JPS59134788A - Production of dioxane glycol - Google Patents

Production of dioxane glycol

Info

Publication number
JPS59134788A
JPS59134788A JP923383A JP923383A JPS59134788A JP S59134788 A JPS59134788 A JP S59134788A JP 923383 A JP923383 A JP 923383A JP 923383 A JP923383 A JP 923383A JP S59134788 A JPS59134788 A JP S59134788A
Authority
JP
Japan
Prior art keywords
reaction
hpa
liquid
dog
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP923383A
Other languages
Japanese (ja)
Other versions
JPS6259104B2 (en
Inventor
Teruyuki Ninomiya
二宮 暎之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP923383A priority Critical patent/JPS59134788A/en
Publication of JPS59134788A publication Critical patent/JPS59134788A/en
Publication of JPS6259104B2 publication Critical patent/JPS6259104B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)

Abstract

PURPOSE:To produce the titled compound in high yield and purity, with simplified process, without necessitating the recovery of hydroxypivalaldehyde, by reacting trimethylolpropane directly with a liquid produced by aldol reaction or with a liquid obtained by a specific treatment of said aldol reaction product liquid. CONSTITUTION:A liquid containing hydroxypivaldehyde and obtained by the aldol condensation of isobutylaldehyde with HCHO or a liquid obtained by distilling out the unreacted isobutylaldehyde from the above liquid, is subjected to the acetalization reaction with trimethylolpropane in the presence of prefrably an acid catalyst (e.g. HCl, phosphoric acid, methanesulfonic acid, etc.) at 35- 60 deg.C for 3-5hr to obtain dioxane glycol. USE:Synthetic raw material of plasticizer, ink, paint, etc.

Description

【発明の詳細な説明】 本発明はトリメチロールブーパン(以下TMPと称する
)とヒドロキシピバルアルデヒド(以下HPAと称する
)を反応せしめてジオキサングリコール(以下DOGと
称する)を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing dioxane glycol (hereinafter referred to as DOG) by reacting trimethylolbutane (hereinafter referred to as TMP) and hydroxypivalaldehyde (hereinafter referred to as HPA).

DOGはネオ構造と1,6−ジオキサン環を有する多価
アルコールであり、有機合成原料、合成樹脂原料、例え
ば可塑剤、潤滑油、光硬化型のインキ、塗料、FRP、
ポリウレタンなどの原料として有用である。特に第1級
アルコール性水酸基2個とジオキサン環を有しているこ
とから、このDOGを原料に更に誘導品へと展開したと
き極めて特徴的な物性をもった新規化合物が得られるこ
とが期待される。
DOG is a polyhydric alcohol with a neo structure and a 1,6-dioxane ring, and can be used as raw materials for organic synthesis, raw materials for synthetic resins, such as plasticizers, lubricating oils, photocurable inks, paints, FRP,
It is useful as a raw material for polyurethane, etc. In particular, since it has two primary alcoholic hydroxyl groups and a dioxane ring, it is expected that when this DOG is further developed into derivatives as a raw material, new compounds with extremely distinctive physical properties will be obtained. Ru.

従来、DOGを工業的に大々的に製造された例はなく、
もっばら実験室レベルの小規模の製造の域を脱していな
かった。すなわち、その製造法はいわゆる試薬グレード
のHPAを原料に′I”MPと反応せしめる方法で、こ
の場合前られるDOGの収率は、HPA基準で求めたと
きには収率的に高く一見問題ないようにみえる。
Until now, there has been no example of DOG being manufactured on a large scale industrially.
It was still small-scale manufacturing at the laboratory level. That is, the manufacturing method is a method in which so-called reagent-grade HPA is used as a raw material to react with 'I'' MP, and in this case, the yield of DOG is high when calculated based on HPA standards, and there is no problem at first glance. I can see it.

