteristics are degraded by having an inclination with respect to the ray (principal ray) which is the center of the luminous flux in the vicinity of the object or the image plane is small. Nevertheless, the chief ray proceeds while undergoing refraction at the thin body B, as shown in FIG. 6, according to Snell's law.

以上の理由によシ、半導体焼付装置において、その焼付
光路中物体面であるマスク、あるいは、像面であるウェ
ハーの近傍に、適度に湾曲した、透明な光学薄体を挿入
する事によって、ウニ/N −上の焼付像を、その結像
特性を劣化せずに移動させる事ができる。
For the above reasons, in semiconductor printing equipment, a transparent optical thin body with an appropriate curve is inserted near the mask, which is the object plane, or the wafer, which is the image plane, in the printing optical path. /N - The printed image on the image can be moved without deteriorating its imaging characteristics.

半導体焼付装置の光学系は普通テレセントリック系とい
って、焼付画面内のすべての点について主光線が、ウェ
ハー面に垂直に投射されるよ5に設計されている。そう
する事によってウニ/・−が焦点はずれを生じた際にも
、光束の中心はウニ/・−上で横ずれを生じない為、倍
率誤差を生じない、という長所がある。
The optical system of a semiconductor printing apparatus is usually called a telecentric system, and is designed so that the principal rays of all points within the printing screen are projected perpendicularly to the wafer surface. By doing so, there is an advantage that even when the urchin/.-- is out of focus, the center of the light beam does not shift laterally on the urchin/.--, so no magnification error occurs.

第6図において、いま挿入した光学薄膜の厚みをdmm
、屈折率をルとし、ウェハー上で焼付像を横ずれさせた
い方向をX軸にと9、これと垂直な主光線の方向を2軸
とすると、挿入した光学薄膜の2方向への湾曲量zmm
はXの関数として表わされる。
In Figure 6, the thickness of the optical thin film just inserted is dmm.
, the refractive index is L, the direction in which the printed image is to be laterally shifted on the wafer is the X axis, and the direction of the chief ray perpendicular to this is the 2nd axis, then the amount of curvature of the inserted optical thin film in the two directions is zmm.
is expressed as a function of X.

この時えられる、X方向での焼付像の横ずれ量ΔXは dz Δ−Z−d(1−−)・−・・・・・■ル     d
x である。
The amount of lateral shift ΔX of the printed image in the X direction obtained at this time is dz Δ−Z−d(1−−)・−・■ru d
It is x.

特に、光学薄体を半径Hの球面状に張った場合、2 2!″−πの関係があるので0式は 1 Δ−1(1−)f   ・・・・・■ n。In particular, when an optical thin body is stretched into a spherical shape with radius H, 2 2! Since there is a relationship of ″−π, the formula 0 is 1 Δ-1(1-)f...■ n.

となる。%−’1.5とし、d/Rを変化させると第8
図かえられる。この線図を使えば、修正すべきずの厚さ
のペリクルを使用して良好な結果を得たが、光学系の性
能に応じてもって厚いものあるいは薄いものが適宜使用
できる。但し精密光学系では薄体を挿入する以前と以後
の波面収差がλ(波長)から7λの間になる様に抑える
のが一つの基準である。
becomes. %-'1.5 and changing d/R, the 8th
The figure can be changed. Using this diagram, good results were obtained using a pellicle with the correct thickness, but a thicker or thinner one can be used depending on the performance of the optical system. However, in a precision optical system, one standard is to suppress the wavefront aberration before and after inserting the thin body to be between λ (wavelength) and 7λ.

第6図へ戻って、薄体がない時にウエノ・−W上のa、
b、c、d、eに各々入射する主光線を想定する。今、
薄体Bをウニ/・−Wに対して凹面を向ける様に挿入す
ると、各光線は屈折されて、a′。
Returning to Figure 6, when there is no thin body, a on Ueno-W,
Assume chief rays incident on b, c, d, and e, respectively. now,
When the thin body B is inserted with its concave surface facing the sea urchin/...-W, each ray is refracted to a'.

b/、 d/、 e/に結像する。その結果、結像倍率
を図中X軸の方向へ縮小できる。
Images are formed on b/, d/, and e/. As a result, the imaging magnification can be reduced in the direction of the X axis in the figure.