しかるに工業的規模でDOGを製造するにはイソブチル
アルデヒド(以下IBAと称する)とホルムアルデヒド
をアルドール縮合させる反応を含めて一貫して考慮する
必要があるが、IB八とホルムアルデヒドの反応生成液
からHPAを回収する段階での回収率が低く、IBA又
はホルムアルデヒド基準でのDOGの収率は極めて低い
ものとなる。本発明はか\る欠点を解消するもので、I
BAとホルムアルデヒドをアルドール縮合させて得たH
PA含有反応生成液又は該反応生成液中に存在する未反
応のIBAを留去した液と、TMPを反応せる方法であ
り、HPAの回収工程を含まないのでIBA又はホルム
アルデヒド基準のDOG収率は極めて高く効率的である
However, in order to produce DOG on an industrial scale, it is necessary to consistently consider the aldol condensation reaction of isobutyraldehyde (hereinafter referred to as IBA) and formaldehyde. The recovery rate at the stage of recovery is low, and the yield of DOG based on IBA or formaldehyde is extremely low. The present invention solves these drawbacks, and
H obtained by aldol condensation of BA and formaldehyde
This method involves reacting TMP with a PA-containing reaction product solution or a solution from which unreacted IBA present in the reaction product solution has been distilled off, and does not include an HPA recovery step, so the DOG yield based on IBA or formaldehyde is Extremely high and efficient.

IBAとホルムアルデヒドの反応はアミン、炭酸アルカ
リ等のアルカリ触媒存在下公知の反応条件下で実施出来
、この反応により得られた反応生成液中にはHPA、未
反応IBA、ホルムアルデヒド、メタノール、ギ酸塩、
ネオペンチルグリコール、水、アルカリ触媒等を含有シ
ている。かへる各種不純物を含有する混合液に直接TM
Pを加え反応さぜるときは、これら不純物の影響により
高純度のDOGが得られないのではないかと予測された
。又、HPAとTMPの反応に際し加える酸触媒の添加
量は、アルドール縮合に際し使用したアルカリ触的の中
和分を見込む必要もなく、高純度のDOGな得ることが
出来る。
The reaction between IBA and formaldehyde can be carried out under known reaction conditions in the presence of an alkali catalyst such as an amine or an alkali carbonate, and the reaction product liquid obtained by this reaction contains HPA, unreacted IBA, formaldehyde, methanol, formate,
Contains neopentyl glycol, water, alkaline catalyst, etc. Apply TM directly to mixed liquids containing various impurities.
It was predicted that when adding P and stirring the reaction, highly pure DOG would not be obtained due to the influence of these impurities. Furthermore, when adjusting the amount of acid catalyst added during the reaction of HPA and TMP, it is not necessary to take into account the neutralization of the alkali catalyst used during aldol condensation, and highly pure DOG can be obtained.

TMPの添加方法は固体結晶の状態で、または溶融した
状態で、あるいは水もしくは溶剤に溶解した状態で行な
う。
TMP is added in the form of solid crystals, in a molten state, or in a state dissolved in water or a solvent.

HPAとTMPの反応はいわゆるアセタール化反応であ
り、触媒としては酸触媒が使用される。
The reaction between HPA and TMP is a so-called acetalization reaction, and an acid catalyst is used as the catalyst.

酸触媒には特に制限はないが、一般的処は塩酸、リン酸
などの鉱酸またはP−)ルエンスルホン酸、メタンスル
ホン酸などの有機酸が有用である。酸触媒の添加量は酸
触媒の種類によりそれぞれ異なるが、塩酸を用いた場合
にはTMP仕込量に対し2〜6重員%、P−)ルエンス
ルホン酸を用いた場合には8〜12重量%程度が好適で
ある。
The acid catalyst is not particularly limited, but mineral acids such as hydrochloric acid and phosphoric acid, or organic acids such as P-)luenesulfonic acid and methanesulfonic acid are generally useful. The amount of acid catalyst added varies depending on the type of acid catalyst, but when hydrochloric acid is used, it is 2 to 6% by weight based on the amount of TMP charged, and when P-)luenesulfonic acid is used, it is 8 to 12% by weight. % is suitable.

反応温度は35〜60℃の範囲が好ましい。The reaction temperature is preferably in the range of 35 to 60°C.

35℃以下では反応速度が遅く工業的でなく、また特に
HPAの溶解性に問題を生じてくる。
Below 35°C, the reaction rate is too slow to be industrially practical, and problems arise particularly with the solubility of HPA.

又、60℃以上では副反応生成物の生成量が増加し、高
純度のDOGを得ることが出来なし・。
Furthermore, at temperatures above 60°C, the amount of side reaction products produced increases, making it impossible to obtain highly pure DOG.

反応時間は3〜5時間程度が好ましく、圧力には特に制
限はないが、工業的には常圧下で行?jうりが実際的で
ある。
The reaction time is preferably about 3 to 5 hours, and there is no particular restriction on the pressure, but industrially it may be carried out under normal pressure. j Uri is practical.

TMPの仕込量ヲまアルドール反応生成液中に存在する
HPAに対し、HPA :TMP=0 。
With respect to HPA present in the aldol reaction product solution, the amount of TMP charged is HPA:TMP=0.

95〜1.15:1、好ましくはHPA:TMp=1.
05〜+、+o:+の範囲である。この範囲を外れると
きは副反応生成物の生成量が増加し、高純度のDOGが
得られない。
95-1.15:1, preferably HPA:TMp=1.
The range is from 05 to +, +o:+. When it is out of this range, the amount of side reaction products produced increases and highly pure DOG cannot be obtained.

本発明におけるアセタール化反応の方法は連続式、半連
続式、回分式のいずれの方法でも行なう事が出来る。例
えば連続式の場合は別途反応缶で塩基性触媒存在下IB
Aとホルムアルデヒドのアルドール縮合反応を行なわせ
て得た■(PA反応生成液と、TMPおよび酸触媒を連
続的にアセタール反応缶に仕込みながら行なう。
The acetalization reaction method in the present invention can be carried out in any of the continuous, semi-continuous, and batch methods. For example, in the case of a continuous type, IB is prepared in a separate reaction vessel in the presence of a basic catalyst.
The process was carried out while continuously charging the (PA) reaction product liquid obtained by carrying out the aldol condensation reaction of A and formaldehyde, TMP and the acid catalyst into an acetal reaction vessel.

酸触媒の仕込み方法は一般的には酸そのまま本発明にお
いてHPA源と1−でアルドール応生成液、または未反
応のIBAを留去した後の反応生成液を直接使用するこ
とによりHPAの回収工程が省略できるほか、その回収
]二程を導入した場合に付随して生じるHPAの損失を
無くすることが出来、その結果、単純化されたプロセス
から高収率で高純度のDOGを得ることが出来る。
In general, the method of charging the acid catalyst is to directly use the aldol reaction product solution with the HPA source and 1- in the present invention as the acid is, or the reaction product solution after distilling off unreacted IBA to perform the HPA recovery step. In addition, it is possible to eliminate the loss of HPA that occurs when the recovery step is introduced, and as a result, high yield and high purity DOG can be obtained from a simplified process. I can do it.

下記の実施例及び比較例におυ・て「96」および「部
」は特にことわらなし・限り「重量%」および「重量部
」を各々意味する。
In the Examples and Comparative Examples below, "96" and "parts" mean "% by weight" and "parts by weight", respectively, unless otherwise specified.

実施例1 トリエチルアミンを触媒にしてI B A )− d=
 tレムアルデヒドを反応せしめて得たHPA64 。
Example 1 IBA)-d= using triethylamine as a catalyst
HPA64 obtained by reacting tremaldehyde.

3296(0.589+Sモル)、IBAl.+。3296 (0.589+S mol), IBAl. +.

%、メタノール4.0896、) リエプールアミン2
、57%、水26.53%、不可分1.40%の組成を
持つHPA反応生成液93.5部と、110.0部に溶
解したTMP水溶液182゜5部および触媒として塩酸
(5596)5.0部を混合し、55°C1常圧下で7
.0時間反応を行なった。
%, methanol 4.0896,) Liepuramine 2
, 57% water, 26.53% water, 1.40% indivisible, 93.5 parts of HPA reaction product solution, 182° 5 parts of TMP aqueous solution dissolved in 110.0 parts, and 5 parts of hydrochloric acid (5596) as a catalyst. Mix 0 parts and heat at 55°C under normal pressure.
.. The reaction was carried out for 0 hours.