またこれとは逆に第9図に示す様に、薄体Bをウェハー
Wに対して凸面を向ける様に挿入すると、屈折された光
線はa′、b′、d′、e′に結像する。従って、像を
図中X軸の方向に拡大できることになる。
Conversely, if the thin body B is inserted with its convex surface facing the wafer W as shown in FIG. do. Therefore, the image can be enlarged in the direction of the X axis in the figure.

すなわち、薄体Bのわん曲の方向と、上記0式によって
数値を決定すれば、いかなる倍率誤差にも対処できる。
That is, any magnification error can be dealt with by determining the direction of curvature of the thin body B and the numerical value according to the above equation 0.

尚、わん曲薄体Bは半円筒状に形成されているので、図
面に垂直な方向、即ち母線に平行な方向については単な
る平行平面板として作用することになシ、この方向の倍
率には影響を与えない。また、以上の説明では倍率潤盤
用の部材を第6図のウェハー側Bに挿入した場合を想定
したが、これ1則 をマスク、、33/に挿入しても原理的には全(同じ効
果をえられる。但し、この場合、ウェハー側Bに入れた
場合と拡大、縮小の関係が異なる。つまり、に Bにおいてウェハー治になる似挿入した場合1ウエハー
焼付像は拡大されるのに対し、Aにおいてマスクに凸に
なる様挿入した場合、ウェハー焼付像は縮小される。更
に光路転換鏡BS1又はBSzと凹面鏡M1の間に薄体
を移動しても良く、またもし、光路中に中間結像面があ
れば、その近傍に薄体を配置することもできる。
Note that since the curved thin body B is formed in a semi-cylindrical shape, it acts as a mere parallel plane plate in the direction perpendicular to the drawing, that is, in the direction parallel to the generatrix, and the magnification in this direction is No impact. In addition, in the above explanation, it is assumed that the magnification plate member is inserted into the wafer side B in Fig. 6, but even if this rule is inserted into the mask, . However, in this case, the relationship between enlargement and reduction is different from when it is inserted into the wafer side B.In other words, when it is inserted into the wafer side B, the 1 wafer printed image is enlarged. , A, if the wafer is inserted so that it is convex on the mask, the wafer printed image will be reduced.Furthermore, a thin body may be moved between the optical path switching mirror BS1 or BSz and the concave mirror M1. If there is an imaging plane, a thin body can be placed near it.

以上、本発明の実施例の第1として各補正書に見合った
半円筒状の湾曲した金枠に光学薄膜の部材を光学系PS
内に挿入する方式があげられる。
As described above, as the first embodiment of the present invention, an optical thin film member is attached to an optical system PS in a semi-cylindrical curved metal frame suitable for each correction document.
One method is to insert it inside.

この部材の挿入によυ多数の機械の間の微妙な倍率光を
補正する事が可能となる。又、ウェハーのプロセスによ
る伸縮がある場合には、その量に応じて本発明の補正部
材を交換すれば良いし、曲率な変更自在にしておけば、
倍率の変化を1つの部材で自由にコントロールすること
が可能である。
By inserting this member, it becomes possible to correct the delicate magnification light between many machines. Also, if there is expansion or contraction due to the wafer process, the correction member of the present invention can be replaced depending on the amount of expansion or contraction, and if the curvature can be changed freely,
It is possible to freely control changes in magnification with one member.