反応開始後的0.5時間を経過した処、生成りOGの一
部が結晶化し、反応液は白濁、スラリー状となった。
About 0.5 hours after the start of the reaction, a part of the produced OG crystallized, and the reaction liquid became cloudy and slurry-like.

この状態は反応が進行する罠従って顕著となり、7.0
時間後には攪拌効率の低下を生じる程になった。
This state becomes noticeable as the reaction progresses, and 7.0
After some time, the stirring efficiency was reduced.

反応後10%の炭酸ソーダ水溶液を加え、反応液のpH
が7.2になるまで中和を行なった。
After the reaction, add 10% aqueous sodium carbonate solution to adjust the pH of the reaction solution.
Neutralization was carried out until the value was 7.2.

中和後、通常のt11部PJFの方法に従って生成した
DOGをケーキとして分離し、乾燥後113.1部(0
,5184モル)のDOGを製品として得た。
After neutralization, DOG produced according to the usual t11 parts PJF method was separated as a cake, and after drying 113.1 parts (0
, 5184 mol) of DOG was obtained as a product.

この取得量から求めた収率はIBA基準で85.9モル
%、TMP基準で96.0モル%に相当する。
The yield determined from this obtained amount corresponds to 85.9 mol% on an IBA basis and 96.0 mol% on a TMP basis.

また、製品を分析した結果、第1表に示す通り高品質の
ものであった。
Further, as a result of analyzing the product, it was found to be of high quality as shown in Table 1.

実施例2 実施例1と同様にして得たHPA反応生成液から未反応
のIBAを蒸留方法によって回収した、HPA70.6
7%([]、5889モル)、IBAo、02%、メタ
/’−ル1.40%、トリエチルアミン1.84%、水
20.70%、不明分0.9796の組成を持っHPA
反応生成液8560部をHPA源としたほかは実施例1
と同様な操作及び条件でI) OGを製造した。
Example 2 Unreacted IBA was recovered from the HPA reaction product solution obtained in the same manner as in Example 1 by a distillation method, HPA70.6
HPA with a composition of 7% ([], 5889 mol), IBAo, 02%, methanol 1.40%, triethylamine 1.84%, water 20.70%, and unknowns 0.9796.
Example 1 except that 8560 parts of the reaction product liquid was used as the HPA source
I) OG was produced under the same operation and conditions as in .

乾燥後M3.3部(0、5191モル)のDOGを製品
として得た。
After drying, 3.3 parts (0.5191 mol) of M DOG was obtained as a product.

収率1’i I B A基準で86.0モル%、TMP
基準で96.1モル%に相当する。
Yield 1'i IBA 86.0 mol%, TMP
This corresponds to 96.1 mol% on a standard basis.

またこの製品を分析した結果、第1表に示す通り高品質
のものであった。
Further, as a result of analysis of this product, it was found to be of high quality as shown in Table 1.

実施例3 7セタ一ル化反応触媒としてP−)ルエンスルホン酸1
水塩9.1部を使用したほかは実施例1と同様な操作及
び条件でDOGを製造した。
Example 3 P-)luenesulfonic acid 1 as a 7cetalization reaction catalyst
DOG was produced using the same operations and conditions as in Example 1, except that 9.1 parts of aqueous salt was used.

乾燥後M2.0部(0,5134モル)のDOGを製品
として得た。
After drying, 2.0 parts of M (0,5134 mol) of DOG was obtained as a product.

収率はIBA基準で85.0モル%に相当する。The yield corresponds to 85.0 mol% based on IBA.

また、この製品を分析した結果、第1表に示す通り高品
質のものであった。
Further, as a result of analysis of this product, it was found to be of high quality as shown in Table 1.