次に光学薄体を和持する枠を含めた補正部材をよυ具体
的に説明する。まず第10図(8)(B)に示すように
半円筒状に湾曲した金枠に数ミクロン厚の光学薄膜を張
り、そり釡粋の円周部の曲率を変化させるという例が上
げられる。具体的には、矩形の金属枠に光束を充分通す
よ5な輪帯状の開口APを設けて両側から力を加え、こ
れを半円筒状にす金。光学薄膜をこの金属枠にはシ、金
属枠に加えた力を加減すると半円筒の円周部の曲率を自
由に加えられる。それ故、ウェハ上焼付像倍率の補正が
できる。実施例の第6として、薄膜な単ガる半円筒形状
以外の一般形状に張る場合が上げられる。つまp1薄膜
を半円筒状にはった場合にはウェハー面上での位置の補
正量は第8図の示すようにウェハー上位置の一次の関数
である。ところが、実際に発生している焼付像ずれの中
には、位置の二次、あるいは、それ以上の関数で表わさ
れるものもある。これらの像ずれを除(為には、光学部
材を0式にみたすような適正な形状に湾曲させる必要が
ある。例えば、像のずれが位置の2次あるいは6次の関
係として表わされる(第11図)場合にこれを補正する
とすれば、薄膜のわん曲量は0式より位置の6次あるい
は4次の関数に夫々従わなければならない。
Next, the correction member including the frame for holding the optical thin body will be explained in detail. First, as shown in FIG. 10(8)(B), an example is given in which an optical thin film several microns thick is applied to a metal frame curved into a semi-cylindrical shape, and the curvature of the circumference of the curved frame is changed. Specifically, a rectangular metal frame is provided with a ring-shaped aperture AP that allows enough light to pass through, and force is applied from both sides to make it into a semi-cylindrical shape. An optical thin film is placed on this metal frame, and by adjusting the force applied to the metal frame, the curvature of the semicircular circumference can be freely applied. Therefore, the magnification of the image printed on the wafer can be corrected. As a sixth embodiment, there is a case where the thin film is stretched in a general shape other than a single-sided semi-cylindrical shape. When the tab p1 thin film is formed into a semi-cylindrical shape, the amount of correction of the position on the wafer surface is a linear function of the position on the wafer, as shown in FIG. However, some of the printing image deviations that actually occur are expressed as a quadratic or higher function of position. In order to eliminate these image shifts, it is necessary to curve the optical member into an appropriate shape that satisfies Equation 0. For example, image shift can be expressed as a quadratic or sixth-order relationship of position ( If this is to be corrected in the case of Figure 11), the amount of curvature of the thin film must follow a 6th or 4th order function of position, respectively, from equation 0.

更に、光学薄体を三次元的にわん曲させて像のた薄体を
、投影レンズPLを用いた投影露光装置領域で焼付が行
なわれるから、補正手段は三次元的な半球状の形状とな
る。半球状の部材は硝子あるいはグラスチックといった
ソリッドなもので実現できるし、あるいは気密箱の中に
ニトロセルロールの膜を張シ、空気圧の差を利用してこ
れを半球状にふ(らませても実現し得る。
Furthermore, since the optical thin body is three-dimensionally curved and the image is printed on the thin body in the area of the projection exposure device using the projection lens PL, the correction means has a three-dimensional hemispherical shape. Become. A hemispherical member can be made of a solid material such as glass or plastic, or a nitrocellulose film can be stretched inside an airtight box and expanded into a hemispherical shape using the difference in air pressure. can also be realized.

又本発明の技術思想はレンズ光学系の微小なディストー
ションの補正にも用いる事が可能である。
Furthermore, the technical idea of the present invention can also be used to correct minute distortions in lens optical systems.