実施例4 炭酸カリウムを触媒にし−CIBAとホルムアルデヒド
を反応せしめたHpA51.81%(21,968モル
)、IBAI 、+096、メタノール2.6396、
ホルムアルデヒド1゜50%、ギ酸カリウム2.029
6、ネオペンチルグリコール2 、5396、水66.
78%、不明分1.65%の組成を持つHPA反応生成
液47325部をHP A源としたほかは実施例1と同
様な操作及び条件でDOGを製造した。
Example 4 HpA 51.81% (21,968 mol) in which CIBA and formaldehyde were reacted using potassium carbonate as a catalyst, IBAI, +096, methanol 2.6396,
Formaldehyde 1°50%, potassium formate 2.029
6, Neopentyl Glycol 2, 5396, Water 66.
DOG was produced under the same operations and conditions as in Example 1, except that 47,325 parts of the HPA reaction product liquid having a composition of 78% and 1.65% of unknowns was used as the HPA source.

乾燥後4308.7部(19,749モル)のl) O
Gを製品として得た。
After drying 4308.7 parts (19,749 mol) of l) O
G was obtained as a product.

収率はIBA基準で83.4モル%、TMP基準98.
+7モル%に相当する。
The yield was 83.4 mol% based on IBA, and 98% based on TMP.
This corresponds to +7 mol%.

また、この製品を分析した結果、第1表に示す通り高品
質のものであった。
Further, as a result of analysis of this product, it was found to be of high quality as shown in Table 1.

比較例1 実施例1と同様にして得たHPA反応生成液に150部
の水を添加し、攪拌下冷却しなからHPA(実質的には
HPAf量体)を晶析させた。晶析したHPAを通常の
方法によりr過分離し、ケーキとしてHPA53.6%
(0,4708モル)、IBAo、03%、メタノール
0.0796、トリエチルアミン0 、01%、水44
.5%および不明分1.80%の組成を持つ含水HPA
89゜6部を得た。
Comparative Example 1 150 parts of water was added to the HPA reaction product liquid obtained in the same manner as in Example 1, and while stirring and cooling, HPA (substantially HPAf polymer) was crystallized. The crystallized HPA was separated by a conventional method, and a cake containing 53.6% HPA was obtained.
(0,4708 mol), IBAo, 0.03%, methanol 0.0796, triethylamine 0.01%, water 44
.. Hydrous HPA with a composition of 5% and 1.80% unknown
6 parts of 89° were obtained.

この含水HPAをHPA源としたほかは実施例1と同様
な操作及び条件でDOGを製造した。
DOG was produced using the same operations and conditions as in Example 1, except that this hydrated HPA was used as the HPA source.

乾燥後90.1部(0,,4130モル)のDOGを製
品として得た。
After drying, 90.1 parts (0,4130 mol) of DOG was obtained as a product.

収率はIBA基準で69.6モル%、TMP基準で97
.0モル%であった。尚、HPA反応生成液中からHP
Aを晶析回収するに際し、反応生成液96.5部処対し
て添加水m150部以下では常温下で反応生成液全体が
固化し、実質上r過操作が出来なかった。
Yield is 69.6 mol% based on IBA, 97% based on TMP
.. It was 0 mol%. In addition, HP from the HPA reaction product liquid
When recovering A by crystallization, if 96.5 parts of the reaction product liquid were used and less than 150 parts of water was added, the entire reaction product liquid solidified at room temperature, making it virtually impossible to carry out the r-filtration operation.

また、製品を分析した結果を第1表に示した。Additionally, the results of product analysis are shown in Table 1.

手続補正前 昭和58年9月7 日 特許庁長官 殿 1、 事件の表示 昭和58年特許願第9266号 2 発明の名称 ジオキザングリコールの製造法 6、補正をする者 事件との関係  特許出願人 住所け100)東京都千代田区丸の内二丁目5番2号名
称(446)  三菱瓦斯化学株式会社代表者  長 
野 和 吉 5、補正の内容 明細書1頁、下から2行目〜1行目 [DOGは・・・・・・・・・・・・・・・多(曲7ル
プール」を次の如く訂正 「 本発明におけるDOGはネオ横進と1。
September 7, 1980, before the procedural amendments Commissioner of the Patent Office 1. Indication of the case 1988 Patent Application No. 9266 2. Name of the invention Process for producing dioxane glycol 6. Person making the amendment Relationship to the case Patent applicant Address 100) 2-5-2 Marunouchi, Chiyoda-ku, Tokyo Name (446) Mitsubishi Gas Chemical Co., Ltd. Representative Director
No Kazuyoshi 5, Specification of contents of amendment, page 1, 2nd line to 1st line from the bottom [DOG is.........Much (song 7 Lepur]) as follows: Correction: “DOG in the present invention is neo-yokoshin and 1.