例えばレンズ系は硝子の加工誤差及び組立誤差の集積で
ある特定の方向と、それに直交する方向で微小な倍率差
が生じる事がある。この様な場合も今迄本発明で述べて
きた様な光学部材を光路中に倍率差を調整する事が可能
である。この時、円筒の母線は倍率差が最も大きく生じ
ている二つの方向のどちらかと実質的に一致する方向に
セットされる。この様子は第16図に示され、CLとい
う光学部材が異方性のある倍率を補正している。この補
正は勿論Mと示されたマスク(又はレチクル)側で行な
っても良い。
For example, in a lens system, there may be a slight difference in magnification between a specific direction and a direction perpendicular to the specific direction due to the accumulation of glass processing errors and assembly errors. Even in such a case, it is possible to adjust the magnification difference using optical members such as those described in the present invention in the optical path. At this time, the generatrix of the cylinder is set in a direction that substantially coincides with one of the two directions in which the magnification difference is greatest. This situation is shown in FIG. 16, where an optical member called CL corrects the anisotropic magnification. Of course, this correction may be performed on the mask (or reticle) side indicated by M.

以上説明した例では、屈折率と厚みが一様な光学薄膜を
わん曲させて使用したが、屈折率が所定の分布を持って
連続的に変化する一平行平板あるいは厚みが微妙に連続
的に変化する平板を物体面あるいは像面もしくは中間結
像面の近傍に配しても良い。この場合、平板の屈折率又
は厚みの変化力(小プリズム様の屈折作用を光線に付与
し、所望の倍率に修正できる。例えばガラスによる平行
平板に屈折率分布を形成するためにはイオン拡散法によ
るのが適当であり、また厚さの変化を形成するには薄膜
上に同じ屈折率の物質を蒸着するのが一法である。
In the example explained above, a curved optical thin film with a uniform refractive index and thickness was used. The changing flat plate may be placed near the object plane, image plane, or intermediate imaging plane. In this case, the ability to change the refractive index or thickness of the flat plate (a small prism-like refraction effect can be applied to the light rays and the desired magnification can be adjusted. For example, to form a refractive index distribution on a parallel flat plate made of glass, ion diffusion is used. In addition, one method to form a thickness variation is to deposit a material having the same refractive index on the thin film.

以上述べた本発明によれば従来の光学系に手を加えるこ
とな(横倍率の修正が可能と寿る効果力(ある。そして
周知の半導体焼付工程では、ウニ/・−上に塵埃が落ち
るのを防止するためにペリクルがウェハーから若干離間
して平坦に張られていたが、この種の’gリクルを積極
的に利用して本発明を実現することができる。
According to the present invention described above, it is possible to modify the lateral magnification without modifying the conventional optical system. In order to prevent this, the pellicle is stretched flat with a slight distance from the wafer, but this type of pellicle can be positively utilized to realize the present invention.

本発明に従い光学薄膜の形状を所定のものにする事によ
り、微妙な機差或いはプロセスに伴うウェハーの伸縮を
補正する事が可能となった。この事実は0.1μmオー
ダーのアライメント誤差を云々するVLSIの製造では
非常に重大な意味を持つ。
By shaping the optical thin film into a predetermined shape according to the present invention, it has become possible to correct subtle mechanical differences or expansion and contraction of the wafer due to the process. This fact has a very important meaning in VLSI manufacturing where alignment errors are on the order of 0.1 μm.

又、ミラー光学系に適用した場合には走査方向と直交方
向の倍率を自由に変えられるというのも従来見られなか
った利点である。
Furthermore, when applied to a mirror optical system, the magnification in the direction orthogonal to the scanning direction can be freely changed, which is an advantage not seen in the past.