3−ジオキサン環を有する多価アルコールであり、次の
114造式を有する物質である。
It is a polyhydric alcohol having a 3-dioxane ring, and is a substance having the following 114 formula.

Claims (1)

【特許請求の範囲】[Claims] イソブチルアルデヒドとホルムアルデヒドをアルドール
縮合させて得たヒドロキシピバルアルデヒド含有反応生
成液、又は該反応生成液中に存在する未反応のインブチ
ルアルデヒドを留去した液と、トリメチロールプロパン
を反応せしめる事を特徴とするジオキサングリコールの
製造方法
Reacting a hydroxypivalaldehyde-containing reaction product obtained by aldol condensation of isobutyraldehyde and formaldehyde, or a solution obtained by distilling off unreacted inbutyraldehyde present in the reaction product, with trimethylolpropane. Characteristic manufacturing method of dioxane glycol
JP923383A 1983-01-22 1983-01-22 Production of dioxane glycol Granted JPS59134788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP923383A JPS59134788A (en) 1983-01-22 1983-01-22 Production of dioxane glycol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP923383A JPS59134788A (en) 1983-01-22 1983-01-22 Production of dioxane glycol

Publications (2)

Publication Number Publication Date
JPS59134788A true JPS59134788A (en) 1984-08-02
JPS6259104B2 JPS6259104B2 (en) 1987-12-09

Family

ID=11714684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP923383A Granted JPS59134788A (en) 1983-01-22 1983-01-22 Production of dioxane glycol

Country Status (1)

Country Link
JP (1) JPS59134788A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1775291A1 (en) * 2005-10-04 2007-04-18 Mitsubishi Gas Chemical Company, Inc. Process of producing dioxane glycol
JP2007320857A (en) * 2006-05-30 2007-12-13 Mitsubishi Gas Chem Co Inc Method for producing dioxane glycol
WO2008047651A1 (en) * 2006-10-17 2008-04-24 Mitsubishi Gas Chemical Company, Inc. Process for production of flake-like dried 2-(5-ethyl-5-hydroxymethyl-1,3-dioxan-2-yl)-2-methylpropan-1-ol
CN103420973A (en) * 2012-05-15 2013-12-04 东莞市同舟化工有限公司 Synthetic method of 1, 3-dioxane type organic compounds
WO2017159525A1 (en) * 2016-03-15 2017-09-21 三菱瓦斯化学株式会社 Method for producing diol having cyclic acetal skeleton
WO2017204086A1 (en) * 2016-05-26 2017-11-30 三菱瓦斯化学株式会社 Method for preparing cyclic acetal compound

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1772451B1 (en) 2005-10-04 2010-06-02 Mitsubishi Gas Chemical Company, Inc. Process of producing dioxane glycol
JP2007099681A (en) * 2005-10-04 2007-04-19 Mitsubishi Gas Chem Co Inc Method for producing dioxane glycol
JP4883976B2 (en) * 2005-10-04 2012-02-22 三菱瓦斯化学株式会社 Method for producing high-purity dioxane glycol

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2945008A (en) * 1956-08-23 1960-07-12 Eastman Kodak Co Condensation polymers derived from spiroglycols

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2945008A (en) * 1956-08-23 1960-07-12 Eastman Kodak Co Condensation polymers derived from spiroglycols