本発明の実施によ、9、LSIの製造における位置合せ
誤差は飛躍的に小さくなp1高い歩留υでの生産が可能
となった。又本発明の技術思想はこうした部門のみに留
まらず、微小な位置合せを要するあらゆる分野に適用が
可能である。
By implementing the present invention, 9. alignment errors in LSI manufacturing have been dramatically reduced, and production with a high p1 yield υ has become possible. Furthermore, the technical idea of the present invention is not limited to these fields, but can be applied to any field that requires minute alignment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A) 、 (B)は倍率誤差を模式的に示す平
面図。 第2図はウェハー上の像を示す平面図。第6図は本発明
の実施例を示す光学断面図。第4図(A) 、 (B)
は倍率誤差を模式的に示す平面図。第5図は走査機構の
補助説明図。第6図は実施例の要部拡大図。 第7図は実施例の横方向の光学断面図。第8図は半径と
厚さを変数とした線図。第9図ぼ要部変形図。第10区
内は構成部材の平面図で、第10図の)は斜視図。第1
1図は位置とずれ量を示す図。 第12図と第13図は光学系の斜視図。 図中、Mはマスク、Wはウェハー、Mlは凹面値、M2
は凸面鏡、BとB′は薄体、Cは開口を具えた柩yは走
査方向である。 出願人 キャノン株式会社 筒82 Wqプ ヌ 右10園(A)  第10霞(8) 8匹 第11M (
FIGS. 1A and 1B are plan views schematically showing magnification errors. FIG. 2 is a plan view showing an image on a wafer. FIG. 6 is an optical sectional view showing an embodiment of the present invention. Figure 4 (A), (B)
is a plan view schematically showing magnification errors. FIG. 5 is an auxiliary explanatory diagram of the scanning mechanism. FIG. 6 is an enlarged view of the main parts of the embodiment. FIG. 7 is a lateral optical cross-sectional view of the embodiment. Figure 8 is a diagram with radius and thickness as variables. Figure 9 is a modified view of the main part. Section 10 is a plan view of the constituent members, and section 10) is a perspective view. 1st
Figure 1 is a diagram showing the position and amount of deviation. 12 and 13 are perspective views of the optical system. In the figure, M is a mask, W is a wafer, Ml is a concave value, and M2
is a convex mirror, B and B' are thin bodies, C is a coffin with an aperture, and y is the scanning direction. Applicant Canon Co., Ltd. Tsutsu82 Wq Punu Right 10th Garden (A) No. 10 Kasumi (8) 8 animals No. 11M (

Claims (1)

【特許請求の範囲】 (1)結像光学系を備え、結像位置のずれ以外の結像性
能に対し実質的に影響を与えない程度の光学的厚さで且
つわん曲した形状の光学手段を光路中に配することを特
徴とする像調整された光学装置。 (2)前記光学手段は前記結像光学系の物体面又は像面
もしくは中間結像面の近傍に配置されている特許請求の
範囲第1項記載の像調整された光で変更される特許請求
の範囲第1項記載の像調整された光学装置。 (4)前記光学装置は前記結像光学系による物体の帯状
の像と感光面を相対的に走査して露光する装置で、前記
光学手段は母線の方向が走査方向と実質一致する円筒状
にわん曲して成る特許請求の範囲第1項記載の像調整さ
れた光学装置。 (5)前記光学手段は枠に保持されたペリクルである特
許請求の範囲第1項記載の像調整された光学装置。 (6)結像光学系を具え、結像位置のずれ以外の結像性
に対し実質的に影響を与えない程度の光学的厚さで且つ
連続的に変化する屈折率分布又は厚みの分布を有する光
学手段を光路中に設けたことを特徴とする像調整された
光学装置。
[Scope of Claims] (1) Optical means that is equipped with an imaging optical system and has an optical thickness and a curved shape that does not substantially affect imaging performance other than the deviation of the imaging position. An image-adjusted optical device characterized in that an image-adjusted optical device is arranged in an optical path. (2) A patent claim in which the optical means is modified by image-adjusted light according to claim 1, wherein the optical means is arranged near the object plane, image plane, or intermediate image plane of the imaging optical system. The image-adjusted optical device according to item 1. (4) The optical device is a device that exposes a band-shaped image of the object by the imaging optical system and the photosensitive surface by relatively scanning it, and the optical means has a cylindrical shape whose generating line substantially coincides with the scanning direction. An image-adjusted optical device according to claim 1, which is curved. (5) The image-adjusted optical device according to claim 1, wherein the optical means is a pellicle held in a frame. (6) Equipped with an imaging optical system, which has an optical thickness that does not substantially affect the imaging performance other than the deviation of the imaging position, and has a continuously changing refractive index distribution or thickness distribution. 1. An image-adjusted optical device, characterized in that an optical device having an optical function is provided in an optical path.
JP58018714A 1983-02-07 1983-02-07 Optical apparatus with adjustment of image Granted JPS59144127A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58018714A JPS59144127A (en) 1983-02-07 1983-02-07 Optical apparatus with adjustment of image
GB08402807A GB2138163B (en) 1983-02-07 1984-02-02 Optical projection system
DE19843404063 DE3404063A1 (en) 1983-02-07 1984-02-06 OPTICAL DEVICE WHICH CANCELED IMAGE DISTORTION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58018714A JPS59144127A (en) 1983-02-07 1983-02-07 Optical apparatus with adjustment of image