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2433934A1 (en) * 2005-10-04 2012-03-28 Mitsubishi Gas Chemical Company, Inc. Process of producing dioxane glycol
EP1775291A1 (en) * 2005-10-04 2007-04-18 Mitsubishi Gas Chemical Company, Inc. Process of producing dioxane glycol
US7456300B2 (en) 2005-10-04 2008-11-25 Mitsubishi Gas Chemical Company, Inc. Process of producing dioxane glycol
JP2007320857A (en) * 2006-05-30 2007-12-13 Mitsubishi Gas Chem Co Inc Method for producing dioxane glycol
JP5151986B2 (en) * 2006-10-17 2013-02-27 三菱瓦斯化学株式会社 Process for producing flaky dried 2- (5-ethyl-5-hydroxymethyl-1,3-dioxan-2-yl) -2-methylpropan-1-ol
US7915431B2 (en) 2006-10-17 2011-03-29 Mitsubishi Gas Chemical Company, Inc. Process for production of flake-like dried 2-(5-ethyl-5-hydroxymethyl-1,3-dioxan-2-yl)-2-methylpropan-1-ol
WO2008047651A1 (en) * 2006-10-17 2008-04-24 Mitsubishi Gas Chemical Company, Inc. Process for production of flake-like dried 2-(5-ethyl-5-hydroxymethyl-1,3-dioxan-2-yl)-2-methylpropan-1-ol
KR101396705B1 (en) * 2006-10-17 2014-05-16 미츠비시 가스 가가쿠 가부시키가이샤 Process for production of flake-like dried 2-(5-ethyl-5-hydroxymethyl-1,3-dioxan-2-yl)-2-methylpropan-1-ol
CN103420973A (en) * 2012-05-15 2013-12-04 东莞市同舟化工有限公司 Synthetic method of 1, 3-dioxane type organic compounds
WO2017159525A1 (en) * 2016-03-15 2017-09-21 三菱瓦斯化学株式会社 Method for producing diol having cyclic acetal skeleton
CN108779125A (en) * 2016-03-15 2018-11-09 三菱瓦斯化学株式会社 The manufacturing method of glycol with cyclic acetal skeleton
JPWO2017159525A1 (en) * 2016-03-15 2019-01-24 三菱瓦斯化学株式会社 Method for producing diol having cyclic acetal skeleton
US10370384B2 (en) 2016-03-15 2019-08-06 Mitsubishi Gas Chemical Company, Inc. Method for producing diol having cyclic acetal skeleton
WO2017204086A1 (en) * 2016-05-26 2017-11-30 三菱瓦斯化学株式会社 Method for preparing cyclic acetal compound
JPWO2017204086A1 (en) * 2016-05-26 2019-03-22 三菱瓦斯化学株式会社 Method for producing cyclic acetal compound

Also Published As

Publication number Publication date
JPS6259104B2 (en) 1987-12-09

Similar Documents

Publication Publication Date Title
JPS59134788A (en) Production of dioxane glycol
KR100243985B1 (en) A process for the preparation of pentaerythritol
JP5014724B2 (en) Method for producing dioxane glycol
JP3807514B2 (en) Method for producing ditrimethylolpropane
MXPA96006530A (en) Procedure for obtaining pentaeritri
US6080896A (en) Process for producing polyhydric alcohol
US5994592A (en) Process for producing 2,2'-bis(hydroxymethyl)alkanal and 2,2'-bis(hydroxymethyl)alkanoic acid
JPS6121538B2 (en)
EP0462283B1 (en) Process for producing dipentaerythritol
JPS62226945A (en) Hydrolysis of dialkylcarbonate
JP5034420B2 (en) Method for producing dioxane glycol
JP3557237B2 (en) Method for producing hydroxypivalaldehyde
US3968176A (en) Process for producing pentaerythritol
JPH0372066B2 (en)
JPS5832838A (en) Continuous preparation of methyl vinyl ether
JPH04208242A (en) Production of dipentaerythritol
JPH03261736A (en) Production of dipentaerythritol
JPH0234330B2 (en)
US707812A (en) Alkoxy-caffein and process of making same.
JP6933718B2 (en) Method of co-producing polyol in the presence of inorganic base
JPH11228489A (en) Production of 2,2'-bis(hydroxymethyl)alkanoic acid
JP2003267918A (en) Method for producing 2,2'-bis(hydroxymethyl)alkanoic acid
JPS60190729A (en) Production of trimethylol heptane
JPH1059892A (en) Production of alpha,beta-unsaturated aldehyde
US5072018A (en) Method for production of cyclohexanecarboguanamine