Publications (2)

Publication Number Publication Date
JPS59144127A true JPS59144127A (en) 1984-08-18
JPH059934B2 JPH059934B2 (en) 1993-02-08

Family

ID=11979322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58018714A Granted JPS59144127A (en) 1983-02-07 1983-02-07 Optical apparatus with adjustment of image

Country Status (3)

Country Link
JP (1) JPS59144127A (en)
DE (1) DE3404063A1 (en)
GB (1) GB2138163B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03198319A (en) * 1989-12-27 1991-08-29 Toshiba Corp Exposure device
US6262793B1 (en) 1993-12-22 2001-07-17 Nikon Corporation Method of manufacturing and using correction member to correct aberration in projection exposure apparatus
US6268903B1 (en) 1995-01-25 2001-07-31 Nikon Corporation Method of adjusting projection optical apparatus
JP2005292450A (en) * 2004-03-31 2005-10-20 Orc Mfg Co Ltd Projecting optical system and projecting exposure device
KR100588941B1 (en) 2004-08-03 2006-06-09 주식회사 대우일렉트로닉스 Cylindrical type holographic data recoding apparatus and method for controlling thereof
JP2006235625A (en) * 2005-02-18 2006-09-07 Heidelberger Druckmas Ag Device for imaging printing form and having at least one laser diode bar
JP2013511843A (en) * 2009-11-20 2013-04-04 コーニング インコーポレイテッド Magnification control of lithographic imaging system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3221226B2 (en) * 1994-03-30 2001-10-22 キヤノン株式会社 Illumination apparatus and projection exposure apparatus using the same
JPH1054932A (en) * 1996-08-08 1998-02-24 Nikon Corp Projection optical device and projection exposure device provided the device
DE19733193B4 (en) * 1997-08-01 2005-09-08 Carl Zeiss Jena Gmbh Microscope with adaptive optics
DE19827603A1 (en) 1998-06-20 1999-12-23 Zeiss Carl Fa Projection light exposure system for microlithography
US6937394B2 (en) 2001-04-10 2005-08-30 Carl Zeiss Semiconductor Manufacturing Technologies Ag Device and method for changing the stress-induced birefringence and/or the thickness of an optical component
SG118242A1 (en) 2003-04-30 2006-01-27 Asml Netherlands Bv Lithographic apparatus device manufacturing methods mask and method of characterising a mask and/or pellicle
US7304715B2 (en) 2004-08-13 2007-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
CN110109104B (en) * 2019-04-17 2022-03-15 电子科技大学 Array SAR (synthetic aperture radar) equidistant slice imaging geometric distortion correction method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH234371A (en) * 1942-10-22 1944-09-30 Zeiss Ikon Ag Method for depicting drawings, plans and the like and apparatus for carrying out this method.
US2976785A (en) * 1955-09-23 1961-03-28 Bariquand & Marre Sa Atel Italic-forming anamorphotic device for use in photo-composition
US3582331A (en) * 1968-05-06 1971-06-01 Eastman Kodak Co Process for making a small linear change in a photographic image
CA1103498A (en) * 1977-02-11 1981-06-23 Abe Offner Wide annulus unit power optical system
JPS5453867A (en) * 1977-10-06 1979-04-27 Canon Inc Printing device
DE2910280C2 (en) * 1978-03-18 1993-10-28 Canon Kk Optical imaging systems
JPS58108745A (en) * 1981-12-23 1983-06-28 Canon Inc Erroneous transcription adjusting device
JPS58116735A (en) * 1981-12-29 1983-07-12 Canon Inc Projection printing apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03198319A (en) * 1989-12-27 1991-08-29 Toshiba Corp Exposure device
US6262793B1 (en) 1993-12-22 2001-07-17 Nikon Corporation Method of manufacturing and using correction member to correct aberration in projection exposure apparatus
US6958803B2 (en) 1993-12-22 2005-10-25 Nikon Corporation Projection exposure apparatus and method with adjustment of rotationally asymmetric optical characteristics
US6268903B1 (en) 1995-01-25 2001-07-31 Nikon Corporation Method of adjusting projection optical apparatus
US6377333B1 (en) 1995-01-25 2002-04-23 Nikon Corporation Method of adjusting projection optical apparatus
KR100422330B1 (en) * 1995-01-25 2004-05-17 가부시키가이샤 니콘 Projection optical device adjustment method
JP2005292450A (en) * 2004-03-31 2005-10-20 Orc Mfg Co Ltd Projecting optical system and projecting exposure device
KR100588941B1 (en) 2004-08-03 2006-06-09 주식회사 대우일렉트로닉스 Cylindrical type holographic data recoding apparatus and method for controlling thereof
JP2006235625A (en) * 2005-02-18 2006-09-07 Heidelberger Druckmas Ag Device for imaging printing form and having at least one laser diode bar
JP2013511843A (en) * 2009-11-20 2013-04-04 コーニング インコーポレイテッド Magnification control of lithographic imaging system
JP2015180945A (en) * 2009-11-20 2015-10-15 コーニング インコーポレイテッド Magnification control for lithographic imaging system

Also Published As

Publication number Publication date
JPH059934B2 (en) 1993-02-08
DE3404063A1 (en) 1984-08-09
GB2138163B (en) 1987-06-24
GB2138163A (en) 1984-10-17
GB8402807D0 (en) 1984-03-07
DE3404063C2 (en) 1993-04-08

Similar Documents

Publication Publication Date Title
US4326805A (en) Method and apparatus for aligning mask and wafer members
US5867319A (en) Illumination optical system, an exposure apparatus having the illumination system, and a method for manufacturing a semiconductor device
US4492459A (en) Projection printing apparatus for printing a photomask
JPS59144127A (en) Optical apparatus with adjustment of image
JP5047544B2 (en) Lithographic projection objective correction method and lithographic projection objective
US20040189965A1 (en) Projection optical system and exposure device having the projection optical system
US6781671B2 (en) Imaging optical system and exposure apparatus
KR102074476B1 (en) Image-forming optical system, exposure apparatus, and device producing method
KR101401227B1 (en) Catadioptric projection objective comprising deflection mirrors and projection exposure method
JP2020524309A (en) Magnification correction and/or beam steering in optical system
JPH0533368B2 (en)
JP2007013179A5 (en)
US5257139A (en) Reflection reduction projection optical system
KR20080056094A (en) Exposure apparatus and device fabrication method
JP6635904B2 (en) Projection optical system, exposure apparatus and article manufacturing method
KR20080049673A (en) Exposure apparatus and device fabrication method
US4906080A (en) Optical arrangement for projection exposure
US6600550B1 (en) Exposure apparatus, a photolithography method, and a device manufactured by the same
KR102372650B1 (en) Projection optical system, exposure apparatus, method of manufacturing article, and adjusting method
JP2010257998A (en) Reflective projection optical system, exposure apparatus, and method of manufacturing device
TWI658333B (en) Exposure device, exposure method, and article manufacturing method
KR20090013132A (en) Optical system, exposure apparatus and device manufacturing method
JP2001176772A (en) Illumination optical device and projection aligner equipped with the same
KR20210028574A (en) Exposure apparatus and method of manufacturing article
JPH0533371B2 (en)